Skip to main content
Log in

Salsolinol, an Endogenous Neurotoxin, Activates JNK and NF-κB Signaling Pathways in Human Neuroblastoma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Salsolinol, an endogenous neurotoxin, is known to be involved in the pathogenesis of Parkinson’s disease (PD). In the present study, we have investigated the effects of salsolinol on the activation of two different signaling pathways that involve c-Jun N-terminal kinase (JNK), and nuclear factor-κB, (NF-κB) in human dopaminergic neuroblastoma SH-SY5Y cells. Salsolinol treatment caused upregulation in the levels of c-Jun and phosphorylated c-Jun. It also caused degradation of IκBα and translocated the active NF-κB into the nucleus. The binding activity of NF-κB to DNA was enhanced by salsolinol in a concentration dependent manner. Furthermore, salsolinol decreased the levels of the anti-apoptotic protein Bcl-2, and increased pro-apoptotic protein Bax, while enhancing the release of cytochrome-c from mitochondria. Mitochondrial complex-I activity was significantly decreased and reactive oxygen species (ROS) were increased in salsolinol treated cells. These results partly suggest that salsolinol-induced JNK and NF-κB signaling pathways may be involved in induction of apoptosis in human dopaminergic neurons, as seen in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. LeDoux MS (2004) Tetrahydroisoquinolines and Parkinson’s disease. In: Ebadi M, Pfeiffer RF (eds) Parkinson’s disease. CRC Press, Florida, pp 81–96

    Google Scholar 

  2. Moser A, Kompf D (1992) Presence of methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF. Life Sci 50:1885–1891

    Article  PubMed  CAS  Google Scholar 

  3. Sandler M, Carter SB, Hunter KR, Stern GM (1973) Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 241:439–443

    Article  PubMed  CAS  Google Scholar 

  4. Antkiewicz-Michaluk L, Romanska I, Papla I, Michaluk J, Bakalarz M, Vetulani J, Krygowska-Wajs A, Szczudlik A (2000) Neurochemical changes induced by acute and chronic administration of 1,2,3,4-tetrahydroisoquinoline and salsolinol in dopaminergic structures of rat brain. Neuroscience 96:59–64

    Article  PubMed  CAS  Google Scholar 

  5. Storch A, Kaftan A, Burkhardt K, Schwarz J (2000) 1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) is toxic to dopaminergic neuroblastoma SH-SY5Y cells via impairment of cellular energy metabolism. Brain Res 855:67–75

    Article  PubMed  CAS  Google Scholar 

  6. Kheradpezhouh M, Shavali S, Ebadi M (2003) Salsolinol causing parkinsonism activates endoplasmic reticulum-stress signaling pathways in human dopaminergic SK-N-SH cells. Neurosignals 12:315–324

    Article  PubMed  CAS  Google Scholar 

  7. Wanpen S, Govitrapong P, Shavali S, Sangchot P, Ebadi M (2004) Salsolinol, a dopamine-derived tetrahydroisoquinoline, induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein. Brain Res 1005:67–76

    Article  PubMed  CAS  Google Scholar 

  8. Cassarino DS, Halvorsen EM, Swerdlow RH, Abramova NN, Parker WD Jr, Sturgill TW, Bennett JP Jr (2000) Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson’s disease. J Neurochem 74:1384–1392

    Article  PubMed  CAS  Google Scholar 

  9. Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH (2001) Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem 76:1010–1021

    Article  PubMed  CAS  Google Scholar 

  10. Harper SJ, LoGrasso P (2001) Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 13:299–310

    Article  PubMed  CAS  Google Scholar 

  11. Saporito MS, Thomas BA, Scott RW (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 75:1200–1208

    Article  PubMed  CAS  Google Scholar 

  12. Vaudano E, Rosenblad C, Bjorklund A (2001) Injury induced c-Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial-cell-line-derived neurotrophic factor. Eur J Neurosci 13:1–14

    Article  PubMed  CAS  Google Scholar 

  13. Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A 98:10433–10438

    Article  PubMed  CAS  Google Scholar 

  14. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380:75–79

    Article  PubMed  CAS  Google Scholar 

  15. Seo SR, Chong SA, Lee SI, Sung JY, Ahn YS, Chung KC, Seo JT (2001) Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J Neurochem 78:600–610

