Skip to main content

Potential of Bacterial Cellulose for Sustainable Cities: A Review and Bibliometric Analysis on Bacterial Cellulose

  • Chapter
  • First Online:
A Sustainable Green Future

Abstract

This book chapter focuses on bacterial cellulose (BC), with many recent contemporary studies, an explanation of BC producers and synthesis mechanisms, and a summary of their production methods. Few studies are directly related to sustainability with BC, a promising biomaterial for different solutions due to its properties.

Thus, a comprehensive review of BC and research trends in this area are evaluated by bibliometric analysis. The distribution of publications by years, influential countries, organizations, journals, authors, citation analysis, distribution of publications by scientific disciplines, keyword analysis, and research focuses are emphasized. Scientific publications were taken from the WoS database, and graphics were created with the “VOSviewer” and “Carrot2” programs. According to the analysis, studies on BC started in 1980, but studies on sustainability were found in 2005 and later. It has also been observed that studies on BC in materials science have increased significantly in 2016 and beyond. Finally, bacterial cellulose has been discussed in line with the UN’s Sustainable Development Goals. Therefore it can be said that there is a potential for use in the textile, architecture, and food packaging sectors, and more detailed research is still needed. As a result, the dissemination of BC-related studies in these areas has great potential for a completely sustainable production method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Patterson, Cellulose before CELL: Historical themes. Carbohydr. Polym. 252, 117182 (2021)

    Article  CAS  Google Scholar 

  2. S. Aslam et al., The tale of cotton plant: From wild type to domestication, leading to its improvement by genetic transformation. Am J Mol Biol 10(2), 91–127 (2020)

    Article  CAS  Google Scholar 

  3. J. Wang et al., Towards a cellulose-based society: Opportunities and challenges. Cellulose 28(8), 4511–4543 (2021)

    Article  Google Scholar 

  4. C. Molina-Ramírez et al., Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J. Polym. Environ. 26(2), 830–837 (2018)

    Article  Google Scholar 

  5. P. Lestari et al., Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J. Biol. Sci. 147(1570), 1–6 (2014)

    Google Scholar 

  6. T. Brock et al., Biology of Microorganisms, vol 648, 7th edn. (Prentice Hall, Upper Saddle River, 1994), p. 650

    Google Scholar 

  7. Y. Lee, Case study of renewable bacteria cellulose fiber and biopolymer composites in sustainable design practices, in Sustainable Fibres for Fashion Industry, (Springer, 2016), pp. 141–162

    Chapter  Google Scholar 

  8. C. Napoli, F. Dazzo, D. Hubbell, Production of cellulose microfibrils by Rhizobium. Appl. Microbiol. 30(1), 123–131 (1975)

    Article  CAS  Google Scholar 

  9. B.S. Hungund, S. Gupta, Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J. Microbiol. Biotechnol. 26(10), 1823–1828 (2010)

    Article  CAS  Google Scholar 

  10. P.V. Krasteva et al., Insights into the structure and assembly of a bacterial cellulose secretion system. Nat. Commun. 8(1), 1–10 (2017)

    Article  CAS  Google Scholar 

  11. S. Swingler et al., Recent advances and applications of bacterial cellulose in biomedicine. Polymers 13(3), 412 (2021)

    Article  CAS  Google Scholar 

  12. Z. Yan et al., Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr. Polym. 74(3), 659–665 (2008)

    Article  CAS  Google Scholar 

  13. S. Gorgieva, J. Trček, Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 9(10), 1352 (2019)

    Article  CAS  Google Scholar 

  14. N. Tonouchi, Cellulose and other capsular polysaccharides of acetic acid bacteria, in Acetic Acid Bacteria, (Springer, 2016), pp. 299–320

    Google Scholar 

  15. I. Reiniati, A.N. Hrymak, A. Margaritis, Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit. Rev. Biotechnol. 37(4), 510–524 (2017)

    Article  CAS  Google Scholar 

  16. S. Calderón-Toledo et al., Isolation and partial characterization of Komagataeibacter sp. SU12 and optimization of bacterial cellulose production using Mangifera indica extracts. J. Chem. Technol. Biotechnol. 97, 1482–1493 (2022)

    Article  Google Scholar 

  17. E. Bilgi et al., Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int. J. Biol. Macromol. 90, 2–10 (2016)

    Article  CAS  Google Scholar 

  18. D.H. Hur et al., Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochem. Eng. J. 156, 107527 (2020)

    Article  CAS  Google Scholar 

  19. P. Jacek et al., Molecular aspects of bacterial nanocellulose biosynthesis. Microb. Biotechnol. 12(4), 633–649 (2019)

