Skip to main content

The Magma Plumbing System of Merapi: The Petrological Perspective

  • Chapter
  • First Online:
Merapi Volcano

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

Merapi volcano in Central Java is one of the most active volcanoes in the Sunda arc and poses a continuous threat to the local population. Basaltic-andesites from Merapi carry a voluminous crystal cargo and varied inclusion types, suggesting the presence of a complex subvolcanic plumbing system that feeds the volcano. Merapi basaltic-andesite lavas are dominated by a crystal assemblage of plagioclase with lesser pyroxene, Fe-oxides, and yet rarer amphibole phenocrysts. Inclusions in the lavas can be separated into four main groups, comprising (1) basaltic enclaves and highly crystalline basaltic-andesite inclusions, (2) plutonic inclusions, (3) amphibole megacrysts, and (4) calc-silicate crustal xenoliths. Co-magmatic basaltic enclaves display chilled margins, whereas highly crystalline basaltic-andesite inclusions usually lack chilled margins, indicating mixing and mingling of compositionally variable magmas within the Merapi plumbing system. Holocrystalline plutonic inclusions comprise gabbro to diorite compositions and are generally coarse grained with occasional mineral layering. Mineral and isotope compositions of the plutonic inclusions largely overlap with those of recent Merapi lavas, defining them as cognate in origin. Mafic enclaves and amphibole megacrysts are isotopically more primitive and reflect deeper portions of the plumbing system. Geobarometry of plutonic inclusions, amphibole megacrysts, and pyroxene in lavas suggest a polybaric magma supply system beneath Merapi, likely with a larger basaltic storage reservoir at the base of the crust and a broadly andesitic one at mid crustal depth, plus several smaller pockets or chambers in the shallow upper crust. The shallow reservoir system is further supported by frequent contact-metamorphic calc-silicate xenoliths, which testify to intense magma-crust interaction in the upper crust. This is in line with elevated Sr, Pb, and O isotope data for the more evolved plutonic inclusions and in the rims of shallow-grown plagioclase crystals. The petrological evidence thus records crystallisation, crystal accumulation, magma mixing, mafic recharge, and assimilation processes below Merapi and reflects considerable amounts of semi-molten crystalline mushes that are stored within the multi-tiered (polybaric) Merapi magma plumbing system. This implies that a considerable amount of potentially eruptible magma is currently stored beneath the volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam J, Turner S, Rushmer T (2016) The genesis of silicic arc magmas in shallow crustal cold zones. Lithos 264:472–494

    Article  Google Scholar 

  • Aiuppa A, Fischer TP, Plank T, Robidoux P, Di Napoli R (2017) Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth Sci Rev 168:24–47

    Article  Google Scholar 

  • Andreastuti SD, Alloway BV, Smith IEM (2000) A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Baker DR (2008) The fidelity of melt inclusions as records of melt composition. Contrib Mineral Petrol 156:377–395

    Article  Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res (Solid Earth) 91:6091–6112

    Article  Google Scholar 

  • Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14:848–851

    Article  Google Scholar 

  • Beard JS, Borgia A (1989) Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica. Contrib Mineral Petrol 103:110–122

    Article  Google Scholar 

  • Beauducel F, Cornet FH (1999) Collection and three-dimensional modeling of GPS and tilt data at Merapi volcano, Java. J Geophys Res (Solid Earth) 104:725–736

    Article  Google Scholar 

  • Blythe LS, Deegan FM, Freda C, Jolis EM, Masotta M, Misiti V, Taddeucci J, Troll VR (2015) CO2 bubble generation and migration during magma–carbonate interaction. Contrib Mineral Petrol 169:42

    Article  Google Scholar 

  • Balsley SD, Gregory RT (1998) Low-δ18O silicic magmas: why are they so rare? Earth Planet Sci Lett 162:123–136

    Article  Google Scholar 

  • Borisova AY, Martel C, Gouy S, Pratomo I, Sumarti S, Toutain JP, Bindeman IN, de Parseval P, Métaxian JP, Surono (2013) Highly explosive 2010 Merapi eruption: evidence for shallow-level crustal assimilation and hybrid fluid. J Volcanol Geotherm Res 261:193–208

