Skip to main content

Geochemistry of Cold Hydrocarbon Seeps: An Overview

  • Chapter
  • First Online:
Ancient Hydrocarbon Seeps

Abstract

A fundamental geochemical process operating at methane seeps is the anaerobic oxidation of methane (AOM) by which methane is oxidized and sulfate is reduced. This process takes place in the sulfate-methane transition zone (SMTZ), generally located below the sediment-water interface. Methane has a low δ13C signature, and this is transferred to the dissolved inorganic carbon (DIC) reservoir during AOM. The increase in alkalinity from AOM can cause various carbonate minerals to precipitate with low δ13C. Indeed, very low δ13C values of ancient calcium carbonates are taken as prima facie evidence that the carbonates formed in a cold hydrocarbon seep environment. Isotope systems applied to ancient hydrocarbon seeps include those of carbon, oxygen, strontium, neodymium, and sulfur. These provide information on carbon source, carbonate formation temperature, the involvement of deep-sourced fluids, and fluid pathways in transferring methane to the SMTZ. Variations of rare earth elements (REEs) provide clues to the environmental conditions under which seep carbonates formed, with implications for the precipitation depth and flow regime. Other trace elements (Fe, Mn, Sr, Mg) in seep carbonates reflect mineralogical differences, and redox-sensitive trace elements (Mo, U, Cd, Sb, As) provide constraints on fluid flux and the dynamics of redox conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AN, Haley BA, McManus J (2016) The impact of sedimentary coatings on the diagenetic Nd flux. Earth Planet Sci Lett 449:217–227

    Article  Google Scholar 

  • Aharon P (1994) Geology and biology of modern ad ancient submarine seeps and vents: an introduction. Geo-Mar Lett 14:69–73

    Article  Google Scholar 

  • Algeo TJ, Li C (2020) Redox classification and calibration of redox thresholds in sedimentary systems. Geochim Cosmochim Acta 287:8–26

    Article  Google Scholar 

  • Algeo TJ, Liu J (2020) A re-assessment of elemental proxies for paleoredox analysis. Chem Geol 540(2):119549. https://doi.org/10.1016/j.chemgeo.2020.119549

    Article  Google Scholar 

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and environmental problems. In: Arthur MA, Anderson TF, Kaplan IR et al (eds) Stable isotopes in sedimentary geology. Society of Economic Paleontologists and Mineralogists Short Course, vol no. 10. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 1–151

    Google Scholar 

  • Angeletti L, Canese S, Franchi F et al (2015) The ‘chimney forest’ of the deep Montenegrin margin, south-eastern Adriatic Sea. Mar Pet Geol 66:542–554

    Article  Google Scholar 

  • Argentino C, Lugli F, Cipriani A et al (2019) A deep fluid source of radiogenic Sr and highly dynamic seepage conditions recorded in Miocene seep carbonates of the northern Apennines (Italy). Chem Geol 522:135–147

    Article  Google Scholar 

  • Bailey JV, Orphan VJ, Joye SB et al (2009) Chemotrophic microbial mats and their potential preservation in the rock record. Astrobiology 9(9):843–859

    Article  Google Scholar 

  • Berner RA (1968) Calcium carbonate concretions formed by the decomposition of organic matter. Science 159(3811):195–197

    Google Scholar 

  • Banner JL (1995) Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 42:805–824

    Article  Google Scholar 

  • Bau M, Balan S, Schmidt K, Koschinsky A (2010) Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth Planet Sci Lett 299(3–4):310–316

    Google Scholar 

  • Bayon G, Pierre C, Etoubleau J et al (2007) Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments. Mar Geol 241(1−4):93–109

    Article  Google Scholar 

  • Bayon G, Birot D, Ruffine L et al (2011) Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth Planet Sci Lett 312(3/4):443–452

    Article  Google Scholar 

  • Bayon G, Dupré S, Ponzevera E et al (2013) Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion. Nat Geosci 6:755–760. https://doi.org/10.1038/NGEO1888

    Article  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  Google Scholar 

  • Bennett WW, Canfield DE (2020) Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments. Earth-Sci Rev 204:103175

