Skip to main content
Log in

Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Petrographic and microprobe investigations of calc-alkaline (CA) rocks from the High Cascade Range (i.e., Mt. St. Helens, Mt. Jefferson, Crater Lake and Mt. Shasta) of western North America show that crystal clots represent primary igneous phase assemblages and are not products of amphibole reactions with melt. For each eruptive complex, crystal clots display diverse modal proportions even within a single eruptive unit. Nevertheless, in all cases the crystal-clot minerals are also represented in the rock as phenocrysts or microphenocrysts. Basalts contain clots of ol+plag+mgt, ol+mgt, cpx+ plag+mgt, cpx+mgt and plag+mgt; andesites, clots of cpx+mgt, opx+mgt, cpx+opx+plag+mgt, cpx+plag+mgt, opx+plag+mgt and plag±mgt; and dacites, clots of opx+mgt, cpx+opx+plag+ mgt, opx+plag+mgt, amph+plag+mgt±ilm, amph+mgt±ilm and plag±mgt. The bulk compositions of most of these clot assemblages could not have been derived from amphibole percursors. Although some amphiboles in dacitic rocks display a breakdown reaction of amph=plag+cpx+opx +mag, these mineral clusters, unlike those of clots, typically have a relict amphibole crystal outline and a fine-grained metamorphic texture. Plagioclase grains in the mineral clusters lack oscillatory zoning which is typical of crystal clot plagioclase grains. The euhedral to subhedral shapes of most clot minerals and the oscillatory zoning present in most clot plagioclase grains are not likely to have formed from the breakdown of amphibole. Crystal clots are also observed in Hawaiian and ocean floor basalts, although amphibole fractionation has not been proposed for those lavas. Magnetite fractionation may be the controlling process limiting iron enrichment in CA magmas rather than amphibole fractionation. Textural evidence indicates that magnetite is an early-forming phase in CA magmas. V, which is concentrated in magnetite, shows a strong decrease with increasing silica in many CA rocks, supporting a magnetite fractionation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albee, A.L., Ray, L.: Correction factors for electron probe micro-analysis of silicates, carbonates, phosphates and sulfates. Analyt. Chem. 42, 1408–1414 (1970)

    Google Scholar 

  • Allen, J.C., Boettcher, A.L., Marland, G.: Amphiboles in andesite and basalt: I. Stability as a function of P-T-f O2. Am. Mineral. 60, 1069–1085 (1975)

    Google Scholar 

  • Ando, S.: Minor element geochemistry of the rocks from Mashu Volcano, eastern Hokkaido. J. Fac. Sci. Hokkaido Univ. 16, 553–566 (1975)

    Google Scholar 

  • Baker, P.E.: Petrology of Mt. Misery Volcano, St. Kitts, West Indies. Lithos 1, 124–150 (1968)

    Google Scholar 

  • Bence, A.E., Albee, A.L.: Empirical correction factors for the electron microprobe analysis of silicates and oxides. J. Geol. 76, 382–402 (1968)

    Google Scholar 

  • Biggar, G.M.: Phase equilibria studies of the chilled margins of some layered intrusions. Contrib. Mineral. Petrol. 42, 159–167 (1974)

    Google Scholar 

  • Blanchard, D.P., Rhodes, J.M., Dungan, M.A. Rodgers, K.W., Donaldson, C.H., Brannon, H.C., Jacobs, J.W., Gibson, E.K.: The chemistry and petrology of basalts from Leg 37 of the Deep-Sea Drilling Project. J. Geophys. Res. 81, 4231–4246 (1976)

    Google Scholar 

  • Boettcher, A.L.: Volcanism and orogenic belts-the origin of andesites. Tectonophysics 17, 223–240 (1973)

    Google Scholar 

  • Boettcher, A.L.: The role of amphiboles and water in circum-Pacific volcanism. In: High Pressure Research Applications in Geophysics (M.H. Manghnani and S. Akimoto, eds.), pp. 107–125. New York: Academic Press 1977

    Google Scholar 

  • Brown, G.M., Holland, J.G., Sigurdsson, H., Tomblin, J.F., Arculus, F.J.: Geochemistry of the Lesser Antilles volcanic arc. Geochim. Cosmochim. Acta 41, 785–801 (1977)

    Google Scholar 

  • Bryan, W.B.: Coral Sea drift pumice stranded on Eua Island, Tonga, in 1969. Geol. Soc. Am. Bull. 82, 2799–2812 (1971)