    Article  Google Scholar 

  • Borisova AY, Gurenko AA, Martel C, Kouzmanov K, Cathala A, Bohrson WA, Pratomo I, Sumarti S (2016) Oxygen isotope heterogeneity of arc magma recorded in plagioclase from the 2010 Merapi eruption (Central Java, Indonesia). Geochim Cosmochim Acta 190:13–34

    Article  Google Scholar 

  • Bowen NL (1928) The origin of igneous rocks. Princeton University Press

    Google Scholar 

  • Brown SK, Auker MR, Sparks RSJ (2015) Populations around Holocene volcanoes and development of a Population Exposure Index. In: Loughlin SC, Sparks RSJ, Brown SK, Jenkins SF, Vye-Brown C (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge, pp 223–232

    Chapter  Google Scholar 

  • Budi-Santoso A, Lesage P, Dwiyono S, Sumarti S, Subandriyo, Surono, Jousset P, Metaxian J-P (2013) Analysis of the seismic activity associated with the 2010 eruption of Merapi volcano, Java. J Volcanol Geotherm Res 261:153–170

    Article  Google Scholar 

  • Burt RM, Brown SJA, Cole JW, Shelley D, Waight TE (1998) Glass-bearing plutonic fragments from ignimbrites of the Okataina caldera complex, Taupo Volcanic Zone, New Zealand: remnants of a partially molten intrusion associated with preceding eruptions. J Volcanol Geotherm Res 84:209–237

    Article  Google Scholar 

  • Budd DA, Troll VR, Deegan FM, Jolis EM, Smith VC, Whitehouse MJ, Harris C, Freda C, Hilton DR, Halldórsson SA, Bindeman IN (2017) Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz. Sci Rep 7:40624

    Article  Google Scholar 

  • Camus G, Gourgaud A, Mossand-Berthommier PC, Vincent PM (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100:139–163

    Article  Google Scholar 

  • Carr BB, Clarke AB, Vitturi MDM (2018) Earthquake induced variations in extrusion rate: a numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia). Earth Planet Sci Lett 482:377–387

    Article  Google Scholar 

  • Cassidy M, Castro JM, Helo C, Troll VR, Deegan FM, Muir D, Neave DA, Mueller SP (2016) Volatile dilution during magma injections and implications for volcano explosivity. Geology 44:1027–1030

    Article  Google Scholar 

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:3055

    Article  Google Scholar 

  • Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48:1793–1812

    Article  Google Scholar 

  • Chadwick JP, Troll VR, Waight TE, van der Zwan FM, Schwarzkopf LM (2013) Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system. Contrib Mineral Petrol 165:259–282

    Article  Google Scholar 

  • Charbonnier SJ, Gertisser R (2008) Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. J Volcanol Geotherm Res 177:971–982

    Article  Google Scholar 

  • Chaussard E, Amelung F (2014) Regional controls on magma ascent and storage in volcanic arcs. Geochem Geophys Geosyst 15:1407–1418

    Article  Google Scholar 

  • Costa F, Singer B (2002) Evolution of Holocene dacite and compositionally zoned magma, Volcán San Pedro, southern volcanic zone, Chile. J Petrol 43:1571–1593

    Article  Google Scholar 

  • Costa F, Andreastuti S, de Maisonneuve CB, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209–235

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2003) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119:125–144

    Article  Google Scholar 

  • Curray JR, Shor GG, Raitt RW, Henry M (1977) Seismic refraction and reflection studies of crustal structure of the eastern Sunda and western Banda arcs. J Geophys Res 82:2479–2489

    Article  Google Scholar 

  • Dahren B, Troll VR, Andersson UB, Chadwick JP, Gardner MF, Jaxybulatov K, Koulakov I (2012) Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions. Contrib Mineral Petrol 163:631–651

    Article  Google Scholar 

  • Darmawan H, Walter TR, Troll VR, Budi-Santoso A (2018) Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption. Nat Haz Earth System Sci 18:3267–3281

