Skip to main content
Log in

Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bacterial cellulose demonstrates unique properties including high mechanical strength, crystallinity and water retention ability that are suitable for industrial applications, such as food, paper manufacturing and pharmaceutical. In this study, Acetobacter xylinum 0416 was cultured in a designed 10-L Rotary Discs Reactor (RDR) to produce bacterial cellulose. The effects of different pH in the range of 3.5–7.5 on the bacterial cellulose production and the bacterial growth were investigated. The highest yield was obtained at pH 5.0 with a total dried weight of 28.3 g, while the lowest yield was obtained at pH 3.5 with a total dried weight of 4.7 g. Results also showed that the dried weight of bacterial cellulose was 60% higher when the pH of the medium was controlled during the experiments compared with uncontrolled pH. In addition, A. xylinum 0416 growth decreased to around 30% when pH value dropped from 5.05 to 3.56. The results also proved that the formation of acetic acid as a by-product caused the pH to drop during fermentation process in 10-L RDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halib N., Amin M.C.I.M., Ahmad I.: Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malays. 41(2), 205–211 (2002)

    Google Scholar 

  2. Verschuren P.G., Cardona T.D., Robert Nout M.J., Gooijer K.D., Den Huevel J.V.: Location of cellulose production by Acetobacter xylinum established from oxygen profiles. J. Biosci. Bioeng. 89(5), 414–419 (1999)

    Article  Google Scholar 

  3. Zahan, K.A.: Process parameters for microbial cellulose production by Acetobacter xylinum in Rotary Disc Reactor. Master Degree Thesis. Universiti Teknologi Malaysia, Skudai, Johor (2014)

  4. Bae S., Shoda M.: Statistical optimization of culture conditions for bacterial cellulose production using box-behnken design. Biotechnol. Bioeng. 90(1), 20–28 (2005)

    Article  Google Scholar 

  5. Pa’e N., Zahan K.A., Muhamad I.I.: Production of biopolymer from Acetobacter xylinum using different fermentation methods. Int. J. Eng. Technol. IJET-IJENS 11(5), 90–98 (2011)

    Google Scholar 

  6. Yoshino T., Asakura T., Toda K.: Cellulose production by Acetobacter pasteurianus on silicone membrane. J. Ferment. Bioeng. 81(1), 32–36 (1996)

    Article  Google Scholar 

  7. Bungay, H.R.; Serafica, G.C.: US Patent, 5955326. Rensselaer Polytechnic Institute, Troy, New York (1999)

  8. Hornung M., Ludwig M., Schmauder H.P.: Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (part 3). Eng. Life Sci. 7(1), 35–41 (2007)

    Article  Google Scholar 

  9. Coban E.P., Biyik H.: Evaluation of different pH and temperatures for bacterial cellulose production in HS (hestrin-scharmm) medium and beet molasses medium. Afr. J. Microbiol. Res. 5(9), 1037–1045 (2011)

    Google Scholar 

  10. Sumate T., Pramote T., Waravut K., Pattarasinee B., Angkana P.: Effect of dissolved oxygen on cellulose production by Acetobacter sp. J. Sci. Res. Chulalongkorn Univ. 30(2), 179–186 (2005)

    Google Scholar 

  11. Ishikawa A., Matioka M., Tsuchida T., Yoshinaga F.: Increasing of bacterial cellulose by sulfaguanidine-resistant mutants derived from Acetobacter xylinum subsp. sucrofermentants BPR 2001. Biosci. Biotechnol. Biochem. 59, 2259–2262 (1995)

    Article  Google Scholar 

  12. Joris K., Biliet F., Drieghe S., Brack D., Vandamme E.: Microbial production of β-1,4-Glucan. Meded Fac Landbouwwet-Rijksuniv Gent 55, 1563–1566 (1990)

    Google Scholar 

  13. Thi, T.N.; Junji S.; Vincent B.: Bacterial cellulose-based biomimetic composites, biopolymers. Magdy Elnashar (Ed.). ISBN: 978-953-307-109-1, InTech (2010)

  14. Kongruang S.: Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl. Biochem. Biotechnol. 148(1–3), 245–256 (2008)

    Article  Google Scholar 

  15. Suwannapinunt N., Burakorn J., Thaenthanee S.: Effect of culture conditions on bacterial cellulose (BC) production from Acetobacter xylinum TISTR976 and physical properties of BC parchment paper. J. Sci. Technol. 14(4), 357–365 (2007)

    Google Scholar 

  16. Chawla P.R., Bajaj I.B., Survase S.A., Singhal R.S.: Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47(2), 107–124 (2008)

    Google Scholar 

  17. Jung W.H., Young K.Y., Jae K.H., Yu R.P., Yu S.K.: Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRCS in agitated culture. J. Biosci. Bioeng. 88(2), 183–188 (1999)

    Article  Google Scholar 

  18. Hwang J.W., Yang Y.K., Hwang J.K., Pyun R.Y., Kim Y.S.: Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J. Biosci. Bioeng. 88(2), 183–188 (1998)

    Article  Google Scholar 

  19. Pa’e, N.; Hui, C.C.; Muhamad, I.I.: Shaken culture fermentation for production of microbial cellulose using pineapple waste. In: Proceeding of the International Conference on Waste to Wealth, 26–28 November 2007, Kuala Lumpur, Malaysia (2007)

  20. Wardman, R.C.: Determination and removal of gluconic acid in reduced alcohol wine and high acid grape juice. Master of Applied Science Thesis, Lincoln University, New Zealand (1995)

  21. Klemn D., Schumann D., Udhart U., Marsch S.: Bacterial synthesis cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26(9), 1561–1603 (2001)

    Article  Google Scholar 

  22. Lapuz M.M., Gallardo E.G., Palo M.A.: The nata organism-cultural requirements, characteristics and identify. Philip. J. Sci. 96(2), 91–109 (1969)

    Google Scholar 

  23. Jonas R., Farah L.F.: Production and application of microbial cellulose. Polym. Degrad. Stab. 59(1–3), 101–106 (1998)

    Article  Google Scholar 

  24. Jagannath A., Kalaiselvan A., Manjunatha S.S., Raju P.S., Bawa A.S.: The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World J. Microbiol. Biotechnol. 24(11), 2593–2599 (2008)

    Article  Google Scholar 

  25. Holmes, D.: Bacterial cellulose. Master Degree Thesis, University of Canterbury Christchurch, New Zealand (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairul Azly Zahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahan, K.A., Pa’e, N. & Muhamad, I.I. Monitoring the Effect of pH on Bacterial Cellulose Production and Acetobacter xylinum 0416 Growth in a Rotary Discs Reactor. Arab J Sci Eng 40, 1881–1885 (2015). https://doi.org/10.1007/s13369-015-1712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1712-z

Keywords

Navigation