    Google Scholar 

  • Carmichael, I.S.E., Nicholls, J.: Iron-titanium oxides and oxygen fugacities in volcanic rocks. J. Geophys. Res. 72, 4665–4687 (1967)

    Google Scholar 

  • Cawthorn, R.C., O'Hara, M.J.: Amphibole fractionation in calcalkaline magma genesis. Am. J. Sci. 276, 309–329 (1976)

    Google Scholar 

  • Chayes, F.: Petrographic Modal Analysis, 113 pp. New York: John Wiley and Sons Inc. 1956

    Google Scholar 

  • Coats, R.R.: Magmatic differentiation in Tertiary and Quaternary volcanic rocks from Adak and Kanaga Islands, Aleutian Islands, Alaska. Geol. Soc. Am. Bull. 63, 485–514 (1952)

    Google Scholar 

  • Duncan, A.R., Taylor, S.R.: Trace element analyses of magnetites from andesitic and dacitic lavas from Bay of Plenty, New Zealand. Contrib. Mineral. Petrol. 20, 30–33 (1968)

    Google Scholar 

  • Eggler, D.H.: Amphibole stability in H2O-undersaturated calc-alkaline melts. Earth Planet. Sci. Lett. 15, 28–34 (1972)

    Google Scholar 

  • Eggler, D.H., Burnham, C.W.: Crystallization and fractionation trends in the system andesite-H2O-CO2-O2 at pressures to 10 kb. Geol. Soc. Am. Bull. 84, 2517–2532 (1973)

    Google Scholar 

  • Ewart, A.: Mineralogy and chemistry of modern orogenic lavas-some statistics and implications. Earth Planet. Sci. Lett. 31, 417–432 (1976)

    Google Scholar 

  • Finger, L.W.: The uncertainty in the calculated ferric iron content of a microprobe analysis. Carnegie Inst. Washington Yearb. 71, 600–603 (1972)

    Google Scholar 

  • Fudali, R.F.: Oxygen fugacities of basaltic and andesitic magmas. Geochim. Cosmochim. Acta 29, 1063–1075 (1965)

    Google Scholar 

  • Gill, J.B.: Geochemistry of Viti Levu, Fiji and its evolution as an island arc. Contrib. Mineral. Petrol. 25, 179–203 (1970)

    Google Scholar 

  • Helz, R.T.: Phase relations of basalts in their melting ranges at P H2O=5 kb. Part II: Melt compositions. J. Petrol. 17, 139–194 (1976)

    Google Scholar 

  • Heming, R.F.: Geology and petrology of Rabaul caldera, Papua, New Guinea. Geol. Soc. Am. Bull. 85, 1253–1264 (1974)

    Google Scholar 

  • Heming, R.F., Carmichael, I.S.E.: High temperature pumice flows from the Rabaul Caldera, Papua, New Guinea. Contrib. Mineral. Petrol. 38, 1–20 (1973)

    Google Scholar 

  • Holloway, J.R., Burnham, C.W.: Melting relations of basalt with equilibrium water pressure less than total pressure. J. Petrol. 13, 1–29 (1972)

    Google Scholar 

  • Jakeš, P., White, A.J.R.: Hornblendes from calc-alkaline volcanic rocks of island arcs and continental margins. Am. Mineral. 57, 887–902 (1972)

    Google Scholar 

  • Kempe, D.R.C.: The petrology of the basalts, Leg 26. In: Initial Reports Deep Sea Drilling Project (Davies, T.A. et al. eds.) 26, 465–504 (1974)

  • Kuno, H.: Petrology of Hakano Volcano and the adjacent areas. Geol. Soc. Am. Bull. 61, 957–1020 (1950)

    Google Scholar 

  • Le Maitre R.: Petrology of volcanic rocks, Gough Island, South Atlantic. Geol. Soc. Am. Bull. 75, 1309–1340 (1962)

    Google Scholar 

  • McBirney, A.R.: Proceeding of the andesite conference Oregon Dept. Geol. Mineral. Ind. Bull, 1965, cover (1969)

  • MacGregor, A.G.: The volcanic history and petrology of Montserrat, with observations on Mt. Pele in Martinique; Royal Society Expedition to Montserrat, B.W.I. Philos. Trans. R. Soc., Ser, B 229, 1–90 (1938)

