Skip to main content

N-Methyl-(R)salsolinol and Enzymes Involved in Enantioselective Biosynthesis, Bioactivation, and Toxicity in Parkinson’s Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 71 Accesses

Abstract

In the human brain, isoquinolines are synthesized from catecholamines, β-phenylethylamine, and indoleamines, and their involvement in the pathogenesis of Parkinson’s disease has been intensively investigated. The Pictet-Spengler reaction nonenzymatically produces racemic isoquinolines, but the predominant occurrence of (R)-enantiomers in the human brain and the selective toxicity suggest the involvement of enantio-specific enzyme system. This chapter presents the characteristics of enzymes in the synthesis and bioactivation and the molecular mechanism behind the selective degeneration of dopamine neurons. In the human brain, (R)salsolinol synthase catalyzes the synthesis of (R)salsolinol from dopamine and acetaldehyde or pyruvic acid, N-methyltransferase converts (R)salsolinol into 2(N)-methyl-(R)salsolinol, and an oxidase oxidizes it into toxic cation, 1,2-dimethyl-5,6-dihydroxy-isoquinolinium ion. Dopaminergic neurotoxicity of N-methyl-(R)salsolinol was proven by preparation of a rat model and in cellular models. In parkinsonian patients, N-methyl-(R)salsolinol levels increase in the cerebrospinal and intraventricular fluid, and the toxic 1,2-dimethyl- 5,6-dihydroxyiosquinolinium ion is accumulated in the substantia nigra. The activity of a neural (R)salsolinol N-methyltransferase is significantly higher in parkinsonian lymphocytes than in control. Similar enzymatic processes produce dopaminergic neurotoxins from phenylethylamine-derived isoquinolines and indoleamine-derived β-carbolines. Involvement of the enzyme systems in the pathogenesis of Parkinson’s disease is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

*:

Abbreviations of isoquinolines are presented in Tables 1, 3, and 5.

β-CB:

β-Carboline

CSF:

Cerebrospinal fluid

DA:

Dopamine

IQ:

Isoquinoline

IVF:

Intraventricular fluid

MAO-A, MAO-B:

Type A and B monoamine oxidase

Me:

Methyl

N-MT:

N-methyltransferase

NAM:

Nicotinamide

PD:

Parkinson’s disease

PEA:

Phenylethylamine

ROS, RNS:

Reactive oxygen and nitrogen species

Sal:

Salsolinol

SAM:

S-adenosyl-L-methionine

SN:

Substantia nigra

TH:

Tyrosine hydroxylase

UPS:

Ubiquitin-proteasome system

TIQ:

1,2,3,4-Tetrahydroisoquinoline

References

  • Abe, K., Taguchi, K., Wasai, T., Ren, J., Utsunomiya, I., Shimohara, T., Miyatake, T., & Sano, T. (2001). Biochemical and pathological study of endogenous 1-benzyl-1,2,3,4- tetrahydroisoquinoline-induced parkinsonism in the mouse. Brain Research, 907(1–2), 134–138.

    Article  CAS  Google Scholar 

  • Akao, Y., Maruyama, W., Shimizu, S., et al. (2002). Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)-aminoindan. Journal of Neurochemistry, 82(2), 913–923.

    Article  CAS  Google Scholar 

  • Aksoy, S., Szumlanski, C. L., & Weinshiboum, R. M. (1994). Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization. The Journal of Biological Chemistry, 269(20), 14835–14840.

    Article  CAS  Google Scholar 

  • Ansher, S. S., Cadet, J. L., Jakpby, W. B., & Baker, J. K. (1986). Role of N-methyltransferases in the neurotoxicity associated with the metabolites of 1-methyl-4-phenyl-1,2,3,6- tetrahydopyridine (MPTP) and other 4-substituted pyridines present in the environment. Biochemical Pharmacology, 35(19), 3359–3363.

    Article  CAS  Google Scholar 

  • Ansher, S. S., & Jakoby, W. B. (1986). Amine N-methyltransferases from rabbit liver. The Journal of Biological Chemistry, 261(19), 3996–4001.