    Article  Google Scholar 

  • Davidson JP, Tepley FJ (1997) Recharge in volcanic systems: evidence from isotope profiles of phenocrysts. Science 275:826–829

    Article  Google Scholar 

  • Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geotherm Res 140:157–170

    Article  Google Scholar 

  • Davidson JP, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP (2011) Fast and furious: crustal CO2 release at Merapi volcano, Indonesia. Geol Today 27:63–64

    Article  Google Scholar 

  • Deegan FM, Troll VR, Freda C, Misti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology. J Petrol 51:1027–1051

    Article  Google Scholar 

  • Deegan FM, Whitehouse MJ, Troll VR, Budd DA, Harris C, Geiger H, Hålenius U (2016a) Pyroxene standards for SIMS oxygen isotope analysis and their application to Merapi volcano, Sunda arc, Indonesia. Chem Geol 447:1–10

    Article  Google Scholar 

  • Deegan FM, Troll VR, Whitehouse MJ, Jolis EM, Freda C (2016b) Boron isotope fractionation in magma via crustal carbonate dissolution. Sci Rep 6:30774

    Article  Google Scholar 

  • Deegan FM, Troll VR, Geiger H (2019) Forensic probe of Bali’s great volcano, Eos. Trans Am Geophys Union 100:26–30

    Article  Google Scholar 

  • Deegan FM, Whitehouse MJ, Troll VR, Geiger H, Jeon H, le Roux P, Harris C, van Helden M, González-Maurel O (2021) Sunda arc mantle source δ18O value revealed by intracrystal isotope analysis. Nat Commun 12:3930

    Google Scholar 

  • Deegan FM, Troll VR, Gertisser R, Freda C (2023) Magma-carbonate interaction at Merapi volcano, Indonesia. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 291–321

    Google Scholar 

  • De Paolo DJ (1981) A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J Geophys Res (solid Earth) 86:10470–10488

    Article  Google Scholar 

  • Dungan MA, Davidson J (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes. Geology 32:773–776

    Article  Google Scholar 

  • Donovan K, Suharyanto A (2011) The creatures will protect us. Geoscientist 21:12–17

    Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Article  Google Scholar 

  • Erdmann S, Martel C, Pichavant M, Kushnir A (2014) Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib Mineral Petrol 167:1016

    Article  Google Scholar 

  • Erdmann S, Martel C, Pichavant M, Bourdier JL, Champallier R, Komorowski JC, Cholik N (2016) Constraints from phase equilibrium experiments on pre-eruptive storage conditions in mixed magma systems: a case study on crystal-rich basaltic andesites from Mount Merapi, Indonesia. J Petrol 57:535–560

    Article  Google Scholar 

  • Feeley TC, Sharp ZD (1996) Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology 24:1021–1024

    Article  Google Scholar 

  • Fulignati P, Marianelli P, Santacroce R, Sbrana A (2004) Probing the Vesuvius magma chamber–host rock interface through xenoliths. Geol Mag 141:417–428

    Article  Google Scholar 

  • Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327

    Article  Google Scholar 

  • Gardner MF, Troll VR, Gamble JA, Gertisser R, Hart GL, Ellam RM, Harris C, Wolff JA (2013) Crustal differentiation processes at Krakatau Volcano, Indonesia. J Petrol 54:149–182

    Article  Google Scholar 

  • Geiger H, Troll VR, Jolis EM, Deegan FM, Harris C, Hilton DR, Freda C (2018) Multi-level magma plumbing at Agung and Batur volcanoes increases risk of hazardous eruptions. Sci Rep 8:10547

    Google Scholar 

  • Gertisser R, Keller J (2003a) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J Petrol 44:457–489

    Article  Google Scholar 

  • Gertisser R, Keller J (2003b) Temporal variations in magma composition at Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity. J Volcanol Geotherm Res 123:1–23

    Article  Google Scholar 

  • Gertisser R, Charbonnier SJ, Troll VR, Keller J, Preece K, Chadwick JP, Barclay J, Herd RA (2011) Merapi (Java, Indonesia): anatomy of a killer volcano. Geol Today 27:57–62