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis—a theoretical approach. Princeton University Press, Princeton

    Book  Google Scholar 

  • Birgel D, Peckmann J, Klautzsch S et al (2006) Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiol J 23:565–577

    Article  Google Scholar 

  • Birgel D, Feng D, Roberts HH et al (2011) Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chem Geol 285(1−4):82–96

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–625

    Article  Google Scholar 

  • Boggs S, Krinsley D (2006) Application of cathodoluminescence imaging to the study of sedimentary rocks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bohrmann G, Torres ME (2006) Gas hydrates in marine sediments. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Heidelberg, pp 481–512

    Chapter  Google Scholar 

  • Bonifacie M, Calmels D, Eiler JM et al (2017) Calibration of the dolomite clumped isotope thermometer from 25 to 350° C, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. Geochim Cosmochim Acta 200:255–279. https://doi.org/10.1016/j.gca.2016.11.028

    Article  Google Scholar 

  • Bowles MW, Mogollon JM, Kasten S et al (2014) Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities. Science 344:889–891

    Article  Google Scholar 

  • Brand U (2004) Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies. Chem Geol 204(1/2):23–44

    Article  Google Scholar 

  • Brand U, Logan A, Hiller N et al (2003) Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography. Chem Geol 198:305–334

    Article  Google Scholar 

  • Bristow TF, Grotzinger JP (2013) Sulfate availability and the geological record of cold-seep deposits. Geology 41:811–814

    Article  Google Scholar 

  • Buggisch W, Krumm S (2005) Palaeozoic cold seep carbonates from Europe and North Africa—an integrated isotopic and geochemical approach. Facies 51(1−4):566–583

    Article  Google Scholar 

  • Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, Princeton

    Google Scholar 

  • Burton EA (1993) Controls on marine carbonate cement mineralogy: review and reassessment. Chem Geol 105:163–179

    Article  Google Scholar 

  • Byrne RH, Sholkovitz ER (1996) Marine chemistry and geochemistry of the lanthanides. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths. Elsevier Science, Amsterdam, pp 497–593

    Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol 232:362–407

    Article  Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:63–94

    Article  Google Scholar 

  • Cangemi M, Di Leonardo R, Bellanca A et al (2010) Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (central Mediterranean): relationships with mud/fluid release from a mud volcano system. Chem Geol 276(3/4):294–308

    Article  Google Scholar 

  • Cavagna S, Clari P, Dela Pierre F et al (2015) Sluggish and steady focussed flows through fine-grained sediments: the methane-derived cylindrical concretions of the Tertiary Piedmont Basin (NW Italy). Mar Pet Geol 66:596–605

    Article  Google Scholar 

  • Chen F, Hu Y, Feng D et al (2016) Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chem Geol 443:173–181

    Article  Google Scholar 

  • Cochran JK, Landman NH, Turekian KK et al (2003) Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 191:45–64

    Article  Google Scholar 

  • Cochran JK, Kallenberg K, Landman NH et al (2010) Effect of diagenesis on the Sr, O, and C isotope composition of Late Cretaceous mollusks from the Western Interior Seaway of North America. Am J Sci 310:69–88

    Article  Google Scholar 

  • Cochran JK, Landman NH, Larson NL et al (2015) Geochemical evidence (C and Sr isotopes) for methane seeps as ammonite habitats in the Late Cretaceous (Campanian) Western Interior Seaway. Swiss J Palaeontol 134:153–165

    Article  Google Scholar 

  • Crémière A, Lepland A, Chand S et al (2016) Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea. Chem Geol 432:16–33

    Article  Google Scholar 

  • Dela Pierre F, Martire L, Natalicchio M et al (2010) Authigenic carbonates in upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy): vestiges of an ancient gas hydrate stability zone? Geol Soc Am Bull 122(7/8):994–1010

    Article  Google Scholar 

  • Deng Y, Chen F, Hu Y et al (2020) Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea. Ore Geol Rev 125:103701. https://doi.org/10.1016/j.oregeorev.2020.103701

    Article  Google Scholar 

  • Denison RE, Koepnick RB, Fletcher A et al (1994) Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones. Chem Geol 112(1/2):131–143

