Skip to main content
Log in

Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, the yields of exopolysaccharides (EPS) produced in situ during sourdough fermentations with Lactobacillus reuteri TMW 1.106 synthesizing glucan from sucrose were investigated under variation of the fermentation parameters dough yield (DY), pH, sucrose content and fermentation substrate. The obtained amounts of EPS after 1 day of fermentation were higher in softer (DY 500) than in firmer (DY 220) doughs. With the regulation of the pH to a constant value of 4.7, the optimum for EPS synthesis in liquid medium, the EPS production in dough also increased. The EPS yield could further be improved by additional sucrose fed-batch during fermentation. Fermentations with wheat flours, a rye-wheat mixture and rye bran with 10% sucrose as fermentation substrate showed, that the use of rye bran is a promising tool to get high dextran formation through L. reuteri even in the first 8 h of fermentation. Further, alternative production of oligosaccharides and organic acids from sucrose was investigated. Lactobacillus reuteri synthesized high amounts of acetic acid leading to low fermentation quotient values. In wheat doughs, the formation of maltooligosaccharides was observed. Confirmatory experiments with fructan producing Lactobacillus sanfranciscensis TMW 1.392 revealed the same trends with a few distinct differences, indicating that this approach is transferable to other EPS types and producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hammes WP, Gänzle MG (1998) Sourdough breads and related products. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn edn. Chapman & Hall, London, pp 199–216

    Google Scholar 

  2. Clarke CI, Arendt EK (2005) A review of the application of sourdough technology to wheat breads. Adv Food Nutr Res 49:138–161

    Google Scholar 

  3. Brandt MJ (2007) Sourdough products for convenient use in baking. Food Microbiol 24:161–164

    Article  CAS  Google Scholar 

  4. Davidou S, Meste M, Le Debever E, Bekkaert D (1996) A contribution to the study of staling of white bread: effect of water and hydrocolloid. Food Hydrocolloid 10:375–383

    Article  CAS  Google Scholar 

  5. Rosell CM, Rojas JA, Benedito de Barber C (2001) Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloid 15:75–81

    Article  CAS  Google Scholar 

  6. De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    Article  Google Scholar 

  7. Duboc P, Mollet B (2001) Application of exopolysaccharides in the dairy industry. Int Dairy J 11:759–768

    Article  CAS  Google Scholar 

  8. Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–160

    Article  CAS  Google Scholar 

  9. Brandt MJ, Roth K, Hammes WP (2003) Effect of an exopolysaccharide produced by Lactobacillus sanfranciscensis LTH 1729 on dough and bread quality. In: de Vyust L (ed) Sourdough from fundamentals to application. Vrije Universiteit Brussels (VUB). IMDO, Brussels, p 80

    Google Scholar 

  10. Tieking M, Kaditzky S, Gänzle MG, Vogel RF (2003) Biodiversity and potential for baking applications of glycosyltransferases in lactobacilli for use in sourdough fermentation. In: de Vuyst L (ed) Sourdough, from fundamentals to applications. Vrije Universiteit Brussels (VUB). IMDO, Brussels, pp 58–59

    Google Scholar 

  11. Anonymous (2005) Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J 226:1–12

  12. Decock P, Cappelle S (2005) Bread technology and sourdough technology. Trend Food Sci Technol 16:113–120

    Article  CAS  Google Scholar 

  13. Van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH (2006) Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176

    Article  CAS  Google Scholar 

  14. Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesized glycans. Appl Microbiol Biotechnol 71:790–803

    Article  CAS  Google Scholar 

  15. Kim D, Robty JF, Lee S-Y, Lee J-H, Kim Y-M (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res 338:1183–1189

    Article  CAS  Google Scholar 

  16. Kaditzky S, Behr J, Stocker A, Kaden P, Gänzle MG, Vogel RF (2008b) Influence of pH on the formation of glucan by Lactobacillus reuteri TMW 1.106 exerting a protective function against extreme pH values. Food Biotechnol (in press)

  17. Tieking M, Ehrmann MA, Vogel RF, Gänzle MG (2005) Molecular and functional characterisation of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66:655–663

    Article  CAS  Google Scholar 

  18. Tieking M, Kühnl W, Gänzle MG (2005) Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. J Agric Food Chem 53:2456–2462

    Article  CAS  Google Scholar 

  19. Korakli M, Pavlovic M, Gänzle MG, Vogel RF (2003) Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69:2073–2079

    Article  CAS  Google Scholar 

  20. Kaditzky S, Seitter M, Hertel C, Vogel RF (2008) Performance of Lactobacillus sanfranciscensis TMW 1.392 and its levansucrase deletion mutant in wheat dough and comparison of their impact on bread quality. Eur Food Res Technol 227:433–442

    Article  CAS  Google Scholar 

  21. Gänzle MG, Brandt M (2005) Begriffsbestimmungen und Definitionen von Sauerteig. In: Brandt MJ, Gänzle MG (eds) Handbuch Sauerteig, 6. Auflage, Behr’s Verlag, Hamburg, pp 9–14

  22. Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by intestinal and cereal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952