    Article  CAS  Google Scholar 

  • Antkiewicz-Michaluk, L., Krygowska-Wajs, A., Szczudlik, A., Romanska, I., & Vetulani, J. (1997). Increase in salsolinol level in the cerebrospinal fluid of parkinsonian patients is related to dementia: Advantage of a new high-performance liquid chromatography methodology. Biological Psychiatry, 42(6), 514–518.

    Article  CAS  Google Scholar 

  • Antkiewicz-Michaluk, L., Romanska, I., Papla, I., Michaluk, J., Bakalrz, M., Vetulani, J., Krygowska-Wajs, A., & Szczudlik, A. (2000). Neurochemical changes induced by acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline and salsolinol in dopaminergic structures of rat brain. Neuroscience, 96(1), 59–64.

    Article  CAS  Google Scholar 

  • Chen, X., Zheng, X., Ali, S., et al. (2018). Isolation and sequencing of salsolinol synthase, an enzyme catalyzing salsolinol biosynthesis. ACS Chemical Neuroscience, 9(6), 1388–1398.

    Article  CAS  Google Scholar 

  • Contu, V. R., Kotake, Y., Toyama, T., et al. (2014). Endogenous neurotoxic dopamine derivative covalently binds to Parkinson’s disease-associated ubiqutin C-terminal hydroxylase L1 and alters its structure and function. Journal of Neurochemistry, 130(6), 826–838.

    Article  CAS  Google Scholar 

  • DeCuypere, M., Kalabokis, V. N., Hao, R., Schroeder, D., Miller, D. D., & LeDoux, M. S. (2008a). Localization of N-methyl-norsalsolinol within rodent and human brain. Journal of Neuroscience Research, 86(11), 2543–2552.

    Article  CAS  Google Scholar 

  • DeCuypere, M., Lu, Y., Miller, D. D., & LeDoux, M. S. (2008b). Regional distribution of tetrahydroisoquinoline derivatives in rodent, human, and Parkinson’s disease brain. Journal of Neurochemistry, 107(5), 1398–1413.

    Article  CAS  Google Scholar 

  • Deng, Y., Zhang, Y., Li, Y., Xiao, S., Song, D., Qing, H., Li, Q., & Rajput, A. H. (2012). Occurrence and distribution of salsolinol-like compound, 1-acetyl-6,7- dihydroxy-1,2,3,4-tetrahydroisoquinoline (ADTIQ) in Parkinsonian brains. Journal of Neural Transmission, 119(4), 435–441.

    Article  CAS  Google Scholar 

  • do Carmo-Goncalves, P., Coelho-Cerqueira, E., Cortines, J. R., De Souza, T. L. F., Romao, L., & Fillmer, C. (2018). In vitro neurotoxicity of salsolinol is attenuated by the presynaptic protein α-synuclein. Biochimica et Biophysica Acta - General Subjects, 1862(12), 2835–2845.

    Google Scholar 

  • Dostert, P., Benedetti, M. S., Bellotti, V., Allievi, C., & Dordain, G. (1990). Biosynthesis of salsolinol, a tetrahydroisoquinoline alkaloid, in healthy subjects. Journal of Neural Transmission. General Section, 81(3), 215–223.

    Article  CAS  Google Scholar 

  • Faraj, B. A., Camp, V. M., & Kutner, M. (1991). Interrelationship between activation of dopaminergic pathways and cerebrospinal fluid concentration of dopamine tetrahydroisoquinoline metabolite salsolinol in humans: Preliminary findings. Alcoholism, Clinical and Experimental Research, 15(1), 86–89.

    Article  CAS  Google Scholar 

  • Fukuda, T. (1994). 2-Methyl-1,2,3,4-tetrahydrosioqunoline does dependently reduce the number of tyrosine hydroxylase-immuoreactive cells in the substantia nigra and locus ceruleus of C57BL/6J mice. Brain Research, 639(2), 325–328.

    Article  CAS  Google Scholar 

  • Gearhart, D. A., Collins, M. A., Lee, J. M., & Neafsey, E. J. (2000). Increased β-carboline 9N-methyltransferase activity in the frontal cortex in Parkinson’s disease. Neurobiology of Disease, 7(3), 201–211.