    Article  Google Scholar 

  • Gertisser R, del Marmol M-A, Newhall C, Preece K, Charbonnier S, Andreastuti S, Handley H, Keller J (2023) Geological history, chronology and magmatic evolution of Merapi. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 137–193

    Google Scholar 

  • Gill JB (1981) What is “Typical Calcalkaline Andesite”? Orogenic andesites and plate tectonics. Springer, Berlin, Heidelberg 1–12

    Google Scholar 

  • Grove TL, Kinzler RJ (1986) Petrogenesis of andesites. Ann Rev Earth Planet Sci 14:417–454

    Article  Google Scholar 

  • Handley HK, Macpherson CG, Davidson JP (2010) Geochemical and Sr–O isotopic constraints on magmatic differentiation at Gede Volcanic Complex, West Java, Indonesia. Contrib Mineral Petrol 159:885–908

    Article  Google Scholar 

  • Hamilton WB (1979) Tectonics of the Indonesian region. US Govt. Print. Office No. 1078

    Google Scholar 

  • Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geotherm Res 100:165–192

    Article  Google Scholar 

  • Harijoko A, Marliyani GI, Wibowo HE, Freski YR, Handini E (2023) The geodynamic setting and geological context of Merapi volcano in Central Java, Indonesia. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 89–109

    Google Scholar 

  • Hilton DR, Craig H (1989) A helium isotope transect along the Indonesian archipelago. Nature 342:906-908

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Holmberg K (2023) Merapi and its dynamic ‘disaster culture’. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 67–87

    Google Scholar 

  • Holness MB, Tegner C, Nielsen TFD, Stripp G, Morse SA (2007a) A textural record of solidification and cooling in the Skaergaard intrusion, East Greenland. J Petrol 48:2359–2377

    Article  Google Scholar 

  • Holness MB, Anderson AT, Martin VM, Maclennan J, Passmore E, Schwindinger K (2007b) Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions. J Petrol 48:1243–1264

    Article  Google Scholar 

  • Innocenti S, Andreastuti S, Furman T, del Marmol MA, Voight B (2013) The pre-eruption conditions for explosive eruptions at Merapi volcano as revealed by crystal texture and mineralogy. J Volcanol Geotherm Res 261:69–86

    Article  Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221

    Article  Google Scholar 

  • Ito E, White WM, Göpel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62:157–176

    Article  Google Scholar 

  • Izbekov PE, Eichelberger JC, Ivanov BV (2004) The 1996 eruption of Karymsky volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir. J Petrol 45:2325–2345

    Article  Google Scholar 

  • Jarrard RD (1986) Terrane motion by strike-slip faulting of forearc slivers. Geology 14:780–783

    Article  Google Scholar 

  • Jaxybulatov K, Koulakov I, Ibs-von Seht M, Klinge K, Reichert C, Dahren B, Troll VR (2011) Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. J Volcanol Geotherm Res 206:96–105

    Article  Google Scholar 

  • Jeffery AJ, Gertisser R, Troll VR, Jolis EM, Dahren B, Harris C, Tindle AG, Preece K, O'Driscoll B, Humaida H, Chadwick JP (2013) The pre-eruptive magma plumbing system of the 2007–2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contrib Mineral Petrol 166:275–308

    Article  Google Scholar 

  • Jolis EM (2013) Magma-crust interaction at subduction zone volcanoes. Ph.D. Disseration Uppsala University, Sweden, Acta Universitatis Upsaliensis

    Google Scholar 

  • Jolis EM, Troll VR, Harris C, Freda C, Gaeta M, Orsi G, Siebe C (2015) Skarn xenolith record crustal CO2 liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy. Chem Geol 415:17–36

    Article  Google Scholar 

  • Jousset P, Budi-Santoso A, Jolly AD, Boichu M, Surono, Dwiyono S, Sumarti S, Hidayati S, Thierry P (2013) Signs of magma ascent in LP and VLP seismic events and link to degassing: an example from the 2010 explosive eruption at Merapi volcano, Indonesia. J Volcanol Geotherm Res 261:171–192