    Article  CAS  Google Scholar 

  23. Schwab C, Gänzle MG (2005) Effect of membrane lateral pressure on the expression of fructosyltransferase in Lactobacillus reuteri. Syst Appl Microbiol 29:89–99

    Article  CAS  Google Scholar 

  24. Stolz P, Böcker G, Hammes WP, Vogel RF (1995) Utilization of electron acceptors by lactobacilli isolated from sourdough. I. Lactobacillus sanfrancisco. Z Lebensm Unters Forsch 201:91–96

    Article  CAS  Google Scholar 

  25. Korakli M, Rossmann A, Gänzle MG, Vogel RF (2001) Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. J Agric Food Chem 49:5194–5200

    Article  CAS  Google Scholar 

  26. Thiele C, Gänzle MG, Vogel RF (2002) Sample preparation for amino acid determination by integrated pulsed amperometric detection in foods. Anal Biochem 310:171–178

    Article  CAS  Google Scholar 

  27. Gobetti M, Corsetti A (1997) Lactobacillus sanfrancisco a key sourdough lactic acid bacterium: a review. Food Microbiol 14:175–187

    Article  Google Scholar 

  28. Röcken W (1999) Einfluss der Führungsbedingungen auf die Milch—und Essigsäurebildung während der Sauerteiggärung. In: Spicher G, Stephan H (eds) Handbuch Sauerteig, 5. Auflage. Behr’s Verlag, Hamburg, pp 127–139

  29. Röcken W, Rick M, Reinkemeier M (1992) Controlled production of acetic acid in wheat sour doughs. Z Lebensm Unters Forsch 195:259–263

    Article  Google Scholar 

  30. Barber S, Báguena R, Bendito de Barber C, Martínez-Anaya MA (1991) Evolution of biochemical and rheological characteristics and breadmaking quality during a multistage wheat sour dough process. Z Lebensm Unters Forsch 192:46–52

    Article  CAS  Google Scholar 

  31. Barber B, Ortolá C, Barber S, Fernandéz F (1992) Storage of packaged white bread. III. Effects of sour dough and addition of acids on bread characteristics. Z Lebensm Unters Forsch 194:442–449

    Article  CAS  Google Scholar 

  32. Spicher G (1983) Baked goods. In: Rehm HJ, Reed G (eds) Biotechnology, vol 5. Verlag Chemie, Weinheim, pp 1–80

    Google Scholar 

  33. Neysens P, de Vuyst L (2005) Kinetics and modelling of sourdough lactic acid bacteria. Trends Food Sci Technol 16:95–103

    Article  CAS  Google Scholar 

  34. Kaditzky S (2008) Sucrose metabolism in lactobacilli and bifidobacteria. Doctoral thesis, Technische Universität München

  35. Liu S-Q, Asmundson RV, Gopal PK, Holland R, Crow VL (1998) Influence of reduced water activity on lactose metabolism by Lactococcus lactis subsp. cremoris at different pH values. Appl Environ Microbiol 64:2111–2116

    CAS  Google Scholar 

  36. Looijesteijn PJ, Hugenholtz J (1999) Uncoupling of growth and exopolysaccharides production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J Biosci Bioeng 88:178–182

    Article  CAS  Google Scholar 

  37. Hansen BH, Andreasen MF, Nielsen MM, Larsen LM, Knudsen KEB, Meyer AS, Chrsitensen LP, Hansen A (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Technol 214:33–42

    Article  CAS  Google Scholar 

  38. Salmenkallio-Marttila M, Katina K, Autio K (2001) Effects of bran fermentation on quality and microstructure of high-fibre wheat bread. Cereal Chem 78:429–435

    Article  CAS  Google Scholar 

  39. Lopez HW, Krespine V, Guy C, Messager A, Demigne C, Remesy C (2001) Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem 49:2657–2662

    Article  CAS  Google Scholar 

  40. Palacios MC, Haros M, Sanz Y, Rosell CM (2008) Selection of lactic acid bacteria with high phytate degrading activity for application in whole wheat breadmaking. LWT Food Sci Technol 41:82–92

    Article  CAS  Google Scholar 

  41. Hansen A, Hansen B (1994) Influence of wheat flour type on the production of flavour compounds in wheat sourdoughs. J Cereal Sci 19:185–190

    Article  CAS  Google Scholar 

  42. Dols M, Simeon MR, Willemot R-M, Vignon MR, Monsan PF (1998) Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr Res 305:549–559

    Article  Google Scholar 

  43. Martin ML, Hoseney RC (1991) A mechanism of bread firming. II Role of starch hydrolysing enzymes. Cereal Chem 68:503–507

    CAS  Google Scholar 

  44. Rojas JA, Rosell CM, Bendito de Baber C (2001) Role of maltodextrins in the staling of starch gels. Eur Food Res Technol 212:364–368

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Part of the work discussed in this study was supported by the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn, Germany), the AiF and the Ministry of Economics and Technology. Project No.: AiF-FV 14037 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaditzky, S., Vogel, R.F. Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur Food Res Technol 228, 291–299 (2008). https://doi.org/10.1007/s00217-008-0934-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0934-7

Keywords

Navigation