    Article  CAS  Google Scholar 

  • Grobe, N., Ren, X., Kutchan, T. M., & Zenk, M. H. (2011). An (R)-specific N-methyltransferase involved in human morphine biosynthesis. Archives of Biochemistry and Biophysics, 506(1), 42–47.

    Article  CAS  Google Scholar 

  • Haque, M. E., Mount, M. P., Safapour, F., et al. (2012). Inactivation of Pink1 gene in vivo sense sizes dopamine-producing neurons to 1-mehyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin and DJ-1. The Journal of Biological Chemistry, 287(27), 23162–23170.

    Article  CAS  Google Scholar 

  • Herraiz, T., & Galisteo, J. (2014). Naturally-occurring tetrahydro-β-carboline alkaloids derived from tryptophan are oxidized to bioactive β-carboline alkaloids by heme peroxidases. Biochemical and Biophysical Research Communications, 451(1), 42–47.

    Article  CAS  Google Scholar 

  • Kim, S. S., Kang, J. Y., & Kang, J. H. (2016). Oxidative modification of human ceruloplasmin induced by a catechol neurotoxin, salsolinol. BMB Reports, 49(1), 45–50.

    Article  CAS  Google Scholar 

  • Kotake, Y., Sekiya, Y., Okuda, K., & Ohta, S. (2007). Cytotoxicity of 17 tetrahydro- isoquinoline derivatives in SH-SY5Y human neuroblastoma cells is related to mitochondrial NADH-ubiquinone oxidoreductase inhibition. Neurotoxicology, 28(1), 27–32.

    Article  CAS  Google Scholar 

  • Kotake, Y., Tasaki, Y., Makino, Y., Ohta, S., & Hirobe, M. (1995). 1-Benzyl-1,2,3,4- tetrahydroisoquinoline as a parkinsonism-inducing agents: a novel endogenous amine in mouse brain and parkinsonian CSF. Journal of Neurochemistry, 65(6), 2633–2638.

    Article  CAS  Google Scholar 

  • Kuhn, W., Müller, T., Grosse, H., & Rommelspacher, H. (1996). Elevated levels of harman and norharman in cerebrospinal fluid of parkinsonian patients. Journal of Neural Transmission, 103(12), 1435–1440.

    Article  CAS  Google Scholar 

  • Lorenc-Koci, E., Antkiewicz-Michaluk, L., Kaminska, A., et al. (2008). The influence of acute and chronic administration of 1,2-dimethyl-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinoline on the function of the nigrostriatal dopaminergic system in rats. Neuroscience, 156(4), 973–986.

    Article  CAS  Google Scholar 

  • Louis, E. D., Michalec, M., Jiang, W., Factor-Litvak, P., & Zheng, W. Z. (2014). Elevated blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentration in Parkinson’s disease. Neurotoxicology, 40, 52–56.

    Article  CAS  Google Scholar 

  • Maruyama, W., Abe, T., Tohgi, H., Dostert, P., & Naoi, M. (1996a). A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian cerebrospinal fluid. Annals of Neurology, 40(1), 119–122.

    Article  CAS  Google Scholar 

  • Maruyama, W., Abe, T., Tohgi, H., & Naoi, M. (1999). An endogenous MPTP-like dopaminergic neurotoxin, N-methyl(R)salsolinol, in the cerebrospinal fluid decreases with progression of Parkinson’s disease. Neuroscience Letters, 262(1), 13–16.

    Article  CAS  Google Scholar 

  • Maruyama, W., Narabayashi, H., Dostert, P., & Naoi, M. (1996b). Stereospecific occurrence of a parkinsonian-inducing catechol isoquinoline, N-methyl(R)-salsolinol, in the human intraventricular fluid. Journal of Neural Transmission, 103(8–9), 1069–1076.

    Article  CAS  Google Scholar 

  • Maruyama, W., Sobue, G., Matsubara, K., Hashizume, Y., Dostert, P., & Naoi, M. (1997). A dopaminergic neurotoxin, 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetra- hydroisoquinoline, N-methyl(R)-salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion, accumulate in the nigrostriatal system of the human brain. Neuroscience Letters, 223(1), 61–64.