    Google Scholar 

  • Koulakov I, Bohm M, Asch G, Lühr BG, Manzanares A, Brotopuspito KS, Fauzi P, Purbawinata MA, Puspito NT, Ratdomopurbo A, Kopp H, Rabbel W, Shevkunova E (2007) P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion. J Geoph Res 112:B08310

    Article  Google Scholar 

  • Lühr BG, Koulakov I, Rabbel W, Zschau J, Ratdomopurbo A, Brotopuspito KS, Fauzi P, Sahara DP (2013) Fluid ascent and magma storage beneath Gunung Merapi revealed by multi-scale seismic imaging. J Volcanol Geotherm Res 261:7–19

    Article  Google Scholar 

  • Lühr BG, Koulakov I, Suryanto W (2023) Crustal structure and ascent of fluids and melts beneath Merapi: Insights from geophysical investigations. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 111–135

    Google Scholar 

  • Martel C, Brooker RA, Andújar J, Pichavant M, Scaillet B, Blundy JD (2017) Experimental simulations of magma storage and ascent. In: Gottsmann J, Neuberg J, Scheu B (eds) Volcanic unrest. Advances in volcanology, Springer, pp 101–110

    Chapter  Google Scholar 

  • Müller A, Haak V (2004) 3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography. J Volcanol Geotherm Res 138:205–222

    Article  Google Scholar 

  • Müller M, Hördt A, Neubauer FM (2002) Internal structure of Mount Merapi, Indonesia, derived from long-offset transient electromagnetic data. J Geophys Res (solid Earth) 107:2187

    Article  Google Scholar 

  • Nadeau O, Williams-Jones AE, Stix J (2013) Magmatic–hydrothermal evolution and devolatilization beneath Merapi volcano, Indonesia. J Volcanol Geotherm Res 261:50–68

    Article  Google Scholar 

  • Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 years of explosive eruptions of Merapi volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50

    Article  Google Scholar 

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contrib Mineral Petrol 121:115–125

    Article  Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74

    Article  Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks Part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:122–135

    Article  Google Scholar 

  • Peters STM, Troll VR, Weis FA, Dallai L, Chadwick JP, Schulz B (2017) Amphibole megacrysts as a probe into the deep plumbing system of Merapi volcano, Central Java, Indonesia. Contrib Mineral Petrol 172:16

    Article  Google Scholar 

  • Preece K (2014) Transitions between effusive and explosive activity at Merapi volcano, Indonesia: a volcanological and petrological study of the 2006 and 2010 eruptions. Ph.D. Dissertation, University of East Anglia, United Kingdom

    Google Scholar 

  • Preece K, Barclay J, Gertisser R, Herd RA (2013) Textural and micro-petrological variations in the eruptive products of the 2006 dome-forming eruption of Merapi volcano, Indonesia: implications for sub-surface processes. J Volcanol Geotherm Res 261:98–120

    Article  Google Scholar 

  • Preece K, Gertisser R, Barclay J, Berlo K, Herd RA, EIMF (2014) Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia. Contrib Mineral Petrol 168:1061

    Article  Google Scholar 

  • Preece K, Gertisser R, Barclay J, Charbonnier SJ, Komorowski JC, Herd RA (2016) Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia. Bull Volcanol 78:54

    Article  Google Scholar 

  • Preece K, van der Zwan F, Hammer J, Gertisser R (2023) A textural perspective on the magmatic system and eruptive behaviour of Merapi volcano. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 265–289

    Google Scholar 

  • Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140:1–24

    Article  Google Scholar 

  • Putrika KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Mineral 101:841–858

    Article  Google Scholar 

  • Putrika KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554

    Article  Google Scholar 

  • Ratdomopurbo A, Poupinet G (2000) An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983–1994. J Volcanol Geotherm Res 100:193–214

    Article  Google Scholar 

  • Renzulli A, Santi P (1997) Sub-volcanic crystallization at Stromboli (Aeolian Islands, southern Italy) preceding the Sciara Del Fuoco sector collapse: evidence from monzonite lithic suite. Bull Volcanol 59:10–20

    Article  Google Scholar 

  • Reubi O, Blundy J (2008) Assimilation of plutonic roots, formation of high-K ‘exotic’ melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. J Petrol 49:2221–2243

