Skip to main content

Advertisement

Log in

Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC), which is a hemicellulose- and lignin-free type of cellulose with unique properties, was produced by Komagataeibacter medellinensis, a new acid-resistant bacterial strain, using not suitable human consumption and sub-valorized food supply chain waste (FSCW) and agricultural by-products, namely, rotten banana, rotten mango and cheese whey. The BC was analyzed using Fourier transform infrared (ATR-FTIR) , tensile test, atomic absorption spectroscopy and thermogravimetric analysis. The properties of the BC obtained from each culture medium used were different, ranging from a material with high resistance and stiffness (280.6 MPa, 9.4 GPa) to a material with low resistance and less stiffness (17.7 MPa, 0.8 GPa). These properties provide considerable opportunities for obtaining different materials with multiple applications, such as composite reinforcements, wound dressings and edible films. The highest production of BC was achieved with rotten banana medium, and this BC also had the highest tensile properties. Meanwhile, the BC produced from cheese whey medium had the highest maximum rate of degradation temperature at 368 °C. This research demonstrated that FSCW and agrowaste by-products are advantageous alternative feedstocks in terms of economics and environmental concerns for producing BC with multiple properties and fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (1997) Environ Microbiol 8(11), 2006. doi:10.1111/j.1462-2920.2006.01080.x

  2. Hungund BS, Gupta SG (2010) World J Microbiol Biotechnol 26:1823–1828. doi:10.1007/s11274-010-0363-1

    Article  CAS  Google Scholar 

  3. Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J (2015) Biotechnol Adv 33:1260–1271. doi:10.1016/j.biotechadv.2014.12.001

    Article  CAS  Google Scholar 

  4. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Food Hydrocolloids 35:539

    Article  CAS  Google Scholar 

  5. Hioki N, Hori Y, Watanabe K, Morinaga Y, Yoshinaga F, Hibino Y, Ogura T (1995) Jpn Tappi J 49(4):718. doi:10.2524/jtappij.49.718

    Article  CAS  Google Scholar 

  6. Santos SM, Carbajo JM, Gómez N, Quintana E, Ladero M, Sánchez A, Chinga-Carrasco G, Villar JC (2016) J Mater Sci 51(3):1553. doi:10.1007/s10853-015-9477-z

    Article  CAS  Google Scholar 

  7. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Prog Polym Sci 26(9):1561

    Article  CAS  Google Scholar 

  8. Wan Y, Huang Y, Yuan C, Raman S, Zhu Y, Jiang H, He F, Gao C (2007) Mater Sci Engg 27(4):855. doi:10.1016/j.msec.2006.10.002

    Article  CAS  Google Scholar 

  9. Rajwade JM, Paknikar KM, Kumbhar JV (2015) Appl Microbiol Biotechnol 99(6):2491. doi:10.1007/s00253-015-6426-3

    Article  CAS  Google Scholar 

  10. Lee KY, Aitomki Y, Berglund LA, Oksman K, Bismarck A (2014) Compos Sci Technol 105:15–27. doi:10.1016/j.compscitech.2014.08.032

    Article  Google Scholar 

  11. Chen L, Hong F, Xia Yang X, Fen Han S (2013) Bioresour Technol 135:464. doi:10.1016/j.biortech.2012.10.029

    Article  CAS  Google Scholar 

  12. Shah J, Malcolm Brown R (2005) Appl Microbiol Biotechnol 66(4):352. doi:10.1007/s00253-004-1756-6

    Article  CAS  Google Scholar 

  13. Future Markets I (2015) The global market for nanocellulose to 2017. Tech Rep, Future Markets, Inc

  14. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Carbohydr Polym 84(1):96. doi:10.1016/j.carbpol.2010.10.072

    Article  CAS  Google Scholar 

  15. Rani MU, Appaiah KAA (2013) J Food Sci Technol 50(4):755. doi:10.1007/s13197-011-0401-5

    Article  CAS  Google Scholar 

  16. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) J Polym Environ 21(2):545. doi:10.1007/s10924-012-0541-3

    Article  CAS  Google Scholar 

  17. Jozala AF, Pértile RAN, dos Santos CA, de Carvalho Santos-Ebinuma V, Seckler MM, Gama FM, Pessoa A (2015) Appl Microbiol Biotechnol 99(3):1181. doi:10.1007/s00253-014-6232-3

    Article  CAS  Google Scholar 

  18. Rivas B, Moldes AB, Domnguez JM, Parajó JC (2004) Int J Food Microbiol 97(1):93

    Article  CAS  Google Scholar 

  19. Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Energy Environ Sci 6:426. doi:10.1039/C2EE23440H