    Article  CAS  Google Scholar 

  • Matsubara, K., Collins, M. A., Akane, A., Ikebuchi, J., Neafsey, E. J., Kagawa, M., & Shiono, H. (1993). Potential bioactivated neurotoxins, N-methylated β-carbolinium ions, are present in human brain. Brain Research, 610(1), 90–96.

    Article  CAS  Google Scholar 

  • Matsubara, K., Fukushima, S., Akane, A., Kobayashi, S., & Shiono, H. (1992a). Increased urinary morphine, codeine and tetrahydropapaveroline in Parkinsonian patient undergoing L-3,4-dihydroxyphenylalanine therapy: A possible biosynthetic pathway of morphine from L-3,4-dihydroxyphenylalanine in humans. The Journal of Pharmacology and Experimental Therapeutics, 260(3), 974–978.

    CAS  Google Scholar 

  • Matsubara, K., Gonda, T., Sawada, H., et al. (1998). Endogenously occurring β-carboline induces parkinsonism in nonprimate animals: a possible causative protoxin in idiopathic Parkinson’s disease. Journal of Neurochemistry, 70(2), 727–735.

    Article  CAS  Google Scholar 

  • Matsubara, K., Kobayashi, S., Kobayashi, Y., et al. (1995). Beta-carbolinium cations, endogenous MPP+ analogs, in the lumber cerebrospinal fluid of patients with Parkinson’s disease. Neurology, 45(12), 2240–2245.

    Article  CAS  Google Scholar 

  • Matsubara, K., Neafsey, E. J., & Collins, M. A. (1992b). Novel S-adenosyl-L-methionine- dependent indole-N-methylation of β-carbolines in brain particulate fractions. Journal of Neurochemistry, 59(2), 511–518.

    Article  CAS  Google Scholar 

  • McNaught, K. S., Carrupt, P. A., Altomare, C., Cellamare, S., Carotti, A., Testa, B., Jenner, P., & Marsden, C. D. (1998). Isoquinoline derivatives as endogenous neurotoxins in the aetiology of Parkinson’s disease. Biochemical Pharmacology, 56(8), 921–933.

    Article  CAS  Google Scholar 

  • McNaught, K. S., Thull, U., Carrupt, P. A., Allomare, C., Cellamare, S., Carotti, A., Testa, B., Jenner, P., & Marsden, C. D. (1996). Nigral cell loss produced by infusion of isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. Neurodegeneration, 5(3), 265–274.

    Article  CAS  Google Scholar 

  • Morikawa, N., Naoi, M., Maruyama, W., et al. (1998). Effects of various tetrahydroisoquinoline derivatives on mitochondrial respiration and the electron transfer complexes. Journal of Neural Transmission, 105(6–7), 677–688.

    Article  CAS  Google Scholar 

  • Moser, A., & Kömpf, D. (1992). Presence of methyl-6,7-dihydroxy-1,2,3,4-tetrahydro- isoquinoline, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF. Life Sciences, 50(24), 1885–1891.

    Article  CAS  Google Scholar 

  • Müller, T., Sällström Baum, S., Haussermann, P., Przuntek, H., Rommelspacher, H., & Kuhn, W. (1999). R- and S-salsolinol are not increased in cerebrospinal fluid of Parkinsonian patients. Journal of the Neurological Sciences, 164(2), 158–162.

    Article  Google Scholar 

  • Musshoff, F., Lachenmeier, D. W., Schmidt, P., Dettmeyer, R., & Madae, B. (2005). Systematic regional study of dopamine, norsalsolinol, and (R/S)-salsolinol levels in human brain areas of alcoholics. Alcoholism: Clinical and Experimental Research, 29(1), 46–52.

    Article  CAS  Google Scholar 

  • Musshoff, F., Schmidt, P., Dettmeyer, R., Priemer, F., Jachau, K., & Madae, B. (2000). Determination of dopamine and dopamine-derived (R)−/(S)-salsolinol in various human brain area using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Science International, 113(1–3), 359–366.

    Article  CAS  Google Scholar 

  • Musshoff, F., Schmidt, P., Dettmeyer, R., Priemer, F., Wittig, H., & Madae, B. (1999). A systematic regional study of dopamine and dopamine-derived salsolinol and norsalsolinol levels in human brain areas. Forensic Science International, 105(1), 1–11.