    Article  Google Scholar 

  • Dulski P (1994) Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. J Anal Chem 350:194–203

    Google Scholar 

  • Elderfield H (1988) The oceanic chemistry of the rare-earth elements. Phil Trans Roy Soc Lond A 325:105–126

    Article  Google Scholar 

  • Elvert M, Hopmans EC, Treude T et al (2005) Spatial variations of menthanotrophic consortia at cold methane seeps: implications from a high-resolution molecular and isotopic approach. Geobiology 3:195–209

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Pasilier D et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  Google Scholar 

  • Feng D, Chen D (2015) Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity. Deep-Sea Res II 122:74–83

    Article  Google Scholar 

  • Feng D, Chen D, Roberts HH (2009a) Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Pet Geol 26(7):1190–1198

    Article  Google Scholar 

  • Feng D, Chen D, Peckmann J (2009b) Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 21(1):49–56

    Article  Google Scholar 

  • Feng D, Chen D, Peckmann J et al (2010) Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism. Mar Pet Geol 27(4):748–756

    Article  Google Scholar 

  • Feng D, Lin Z, Bian Y et al (2013) Rare earth elements of seep carbonates: indication for redox variations and microbiological processes at modern seep sites. J Asian Earth Sci 65:27–33

    Article  Google Scholar 

  • Ferry JG (1992) Methane from acetate. J Bacteriol 174(17):5489–5495

    Article  Google Scholar 

  • Finch AA, Allison N (2007) Coordination of Sr and Mg in calcite and aragonite. Mineral Mag 71(5):539–552

    Article  Google Scholar 

  • Freslon N, Bayon G, Toucanne S et al (2014) Rare earth elements and neodymium isotopes in sedimentary organic matter. Geochim Cosmochim Acta 140:177–198

    Article  Google Scholar 

  • Gao Y (2019) Clumped isotope paleothermometry of authigenic carbonates from Late Cretaceous (Campanian) methane seeps in the Western Interior Seaway, South Dakota, USA. Thesis, Stony Brook University

    Google Scholar 

  • Gao Y, Henkes GA, Cochran JK et al (2021) Temperatures of Late Cretaceous (Campanian) methane-derived authigenic carbonates from the Western Interior Seaway, South Dakota, USA, using clumped isotopes. Geol Soc Am Bull 133(11/12):2524–2534. https://doi.org/10.1130/B35846.1

    Article  Google Scholar 

  • Ge l, Chen W, Zhu B, Fan M, Yang T, Jiang S (2020) Sr and Nd isotopes of cold seep carbonates from the northern South China sea as proxies for fluid sources. Mar Pet Geol 115:104284

    Google Scholar 

  • Ge L, Jiang S-Y, Swennen R et al (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277(1−4):21–30

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanographica 5(5):823–833

    Article  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Paull CK, Dillon PW (eds) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, DC, pp 99–113

    Google Scholar 

  • Greinert J, Bohrmann G, Elvert M (2002) Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850 m water depth. Int J Earth Sci 91(4):698–711

    Article  Google Scholar 

  • Grossman EL, Ku T-L (1986) Carbon and oxygen isotopic fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    Article  Google Scholar 

  • Hagemann A, Leefmann T, Peckmann J et al (2012) Biomarkers from individual carbonate phases of an Oligocene cold-seep deposit. Lethaia 46(1):7–18. https://doi.org/10.1111/j.1502-3931.2012.00316.x

    Article  Google Scholar 

  • Haley BA, Klinkhammer GP, McManus J (2004) Rare earth elements in pore waters of marine sediments. Geochim Cosmochim Acta 68(6):1265–1279

    Article  Google Scholar 

  • Hall JLO, Newton RJ, Witts JD et al (2018) High benthic methane flux in low sulfate oceans: evidence from carbon isotopes in Late Cretaceous Antarctic bivalves. Earth Planet Sci Lett 497:113–122

    Article  Google Scholar 

  • Han X, Suess E, Sahling H et al (2004) Fluid activity on the Costa Rica margin: new results from authigenic carbonates. Int J Earth Sci 93:596–611