    Article  CAS  Google Scholar 

  20. FAO (2011) Global food losses and food waste-extent, causes and prevention

  21. Adhikari BK, Barrington S, Martinez J (2006) Waste Manag Res 24(5):421. doi:10.1177/0734242X06067767

    Article  CAS  Google Scholar 

  22. Carvalho F, Prazeres AR, Rivas J (2013) Sci Total Environ 445446:385. doi:10.1016/j.scitotenv.2012.12.038

    Article  Google Scholar 

  23. Agronet (2013) Estadísticas agrícola: área, producción, rendimiento y participación. http//:www.agronet.gov.co/estadistica/Paginas/default.aspx. Accessed 29 September 2016

  24. Dinero R ¿cómo está el sector lechero?: un llamado a mejorar (2015) http//:www.dinero.com/economia/articulo/analisis-del-sector-lechero-colombia-2015/211145. Accessed 29 September 2016

  25. Suárez M (2010) Study of ci (competitive intelligence) colombian dairy chain in two specific products: fresh cheese and arequipe to the u.s. market. Master’s thesis, Universidad Nacional de Colombia

  26. Fox PF, MaSweeney PLH, Cogan T, Timothy G (2000) Fundamentals of cheese science, 1st edn. Springer, New York

    Google Scholar 

  27. Thompson DN, Hamilton MA (2001) Appl Biochem Biotechnol 91(1):503. doi:10.1385/ABAB:91-93:1-9:503

    Article  Google Scholar 

  28. Yamada Y (2014) Int J Syst Evol Microbiol 64:1670. doi:10.1099/ijs.0.054494-0

    Article  Google Scholar 

  29. Castro C, Cleenwerck I, Trek J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux JL, Gañán P (2013) Int J Syst Evol Microbiol 63(3):1119. doi:10.1099/ijs.0.043414-0

    Article  CAS  Google Scholar 

  30. Cocinero EJ, Gamblin DP, Davis BG, Simons JP (2009) J Am Chem Soc 131(31):11117–11123. doi:10.1021/ja903322w

  31. Benziman M, Rivetz B (1972) J Bacteriol 111(2):325

    CAS  Google Scholar 

  32. Emaga TH, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M (2007) Food Chem 103(2):590. doi:10.1016/j.foodchem.2006.09.006

    Article  Google Scholar 

  33. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Nature 325(6101):279. doi:10.1038/325279a0

    Article  CAS  Google Scholar 

  34. Ross P, Mayer R, Benziman M (1991) Microbiol Rev 55(1):35

    CAS  Google Scholar 

  35. Weinhouse H, Sapir S, Amikam D, Shilo Y, Volman G, Ohana P, Benziman M (1997) FEBS Lett 416(2):207

    Article  CAS  Google Scholar 

  36. Mohite BV, Kamalja KK, Patil SV (2012) Cellulose 19(5):1655. doi:10.1007/s10570-012-9760-y

    Article  CAS  Google Scholar 

  37. Keshk SMAS, Razek TMA (2006) Afr J Biotechnol 5(17):1519

    CAS  Google Scholar 

  38. Gu J, Catchmark JM (2012) Carbohydr Polym 88(2):547. doi:10.1016/j.carbpol.2011.12.040

    Article  CAS  Google Scholar 

  39. Kumbhar JV, Rajwade JM, Paknikar KM (2015) Appl Microbiol Biotechnol 99(16):6677. doi:10.1007/s00253-015-6644-8

    Article  CAS  Google Scholar 

  40. Nelson ML, O’Connor RT (1964) J Appl Polym Sci 8(3):1311. doi:10.1002/app.1964.070080322

    Article  CAS  Google Scholar 

  41. Rozenberga L, Skute M, Belkova L, Sable I, Vikele L, Semjonovs P, Saka M, Ruklisha M, Paegle L (2016) Carbohydr Polym 144:33. doi:10.1016/j.carbpol.2016.02.025

    Article  CAS  Google Scholar 

  42. Stuart B (2004), Infrared spectroscopy: fundamentals and applications, 1st edn. Wiley. DOI10.1002/0470011149

  43. Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin. doi:10.1007/978-3-540-73934-0_5

    Book  Google Scholar 

  44. Wada M, Okano T, Sugiyama J (1997) Cellulose 4(3):221. doi:10.1023/A:1018435806488

    Article  CAS  Google Scholar 

  45. Nelson ML, O’Connor RT (1964) J Appl Polym Sci 8(3):1325. doi:10.1002/app.1964.070080323

    Article  CAS  Google Scholar 

  46. Imai T, Sugiyama J (1998) Macromolecules 31(18):6275. doi:10.1021/ma980664h

    Article  CAS  Google Scholar 

  47. Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. DOI10.4314/ajb.v4i6.15125. http://www.ajol.info/index.php/ajb/article/view/15125