    Article  Google Scholar 

  • Richter G, Wassermann J, Zimmer M, Ohrnberger M (2004) Correlation of seismic activity and fumarole temperature at the Mt. Merapi volcano (Indonesia) in 2000. J Volcanol Geotherm Res 135:331–342

    Article  Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130°C and 2.2 GPa. Contrib Mineral Petrol 163:877–895

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Riker JM, Cashman KV, Rust AC, Blundy JD (2015) Experimental constraints on plagioclase crystallization during H2O-and H2O–CO saturated magma decompression. J Petrol 56:1967–1998

    Article  Google Scholar 

  • Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma. J Petrol 44:1433–1453

    Article  Google Scholar 

  • Scaillet B, Pichavant M (2003) Experimental constraints on volatile abundances in arc magmas and their implications for degassing processes. Geol Soc Lond Spec Publ 213:23–52

    Article  Google Scholar 

  • Schlindwein V, Wassermann J, Scherbaum F (1998) Spectral analysis of harmonic tremor signals at Mt. Semeru volcano, Indonesia. Geophys Res Lett 22:1685–1688

    Article  Google Scholar 

  • Schwarzkopf L, Schmincke H-U, Troll V (2001) Pseudotachylite on impact marks of block surfaces in block-and-ash flows at Merapi volcano, Central Java, Indonesia. Intern J Earth Sci 90:769–775

    Article  Google Scholar 

  • Sisson TW, Bronto S (1998) Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391:883–886

    Article  Google Scholar 

  • Subandriyo, Gertisser R, Aisyah N, Humaida H, Preece K, Charbonnier S, Budi-Santoso A, Handley H, Sumarti S, Sayudi DS, Nandaka IGMA, Wibowo HE (2023) An overview of the large-magnitude (VEI 4) eruption of Merapi in 2010. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 353–407

    Google Scholar 

  • Surono, Jousset P, Pallister JS, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241:121–135

    Article  Google Scholar 

  • Smyth HR, Hall R, Hamilton J, Kinny PD (2005) East Java: Cenozoic basins, volcanoes and ancient basement. In: Proceedings, Indonesian Petroleum Association. Thirtieth Annual Convention & Exhibition, pp 251–266

    Google Scholar 

  • Tepley FJ, Lundstrom CC, Gill JB, Williams RW (2006) U-Th–Ra disequilibria and the time scale of fluid transfer and andesite differentiation at Arenal volcano, Costa Rica (1968–2003). J Volcanol Geotherm Res 157:147–165

    Article  Google Scholar 

  • Thouret JC, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geotherm Res 100:479–502

    Article  Google Scholar 

  • Tregoning P, Brunner FK, Bock Y, Puntodewo SSO, McCaffrey R, Genrich JF, Calais E, Subarya C (1994) First geodetic measurement of convergence across the Java Trench. Geophys Res Lett 21:2135–2138

    Article  Google Scholar 

  • Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:L11302

    Article  Google Scholar 

  • Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarzkopf LM, Borisova AY, Bindeman IN, Sumarti S, Preece K (2013) Magmatic differentiation processes at Merapi volcano: inclusion petrology and oxygen isotopes. J Volcanol Geotherm Res 261:38–49

    Article  Google Scholar 

  • Troll VR, Deegan FM, Jolis EM, Budd DA, Dahren B, Schwarzkopf LM (2015) Ancient oral tradition describes volcano–earthquake interaction at Merapi volcano, Indonesia. Geografisk Ann: Series A, Phys Geograph 97:137–166

    Article  Google Scholar 

  • Turner S, Foden J (2001) U, Th, and Ra disequilibria Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib Mineral Petrol 142:43–57

    Article  Google Scholar 

  • van Bemmelen RM (1949) The Geology of Indonesia, 1A, General Geology. The Hague: Government Printing Office

    Google Scholar 

  • van der Zwan FM, Chadwick JP, Troll VR (2013) Textural history of recent basaltic-andesites and plutonic inclusions from Merapi volcano. Contrib Mineral Petrol 166:43–63