    Article  PubMed  CAS  Google Scholar 

  16. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U S A 94:7531–7536

    Article  PubMed  CAS  Google Scholar 

  17. Willesen MG, Gammeltoft S, Vaudano E (2002) Activation of the c-Jun N terminal kinase pathway in an animal model of Parkinson’s disease. Ann N Y Acad Sci 973:237–240

    Article  PubMed  CAS  Google Scholar 

  18. Pérez-Otaño I, McMillian MK, Chen J, Bing G, Hong JS, Pennypacker KR (1996) Induction of NF-kB-like transcription factors in brain areas susceptible to kainate toxicity. Glia 16:306–315

    Article  PubMed  Google Scholar 

  19. France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M (1997) Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson’s disease. J Neurochem 69:1612–1621

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Dragunow M, Preston K (1995) The role of inducible transcription factors in apoptotic nerve cell death. Brain Res Brain Res Rev 21:1–28

    Article  PubMed  CAS  Google Scholar 

  22. Oo TF, Henchcliffe C, James D, Burke RE (1999) Expression of c-fos, c-jun, and c-jun N-terminal kinase (JNK) in a developmental model of induced apoptotic death in neurons of the substantia nigra. J Neurochem 72:557–564

    Article  PubMed  CAS  Google Scholar 

  23. Hirata Y, Adachi K, Kiuchi K (1998) Activation of JNK pathway and induction of apoptosis by manganese in PC12 cells. J Neurochem 71:1607–1615

    Article  PubMed  CAS  Google Scholar 

  24. Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273:3756–3764

    Article  PubMed  CAS  Google Scholar 

  25. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA (1993) Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365:182–185

    Article  PubMed  CAS  Google Scholar 

  26. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    PubMed  CAS  Google Scholar 

  27. Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA, Peyron JF (1996) Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86:787–798

    Article  PubMed  CAS  Google Scholar 

  28. Grilli M, Chiu JJ, Lenardo MJ (1993) NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol 143:1–62

    Article  PubMed  CAS  Google Scholar 

  29. Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    PubMed  CAS  Google Scholar 

  30. Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 10:405–455

    Article  PubMed  CAS  Google Scholar 

  31. Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  PubMed  CAS  Google Scholar 

  32. Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178

    PubMed  CAS  Google Scholar 

  33. Rosenberger J, Petrovics G, Buzas B (2001) Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB. J Neurochem 79:35–44

    Article  PubMed  CAS  Google Scholar 

  34. Jenkins R, O’Shea R, Thomas KL, Hunt SP (1993) c-jun expression in substantia nigra neurons following striatal 6-hydroxydopamine lesions in the rat. Neuroscience 53:447–455

    Article  PubMed  CAS  Google Scholar 

  35. Grilli M, Goffi F, Memo M, Spano P (1996) Interleukin-1beta and glutamate activate the NF-kappaB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 271:15002–15007

    Article  PubMed  CAS  Google Scholar 

  36. Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22:4929–4942

    Article  PubMed  CAS  Google Scholar 

  37. Lander HM (1997) An essential role for free radicals and derived species in signal transduction. Faseb J 11:118–124

    PubMed  CAS  Google Scholar 

  38. Glasgow JN, Wood T, Perez-Polo JR (2000) Identification and characterization of nuclear factor kappaB binding sites in the murine bcl-x promoter. J Neurochem 75:1377–1389

    Article  PubMed  CAS  Google Scholar 

  39. Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A (1996) Amyloid beta peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates bax expression in human neurons. J Neurosci 16:7533–7539

    PubMed  CAS  Google Scholar 

  40. Bollimuntha S, Ebadi M, Singh BB (2006) TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res 1099:141–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge their appreciation of Dani Stramer for her excellent skills in typing this manuscript. S. Wanpen was supported by a doctoral scholarship program from the Ministry of University Affairs, Thailand. This study was supported by a grant, from NINDS #2R01 NS-34566-09 (M.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuchair Ebadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanpen, S., Kooncumchoo, P., Shavali, S. et al. Salsolinol, an Endogenous Neurotoxin, Activates JNK and NF-κB Signaling Pathways in Human Neuroblastoma Cells. Neurochem Res 32, 443–450 (2007). https://doi.org/10.1007/s11064-006-9246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9246-0

Keywords

Navigation