  48. Yamamoto H, Horii F, Hirai A (1996) Cellulose 3(1):229. doi:10.1007/BF02228804

    Article  CAS  Google Scholar 

  49. Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH, Biomacromolecules 15(7), 2718 (2014). DOI10.1021/bm500567v. PMID: 24846814

  50. Hackney J, Atalla R, Van der Hart D (1994) Int J Biol Macromol 16(4):215. doi:10.1016/0141-8130(94)90053-1

    Article  CAS  Google Scholar 

  51. Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2009) Cellulose 17(3):661. doi:10.1007/s10570-009-9389-7

    Article  Google Scholar 

  52. Ul-Islam M, Ha JH, Khan T, Park JK (2013) Carbohydr Polym 92(1):360. doi:10.1016/j.carbpol.2012.09.060

    Article  CAS  Google Scholar 

  53. Onwulata C, Huth P (2009) Whey processing, functionality and health benefits. Wiley, Blackwell. doi:10.1002/9780813803845

    Google Scholar 

  54. Ruka DR, Simon GP, Dean KM (2013) Carbohydr Polym 92(2):1717. doi:10.1016/j.carbpol.2012.11.007

    Article  CAS  Google Scholar 

  55. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) Cellulose 15(4):507. doi:10.1007/s10570-008-9206-8

    Article  CAS  Google Scholar 

  56. Henriksson M, Berglund LA, Isaksson P, Lindstrm T, Nishino T (2008) Biomacromolecules 9(6):1579. doi:10.1021/bm800038n

    Article  CAS  Google Scholar 

  57. RomanG M (2004) Biomacromolecules 5(5):1671. doi:10.1021/bm034519+

    Article  Google Scholar 

  58. Shimada N, Kawamoto H, Saka S (2008) J Anal Appl Pyrolysis 81(1):80

    Article  CAS  Google Scholar 

  59. Machado RT, Gutierrez J, Tercjak A,  Trovatti E, Uahib FG, Nascimento AP, Berreta AA, Ribeiro SJ, Barud HS (2016) Carbohydr Polym. doi:10.1016/j.carbpol.2016.06.049

  60. Song P, Xu Z, Lu Y, Guo Q (2015) Compos Sci Technol 118:16. doi:10.1016/j.compscitech.2015.08.006

    Article  CAS  Google Scholar 

  61. Jiang S, Xu W, Zhao B, Tian Y, Zhao Y (2000) Mater Sci Engg 11(1):85. doi:10.1016/S0928-4931(00)00188-0

    Article  Google Scholar 

  62. Shanshan G, Jianqing W, Zhengwei J (2012) Carbohydr Polym 87(2):1020. doi:10.1016/j.carbpol.2011.06.040

    Article  Google Scholar 

  63. Varhegyi G, Varhegyi G Jr, Antal MJ, Szekely T, Till F, Jakab E (1988) Energy Fuels 2(3):267. doi:10.1021/ef00009a007

    Article  CAS  Google Scholar 

  64. Sunooj KV, George J, Sajeev Kumar VA, Radhakrishna K, Bawa AS (2011) J Food Sci 1(2):77

    CAS  Google Scholar 

  65. Jeon JH, Oh IK, Kee CD, Kim SJ (2010) Sens Actuat B 146(1):307. doi:10.1016/j.snb.2010.02.046

    Article  CAS  Google Scholar 

  66. Nakagaito A, Iwamoto S, Yano H (2005) Appl Phys A 80(1):93. doi:10.1007/s00339-004-2932-3

    Article  CAS  Google Scholar 

  67. Okiyama A, Motoki M, Yamanaka S (1993) Food Hydrocolloids 6(6):503. doi:10.1016/S0268-005X(09)80074-X

    Article  CAS  Google Scholar 

  68. George J, Siddaramaiah (2012) Carbohydr Polym 87(3):2031. doi:10.1016/j.carbpol.2011.10.019

    Article  CAS  Google Scholar 

  69. Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Int J Mol Sci 16(7):14832. doi:10.3390/ijms160714832

    Article  CAS  Google Scholar 

  70. Hong F, Guo X, Zhang S, Fen Han S, Yang G, Jönsson LJ (2012) Bioresour Technol 104:503. doi:10.1016/j.biortech.2011.11.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Research Center for Investigation and Development (CIDI) from the Universidad Pontificia Bolivariana and the Science, Technology and the Innovation Administrative Department of the Colombian Government (COLCIENCIAS) for financial support through grant # 672 of 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Molina-Ramírez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Ramírez, C., Castro, C., Zuluaga, R. et al. Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks. J Polym Environ 26, 830–837 (2018). https://doi.org/10.1007/s10924-017-0993-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0993-6

Keywords

Navigation