    Google Scholar 

  • Mazullo, L.J., Bence, A.E.: Abyssal tholeiites from DSDP Leg 34: The Nazca Plate. J. Geophys. Res. 81, 4327–4351 (1976)

    Google Scholar 

  • Mysen, B.O., Boettcher, A.L.: Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol. 16, 520–548 (1975)

    Google Scholar 

  • Nicholls, I.A.: Petrology of Santorini Volcano, Cyclades, Greece. J. Petrol. 12, 373–388 (1971)

    Google Scholar 

  • Osborn, E.F.: Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am. J. Sci. 257, 607–647 (1959)

    Google Scholar 

  • Osborn, E.F., Arculus, R.J.: Phase relations in the system Mg2SiO4-iron oxide-CaAl2Si2O8-SiO2 at 10 kb and their bearing on the origin of andesite. Carnegie Inst. Washington Geophys. Lab. Yearb. 74, 503–507 (1975)

    Google Scholar 

  • Pe, G.G.: Petrology and geochemistry of volcanic rocks of Aegina, Greece. Bull. Volcanol. 37, 491–514 (1973)

    Google Scholar 

  • Pichler, H., Zeil, W.: The Cenozoic rhyolite-andesite association of the Chilean Andes. Bull. Volcanol. 35, 424–452 (1972)

    Google Scholar 

  • Rea, W.J.: The volcanic geology and petrology of Montserrat, West Indies. J. Geol. Soc. London 130, 341 (1974)

    Google Scholar 

  • Ringwood, A.E.: The petrological evolution of island arc systems. J. Geol. Soc. London 130, 183–204 (1974)

    Google Scholar 

  • Rose, W.I. Jr., Grant, N.K., Hahn, G.W., Lange, I.M., Powell, J.L., Easter, J., Degraff, J.M.: The evolution of Santa Maria Volcano, Guatemala. J. Geol. 85, 63–87 (1977)

    Google Scholar 

  • Stewart, D.C.: Crystal clots in calc-alkaline andesites as breakdown products of high-Al amphiboles. Contrib. Mineral. Petrol. 53, 195–204 (1975a)

    Google Scholar 

  • Stewart, D.C.: Crystal clots in calc-alkaline andesites as breakdown products of high-Al amphiboles. MS Thesis, Pennsylvania State University, 47 pp. (1975 b)

  • Taylor, S.R., Annette, C.C., Graham, A.L., Blake, D.H.: Trace element abundances in andesites. Contrib. Mineral. Petrol. 23, 1–26 (1969)

    Google Scholar 

  • Thorpe, R.S., Francis, P.W.: Volcan Ceboraco: a major composite of the Mexican Volcanic Belt. Bull. Volcanol. 39, 201–213 (1976)

    Google Scholar 

  • Tilley, C.E.: Some aspects of Magmatic evolution. Quart. J. Geol. Soc. London 106, 37–61 (1950)

    Google Scholar 

  • Ulmer, G.C., Dory, A.: Paricutin andesite: two new lines of evidence. Geol. Soc. Am. Abstr. Progr. 6, 1069 (1974)

    Google Scholar 

  • Vance, J.A.: On synneusis. Contrib. Mineral. Petrol. 24, 7–29 (1969)

    Google Scholar 

  • Verhoogen, J.: Mount St. Helens: A recent Cascade volcano. Univ. Calif. Publ. Geol. Sci. 24, 263–302 (1937)

    Google Scholar 

  • Wager, L.R., Mitchell, R.L.: The distribution of trace elements during strong fractionation of basic magma-a further study of the Skaergaard Intrusion, East Greenland. Geochim. Cosmochim. Acta 1, 129–208 (1951)

    Google Scholar 

  • Williams, H.: The geology of Crater Lake National Park, Oregon. Carnegie Inst. Publ. 540, 162 (1942)

    Google Scholar 

  • Williams, H., Turner, F.J., Gilbert, C.M.: Petrography, p. 406. San Francisco: Freeman and Co. 1954

    Google Scholar 

  • Wyllie, P.J.: Experimental petrology and global tectonics: a review. Tectonophysics 17, 189–209 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Hawaii Institute of Geophysics Contrib. No. 969

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, M.O., Jacobson, S.S. Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contr. Mineral. and Petrol. 69, 319–327 (1979). https://doi.org/10.1007/BF00372257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372257

Keywords

Navigation