    Article  Google Scholar 

  • Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138

    Article  Google Scholar 

  • Voight B, Young KD, Hidayat D, Subandrio, Purbawinata MA, Ratdomopurbo A, Suharna, Sayudi DS, LaHusen R, Marso J, Murray TL, Dejean M, Iguchi M, Ishikara K (2000) Deformation and seismic precursors to dome-collapse and fountain-collapse nuées ardentes at Merapi volcano, Java, Indonesia, 1994–1998. J Volcanol Geotherm Res 100:261–287

    Article  Google Scholar 

  • Wagner D, Koulakov I, Rabbel W, Luehr BG, Wittwer A, Kopp H, Bohm M, Asch G, MERAMEX Scientists (2007) Joint Inversion of active and passive seismic data in Central Java. Geophys J Int 170:923–932

    Article  Google Scholar 

  • Walter TR, Wang R, Luehr BG, Wassermann J, Behr Y, Parolai S, Anggraini A, Günther E, Sobiesiak M, Grosser H, Wetzel HU, Milkereit C, Sri Brotopuspito PJK, Harjadi P, Zschau J (2008) The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: did lahar deposits amplify ground shaking and thus lead to the disaster? Geochem Geophys Geosyst 9:Q05006

    Google Scholar 

  • Weis FA, Stalder R, Skogby H (2016) Experimental hydration of natural volcanic clinopyroxene phenocrysts under hydrothermal pressures (0.5–3 kbar). Am Mineral 101:2233–2247

    Article  Google Scholar 

  • Wegler U, Lühr BG (2001) Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment. Geophys J Int 145:579–592

    Article  Google Scholar 

  • Wölbern I, Rümpker G (2016) Crustal thickness beneath Central and East Java (Indonesia) inferred from P receiver functions. J Asian Earth Sci 115:69–79

    Article  Google Scholar 

  • Whitley S, Gertisser R, Halama R, Preece K, Troll VR, Deegan FM (2019) Crustal CO2 contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas. Sci Rep 9:8803

    Article  Google Scholar 

  • Whitley S, Halama R, Gertisser R, Preece K, Deegan FM, Troll VR (2020) Magmatic and metasomatic effects of magma-carbonate interaction recorded in calc-silicate xenoliths from Merapi volcano (Indonesia). J Petrol 61:egaa048

    Article  Google Scholar 

  • Widiyantoro S, van der Hilst R (1997) Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys J Int 130:167–182

    Google Scholar 

  • Widiyantoro S, Ramdhan M, Métaxian JP, Cummins PR, Martel C, Erdmann S, Nugraha AD, Budi-Santoso A, Laurin A, Fahmi AA (2018) Seismic imaging and petrology explain highly explosive eruptions of Merapi volcano, Indonesia. Sci Rep 8:13656

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to L.S. Blythe, A. Borisova, J.P. Chadwick, B. Dahrén, H. Damarvan, J. Gamble, R. Gertisser, H. Handley, H. Humaida, E.M. Jolis, I. Koulakov, B. Lühr, I. Made, L.M. Schwarzkopf, C. Martel, S. Peters, K. Preece, F. van der Zwan, T.R. Walter, and D. Wagner for constructive discussion on Merapi and its inner workings. We also thank N. Sharaf Aldeen, N. Seraphine and A. Pawar for help during preparation of the manuscript and R. Gertisser, T.E. Waight, and B. Lühr for thoughtful reviews of our manuscript. This work was supported by the European Research Council (ERC), the Swedish Research Council (VR), the Royal Swedish Academy of Science (KVA), and the Swedish Centre for Natural Hazards and Disaster Science (CNDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin R. Troll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Troll, V.R., Deegan, F.M. (2023). The Magma Plumbing System of Merapi: The Petrological Perspective. In: Gertisser, R., Troll, V.R., Walter, T.R., Nandaka, I.G.M.A., Ratdomopurbo, A. (eds) Merapi Volcano. Active Volcanoes of the World. Springer, Cham. https://doi.org/10.1007/978-3-031-15040-1_8

Download citation

Publish with us

Policies and ethics