    Article  CAS  Google Scholar 

  • Naoi, M., Maruyama, W., Akao, Y., & Yi, H. (2002). Dopamine-derived endogenous N-methyl-(R)-salsolinol: its role in Parkinson’s disease. Neurotoxicology and Teratology, 24(5), 579–591.

    Article  CAS  Google Scholar 

  • Naoi, M., Maruyama, W., Dostert, P., Hashizume, Y., Nakahara, D., Takahashi, T., & Ota, M. (1996a). Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy- 1,2,3,4-tetrahydroisoqunoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Research, 709(2), 285–295.

    Article  CAS  Google Scholar 

  • Naoi, M., Maruyama, W., Dostert, P., Kohda, K., & Kaiya, T. (1996b). A novel enzyme enantio-selectively synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl(R)salsolinol. Neuroscience Letters, 212(3), 183–186.

    Article  CAS  Google Scholar 

  • Naoi, M., Maruyama, W., Matsubara, K., & Hashizume, Y. (1997). A neutral N-methyltransferase activity in the striatum determines the level of an endogenous MPP+-like neurotoxin, 1,2-dimethyl-6,7-dihydroxyiso- quinolinium ion, in the substantia nigra of human brains. Neuroscience Letters, 235(1), 81–84.

    Article  CAS  Google Scholar 

  • Naoi, M., Maruyama, W., & Nagy, G. M. (2004). Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: Occurrence, metabolism and function in human brain. Neurotoxicology, 25(1–2), 193–204.

    Article  CAS  Google Scholar 

  • Naoi, M., Maruyama, W., Nakao, N., Ibi, T., Sahashi, K., & Strolin Benedetti, M. (1998). (R)Salsolinol N-methyltransferase activity increases in parkinsonian lymphocytes. Annals of Neurology, 43(2), 212–216.

    Article  CAS  Google Scholar 

  • Naoi, M., Maruyama, W., Zhang, J. H., Takahashi, T., Deng, Y., & Dostert, P. (1995). Enzymatic oxidation of the dopaminergic neurotoxin, 1(R),2(N)-dimethyl-6,7- dihydroxy-1,2,3,4-tetrahydroisoquinoline, into 1,2-dimethyl-6,7-dihydroxy- isoquinolinium ion. Life Sciences, 57(11), 1061–1066.

    Article  CAS  Google Scholar 

  • Naoi, M., Matsuura, S., Parvez, H., Takahashi, T., Hirata, Y., Minami, M., & Nagatsu, T. (1989a). Oxidation of N-methyl-1,2,3,4-tetrahydrosioquinoline into the N-methyl-isoquinolinium ion by monoamine oxidase. Journal of Neurochemistry, 52(2), 653–655.

    Article  CAS  Google Scholar 

  • Naoi, M., Matsuura, S., Takahashi, T., & Nagatsu, T. (1989b). A N-methyltransferase in human brain catalyses N-methylation of 1,2,3,4-tetrahydroisoquinoline into N-methyl-1,2,3,4-tetrahydroisoquinoline, a precursor of a dopaminergic neurotoxin, N-methylisoquinolinium ion. Biochemical and Biophysical Research Communications, 1161(3), 1213–1219.

    Article  Google Scholar 

  • Neafsey, E. J., Drucker, G., Raikoff, K., & Collins, M. A. (1989). Striatal dopaminergic toxicity following intranigral injection in rats of 2-methy-norharman, a β-carbolinium analogue of N-methyl-4-phenylpyridinium ion (MPP+). Neuroscience Letters, 105(3), 344–349.

    Article  CAS  Google Scholar 

  • Palada, V., Terzic, J., Mazzulli, J., et al. (2012). Histamine N-methyltransferase Thr105Ile polymorphism is associated with Parkinson’s disease. Neurobiology of Aging, 33(4), 836. e1–3.

    Article  Google Scholar 

  • Parsons, R. B., Smith, M. L., Williams, A. C., Waring, R. H., & Ramsden, D. B. (2002). Expression of nicotinamide N-methyltransferase (E.C. 2.1.1.1) in the Parkinsonian brain. Journal of Neuropathology and Experimental Neurology, 61(2), 111–124.