    Article  Google Scholar 

  20. T. Kondo et al., Dynamic interaction of bacterial cellulose synthase subunit D (BcsD) in type I bacterial cellulose synthase. bioRxiv (2022)

    Google Scholar 

  21. D. Mikkelsen et al., Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107(2), 576–583 (2009)

    Article  CAS  Google Scholar 

  22. P. Singhsa, R. Narain, H. Manuspiya, Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose 25(3), 1571–1581 (2018)

    Article  CAS  Google Scholar 

  23. S.M. Keshk, K. Sameshima, Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4(6), 478–482 (2005)

    CAS  Google Scholar 

  24. B. Rangaswamy, K. Vanitha, B.S. Hungund, Microbial cellulose production from bacteria isolated from rotten fruit. Int. J. Polym. Sci. 2015, 1 (2015)

    Article  Google Scholar 

  25. K. Ji et al., Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Sci. Rep. 6(1), 1–12 (2016)

    Google Scholar 

  26. W.R. Lustri et al., Microbial cellulose—Biosynthesis mechanisms and medical applications. Cell. Fundam. Aspects Curr. Trends 1, 133–157 (2015)

    Google Scholar 

  27. Y. Li et al., Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl. Microbiol. Biotechnol. 96(6), 1479–1487 (2012)

    Article  CAS  Google Scholar 

  28. H. Gao et al., Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydr. Polym. 227, 115323 (2020)

    Article  CAS  Google Scholar 

  29. E.P. Çoban, H. Biyik, Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr. J. Biotechnol. 10(27), 5346–5354 (2011)

    Google Scholar 

  30. A.C. Rodrigues et al., Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. New Biotechnol. 49, 19–27 (2019)

    Article  CAS  Google Scholar 

  31. W. Czaja, D. Romanovicz, Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3), 403–411 (2004)

    Article  CAS  Google Scholar 

  32. H. El-Saied et al., Production and characterization of economical bacterial cellulose. Bioresources 3(4), 1196–1217 (2008)

    CAS  Google Scholar 

  33. E. Vandamme et al., Improved production of bacterial cellulose and its application potential. Polym. Degrad. Stab. 59(1–3), 93–99 (1998)

    Article  CAS  Google Scholar 

  34. D.R. Ruka, G.P. Simon, K.M. Dean, Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr. Polym. 89(2), 613–622 (2012)

    Article  CAS  Google Scholar 

  35. P.S. Panesar et al., Production of microbial cellulose: Response surface methodology approach. Carbohydr. Polym. 87(1), 930–934 (2012)

    Article  CAS  Google Scholar 

  36. Z. Cheng et al., Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresour. Technol. 234, 8–14 (2017)

    Article  CAS  Google Scholar 

  37. F. Hong et al., Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J. Chem. Technol. Biotechnol. 86(5), 675–680 (2011)

    Article  CAS  Google Scholar 

  38. S. Bandyopadhyay, N. Saha, P. Sáha, Characterization of bacterial cellulose produced using media containing waste apple juice. Appl. Biochem. Microbiol. 54(6), 649–657 (2018)

    Article  CAS  Google Scholar 

  39. F. Goelzer et al., Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater. Sci. Eng. C 29(2), 546–551 (2009)

    Article  CAS  Google Scholar 

  40. X. Fan et al., Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr. Polym. 151, 1068–1072 (2016)

    Article  CAS  Google Scholar 

  41. P. Dhar et al., Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation. J. Clean. Prod. 238, 117859 (2019)

    Article  CAS  Google Scholar 

  42. M.C.I.M. Amin, A.G. Abadi, H. Katas, Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr. Polym. 99, 180–189 (2014)

    Article  CAS  Google Scholar 

  43. S. Gea et al., Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresour. Technol. 102(19), 9105–9110 (2011)

    Article  CAS  Google Scholar 

  44. Z. Xiang et al., Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose 24(8), 3513–3523 (2017)

    Article  CAS  Google Scholar 

  45. K.A. Zahan, N. Pa’e, I.I. Muhamad, Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor. Arab. J. Sci. Eng. 40(7), 1881–1885 (2015)

    Article  CAS  Google Scholar 

  46. M. Gao et al., A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat. Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  47. D. Klemm et al., Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005)