    Google Scholar 

  • Handle KC (2014) Paleoecology of Late Cretaceous methane cold seeps of the Pierre Shale, South Dakota. Dissertation, City University of New York

    Google Scholar 

  • Hein JR, Zierenberg RA, Maynard JB et al (2007) Barite-forming environments along a rifted continental margin, southern California borderland. Deep-Sea Res II 54:1327–1349

    Article  Google Scholar 

  • Hellebrandt SE, Hofmann S, Jordan N et al (2016) Incorporation of Eu(III) into calcite under recrystallization conditions. Sci Rep 6:33137. https://doi.org/10.1038/srep33137

    Article  Google Scholar 

  • Henkes GA, Passey BH, Wanamaker AD et al (2013) Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells: Geochim Cosmochim Acta 106:307–325

    Google Scholar 

  • Himmler T, Bach W, Bohrmann G et al (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277(1/2):126–136

    Article  Google Scholar 

  • Himmler T, Haley BA, Torres ME et al (2013) Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Mar Lett 33(5):369–379

    Article  Google Scholar 

  • Himmler T, Smrzka D, Zwicker J et al (2018) Stromatolites below the photic zone in the northern Arabian Sea formed by calcifying chemotrophic microbial mats. Geology 46(4):339–342

    Google Scholar 

  • Hryniewicz K (this volume-a) Ancient seep carbonates: from outcrop appearance to microscopic petrography. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps. Topics in geobiology, vol 50. Springer, New York

    Google Scholar 

  • Hryniewicz K (this volume-b) Seeps around the world. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps. Topics in geobiology, vol 50. Springer, New York

    Google Scholar 

  • Hu Y, Feng D, Peckmann J et al (2014) New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps. Chem Geol 381:55–66

    Article  Google Scholar 

  • Hu Y, Feng D, Peckmann J et al (2020) The impact of diffusive transport of methane on pore-water and sediment geochemistry constrained by authigenic enrichments of carbon, sulfur, and trace elements: a case study from the Shenhu area of the South China Sea. Chem Geol 553:119805. https://doi.org/10.1016/j.chemgeo.2020.119805

    Article  Google Scholar 

  • Hudson JD, Anderson TF (1989) Ocean temperatures and isotopic compositions through time. Trans R Soc Edinb Earth Sci 80:183–192

    Google Scholar 

  • Jakubowicz M, Dopieralska J, Belka Z (2015a) Tracing the composition and origin of fluids at an ancient hydrocarbon seep (Holland Mound, Middle Devonian, Morocco): a Nd, REE and stable isotope study. Geochim Cosmochim Acta 156:50–74

    Article  Google Scholar 

  • Jakubowicz M, Berkpwski B, Correa ML et al (2015b) Stable Isotope Signatures of Middle Palaeozoic ahermatypic rugose corals—deciphering secondary alteration, vital fractionation effects, and palaeoecological implications. PLoS One 10(9):e0136289. https://doi.org/10.1371/journal.pone.0136289

    Article  Google Scholar 

  • Jakubowicz M, Dopieralska J, Kaim A et al (2019) Nd isotope composition of seep carbonates: towards a new approach for constraining subseafloor fluid circulation at hydrocarbon seeps. Chem Geol 503:40–51

    Article  Google Scholar 

  • Jakubowicz M, Kiel S, Goedert JL et al (2020) Fluid expulsion system and tectonic architecture of the incipient Cascadia convergent margin as revealed by Nd, Sr and stable isotope composition of mid-Eocene methane seep carbonates. Chem Geol 558:119872. https://doi.org/10.1016/j.chemgeo.2020.119872

    Article  Google Scholar 

  • Jakubowicz M, Agirrezabala LM, Dopieralska J et al (2021) The role of magmatism in hydrocarbon generation in sedimented rifts: a Nd isotope perspective from mid-Cretaceous methane-seep deposits of the Basque-Cantabrian Basin, Spain. Geochim Cosmochim Acta 393:223–248

    Article  Google Scholar 

  • Jenkins RG, Kaim A, Hikida Y et al (2007) Methane-flux-dependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 6:127–139