    Article  CAS  Google Scholar 

  • Riederer, P., Foley, P., Bringmann, G., Feineis, D., Brückner, R., & Gerlach, M. (2002). Biochemical and pharmacological characterization of 1-trichloromethyl- 1,2,3,4-tetrahydro-β-carboline: a biologically relevant neurotoxins? European Journal of Pharmacology, 442(1–2), 1–16.

    Article  CAS  Google Scholar 

  • Sango, K., Maruyama, W., Matsubara, K., Dostert, P., Minami, C., Kawai, M., & Naoi, M. (2000). Enantio-selective occurrence of (S)-tetrahydropapaveroline in human brain. Neuroscience Letters, 283(3), 224–226.

    Article  CAS  Google Scholar 

  • Scholz, J., Toska, K., Luborzewski, A., Maass, A., Schzünemann, V., Haavik, J., & Moser, A. (2008). Endogenous tetrahydroisoquinolines associated with Parkinson’s disease mimic the feedback inhibition of tyrosine hydoxylase by catecholamines. The FEBS Journal, 275(9), 2109–2121.

    Article  CAS  Google Scholar 

  • Shan, L., Bossers, K., Luchetti, S., Balesar, R., Lethbridge, N., Chazot, P. L., Bao, A. M., & Swaab, D. F. (2012). Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson’s patients: A postmortem study. Neurobiology of Aging, 33(7), 1488. e1–13.

    Article  Google Scholar 

  • Storch, A., Ott, S., Hwang, Y., et al. (2002). Selective dopaminergic neurotoxicity of isoquinoline derivatives related to Parkinson’s disease: Studies using heterologous expression systems of the dopamine transporter. Biochemical Pharmacology, 63(5), 909–920.

    Article  CAS  Google Scholar 

  • Su, Y., Duan, J., Ying, Z., Hou, Y., Zhang, Y., Wang, R., & Deng, Y. (2013). Increased vulnerability of Parkin knock down PC12 cells to hydrogen peroxide toxicity: The role of salsolinol and NM-salsolinol. Neuroscience, 233, 72–85.

    Article  CAS  Google Scholar 

  • Wanpen, S., Kooncumchoo, P., Shavali, S., Govitrapong, P., & Ebadi, M. (2007). Salsolinol, an endogenous neurotoxin, activates JNK and NF-κB signal pathways in human neuroblastoma cells. Neurochemical Research, 32(3), 443–450.

    Article  CAS  Google Scholar 

  • Wasik, A., Romanska, I., Michaluk, J., & Antkiewicz-Michaluk, L. (2012). Comparative behavioral and neurochemical studies of R- and S-1-methyl-1,2,3,4-tetra- hydroisoquinoline stereoisomers in the rats. Pharmacological Reports, 64(4), 857–869.

    Article  CAS  Google Scholar 

  • Wernicke, C., Schott, Y., Enzensperger, C., Schulze, G., Lehmann, J., & Rommelspacher, H. (2007). Cytotoxicity of β-carbolines in dopamine transporter expressing cells: Structure-activity relationship. Biochemical Pharmacology, 74(7), 1065–1077.

    Article  CAS  Google Scholar 

  • Yamakawa, T., & Ohta, S. (1997). Isolation of 1-methyl-1,2,3,4-tetrahydroisoquinoline- synthesizing enzyme from rat brain: a possible Parkinson disease-preventing enzyme. Biochemical and Biophysical Research Communications, 236(3), 676–681.

    Article  CAS  Google Scholar 

  • Yoshida, M., Niwa, T., & Nagatsu, T. (1990). Parkinsonism in monkeys produced by chronic administration of an endogenous substance of the brain, tetrahydroisoquinoline: The behavioral and biochemical changes. Neuroscience Letters, 119(1), 109–113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Naoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Naoi, M., Maruyama, W. (2022). N-Methyl-(R)salsolinol and Enzymes Involved in Enantioselective Biosynthesis, Bioactivation, and Toxicity in Parkinson’s Disease. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_10

Download citation

Publish with us

Policies and ethics