    Article  CAS  Google Scholar 

  48. J.C. Meza-Contreras et al., XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydr. Res. 461, 51–59 (2018)

    Article  CAS  Google Scholar 

  49. P.C.F. Tischer et al., Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11(5), 1217–1224 (2010)

    Article  CAS  Google Scholar 

  50. S.-P. Lin et al., Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5), 2191–2219 (2013)

    Article  CAS  Google Scholar 

  51. A. Putra et al., Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49(7), 1885–1891 (2008)

    Article  CAS  Google Scholar 

  52. R. Alosmanov, K. Wolski, S. Zapotoczny, Grafting of thermosensitive poly (N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability. Cellulose 24(1), 285–293 (2017)

    Article  CAS  Google Scholar 

  53. S.-T. Chang et al., Nano-biomaterials application: Morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll. 27(1), 137–144 (2012)

    Article  CAS  Google Scholar 

  54. M. Khamrai, S.L. Banerjee, P.P. Kundu, Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydr. Polym. 174, 580–590 (2017)

    Article  CAS  Google Scholar 

  55. M. Phisalaphong, N. Jatupaiboon, Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydr. Polym. 74(3), 482–488 (2008)

    Article  CAS  Google Scholar 

  56. S. Tang et al., A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydr. Polym. 252, 117123 (2021)

    Article  CAS  Google Scholar 

  57. S. Schrecker, P. Gostomski, Determining the water holding capacity of microbial cellulose. Biotechnol. Lett. 27(19), 1435–1438 (2005)

    Article  CAS  Google Scholar 

  58. W. Hu et al., In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater. Sci. Eng. C 29(4), 1216–1219 (2009)

    Article  CAS  Google Scholar 

  59. M. Sureshkumar, D.Y. Siswanto, C.-K. Lee, Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J. Mater. Chem. 20(33), 6948–6955 (2010)

    Article  CAS  Google Scholar 

  60. D. Sun, J. Yang, X. Wang, Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2(2), 287–292 (2010)

    Article  CAS  Google Scholar 

  61. S.C. Pigossi et al., Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J. Biomed. Mater. Res. A 103(10), 3397–3406 (2015)

    Article  CAS  Google Scholar 

  62. H.G. de Oliveira Barud et al., A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr. Polym. 153, 406–420 (2016)

    Article  Google Scholar 

  63. N. Eslahi et al., Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: A review of recent advances for biomedical applications. Polym. Rev. 60(1), 144–170 (2020)

    Article  CAS  Google Scholar 

  64. B. Wei, G. Yang, F. Hong, Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym. 84(1), 533–538 (2011)

    Article  CAS  Google Scholar 

  65. C. Boisset et al., Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol. Bioeng. 72(3), 339–345 (2001)

    Article  CAS  Google Scholar 

  66. Y. Hu, J.M. Catchmark, Integration of cellulases into bacterial cellulose: Toward bioabsorbable cellulose composites. J. Biomed. Mater. Res. B Appl. Biomater. 97(1), 114–123 (2011)

    Article  Google Scholar 

  67. Y. Hu, J.M. Catchmark, In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater. 7(7), 2835–2845 (2011)

    Article  CAS  Google Scholar 

  68. B. Wang et al., In vitro biodegradability of bacterial cellulose by cellulase in simulated body fluid and compatibility in vivo. Cellulose 23(5), 3187–3198 (2016)

    Article  CAS  Google Scholar 

  69. C. Chen, Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2(2), 1 (2017)

    CAS  Google Scholar 

  70. H.-N. Su, P.-C. Lee, Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 85(1), 65–79 (2010)

    Article  Google Scholar 

  71. M. Özdemir, S.A. Selçuk, Mimarlıkta Makine Öğrenmesi: Bibliyometrik Bir Analiz. Online J. Art Des. 9(4) (2021)

    Google Scholar 

  72. M.R. Hosseini et al., Analysis of citation networks in building information modeling research. J. Constr. Eng. Manag. 144(8), 04018064 (2018)

    Article  Google Scholar 

  73. M. Artsın, Bir metin madenciliği uygulaması: VOSVIEWER. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler 8(2), 344–354 (2020)

    Google Scholar 

  74. A. Nakagaito, S. Iwamoto, H. Yano, Bacterial cellulose: The ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl. Phys. A 80(1), 93–97 (2005)

    Article  CAS  Google Scholar 

  75. L.G. Ljungdahl, K.-E. Eriksson, Ecology of microbial cellulose degradation, in Advances in Microbial Ecology, (Springer, 1985), pp. 237–299

    Chapter  Google Scholar 

  76. A. Jongejan, Observations on a microbial cellulose degradation process that decreases water acidity. Int. Biodeterior. 22(3), 207–211 (1986)

    CAS  Google Scholar 

  77. H. Yano et al., Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17(2), 153–155 (2005)

    Article  CAS  Google Scholar 

  78. I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3), 459–494 (2010)

    Article  Google Scholar 

  79. D. Klemm et al., Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)

    Article  CAS  Google Scholar 

  80. S.J. Eichhorn et al., Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45(1), 1–33 (2010)

    Article  CAS  Google Scholar 

  81. Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014)

    Article  CAS  Google Scholar 

  82. Y. Ho, A. Fahad Halim, M. Islam, The trend of bacterial nanocellulose research published in the science citation index expanded from 2005 to 2020: A bibliometric analysis. Front. Bioeng. Biotechnol. 9, 795341 (2022). https://doi.org/10.3389/fbioe.2021.795341. Frontiers in Bioengineering and Biotechnology | www. frontiersin. org

    Article  Google Scholar 

  83. K. Sonneveld, et al., Sustainable packaging: how do we define and measure it, in 22nd IAPRI Symposium (2005)

    Google Scholar 

  84. A.P. Provin et al., Textile industry and environment: Can the use of bacterial cellulose in the manufacture of biotextiles contribute to the sector? Clean Techn. Environ. Policy 23(10), 2813–2825 (2021)

    Article  Google Scholar 

  85. F.M. Ng, P.W. Wang, Natural self-grown fashion from bacterial cellulose: A paradigm shift design approach in fashion creation. Des. J. 19(6), 837–855 (2016)

    Google Scholar 

  86. A. Ng, Grown microbial 3D fiber art, Ava: fusion of traditional art with technology, in Proceedings of the 2017 ACM International Symposium on Wearable Computers (2017)

    Google Scholar 

  87. C.J.G. da Silva et al., Bacterial cellulose biotextiles for the future of sustainable fashion: A review. Environ. Chem. Lett. 19(4), 2967–2980 (2021)

    Article  Google Scholar 

  88. F.A.G. Soares da Silva et al., Development of a layered bacterial nanocellulose-PHBV composite for food packaging. J. Sci. Food Agric. (2022)

    Google Scholar 

  89. M. Salari et al., Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 84, 414–423 (2018)

    Article  CAS  Google Scholar 

  90. S.M. Choi et al., Bacterial cellulose and its applications. Polymers 14(6), 1080 (2022)

    Article  CAS  Google Scholar 

  91. G.D. Turhan, G. Varinlioglu, M. Bengisu, Dynamic relaxation simulations of bacterial cellulose-based tissues (2020)

    Google Scholar 

  92. N.T. El Gazzar, A.T. Estévez, Y.K. Abdallah, Bacterial cellulose as a base material in biodigital architecture (between bio-material development and structural customization). J. Green Build. 16(2), 173–199 (2021)

    Article  Google Scholar 

  93. M.A. Akhlaghi, R. Bagherpour, H. Kalhori, Application of bacterial nanocellulose fibers as reinforcement in cement composites. Constr. Build. Mater. 241, 118061 (2020)

    Article  CAS  Google Scholar 

  94. K. Zolotovsky, Guided Growth: Design and Computation of Biologically Active Materials (Massachusetts Institute of Technology, 2017)

    Google Scholar 

  95. C. Bloch, Design Potential of Microbial Cellu-lose in Growing Architecture (Dis-sertação-Chalmers School of Architecture. De-partment of Architecture and Civil Engineering, Göteborg, 2019), p. 91

    Google Scholar 

  96. S. Camere, E. Karana, Growing materials for product design. EKSIG 2017: Alive. Active. Adaptive (1), 101–115 (2017)

    Google Scholar 

URLs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Esin Hameş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kale, İ. et al. (2023). Potential of Bacterial Cellulose for Sustainable Cities: A Review and Bibliometric Analysis on Bacterial Cellulose. In: Oncel, S.S. (eds) A Sustainable Green Future. Springer, Cham. https://doi.org/10.1007/978-3-031-24942-6_16

Download citation

Publish with us

Policies and ethics