    Article  Google Scholar 

  • Jørgensen BB, Nelson DC (2004) Sulfide oxidation in marine sediments: geochemistry meets microbiology. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry—past and present, Geological Society of America Special Paper 379. Geological Society of America, Boulder, pp 63–81

    Google Scholar 

  • Joseph C, Torres ME, Martin RA et al (2012) Using the 87Sr/86Sr of modern and paleoseep carbonates from northern Cascadia to link modern fluid flow to the past. Chem Geol 334:122–130

    Article  Google Scholar 

  • Joseph C, Campbell KA, Torres ME et al (2013) Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: mechanisms of formation and diagenetic signals. Palaeogeogr Palaeoclimatol Palaeoecol 390:52–67

    Article  Google Scholar 

  • Joye S (2012) A piece of the methane puzzle. Nature 491:538–539

    Article  Google Scholar 

  • Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulphur isotopes. J Gen Microbiol 34:195–212

    Article  Google Scholar 

  • Kelly SRA, Ditchfield PW, Doubleday PA et al (1995) An Upper Jurassic methane-seep limestone from the Fossil Bluff Group fore-arc basin of Alexander Island, Antarctica. J Sediment Res A 65(2):274–282

    Google Scholar 

  • Kennedy M, Mrofka D, von der Borch C (2008) Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453:642–645

    Article  Google Scholar 

  • Kiel S (2015) Did shifting seawater sulfate concentrations drive the evolution of methane-seep ecosystems? Proc R Soc B 282(1804):20142908. https://doi.org/10.1098/rspb.2014.2908

    Article  Google Scholar 

  • Kiel S, Hansen C, Nitzsche KN et al (2014) Using 87Sr/86Sr ratios to date fossil methane seep deposits: methodological requirements and an example from the Great Valley Group, California. J Geol 122(4):353–366

    Article  Google Scholar 

  • Kim S, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475. https://doi.org/10.1016/S0016-7037(97)00169-5

    Article  Google Scholar 

  • Kim J-H, Torres ME, Haley BA et al (2012) The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem Geol 291:152–165

    Article  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  Google Scholar 

  • Krause FF, Clark J, Sayegh SG et al (2009) Tube worm fossils or relic methane expulsing conduits? Palaios 24:41–50

    Article  Google Scholar 

  • Lacan F, Tachikawa K, Jeandel C (2012) Neodymium isotope composition of the oceans: a compilation of seawater data. Chem Geol 300(301):177–184

    Article  Google Scholar 

  • Lakshtanov LZ, Stipp SLS (2004) Experimental study of europium (III) coprecipitation with calcite. Geochim Cosmochim Acta 68(4):819–827

    Article  Google Scholar 

  • Landman NH, Cochran JK, Larson NL et al (2012) Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology 40(6):507–510. https://doi.org/10.1130/G32782.1

    Article  Google Scholar 

  • Landman NH, Cochran JK, Slovacek M et al (2018) Isotope sclerochronology of ammonites (Baculites compressus) from methane seep and non-seep sites in the Late Cretaceous Western Interior Seaway, USA: implications for ammonite habitat and mode of life. Am J Sci 318:603–639

    Article  Google Scholar 

  • Landman NH, Cochran JK, Brezina J et al (this volume) Methane seeps in the Late Cretaceous Western Interior Seaway. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps. Topics in geobiology, vol. 50, Springer, New York

    Google Scholar 

  • Lietard C, Pierre C (2009) Isotopic signatures (δ18O and δ13C) in bivalve shells from cold seeps and hydrothermal vents. Geobios 42:209–219

    Article  Google Scholar 

  • Lin Z, Sun X, Peckmann J et al (2016) How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea. Chem Geol 440:26–41

    Article  Google Scholar 

  • Lin Z, Sun X, Strauss H et al (2017a) Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea. Geochim Cosmochim Acta 211:153–173

    Article  Google Scholar 

  • Lin Z, Sun X, Lu Y et al (2017b) The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: insights from the South China Sea. Chem Geol 449:15–29

    Article  Google Scholar 

  • Little CTS, Birgel D, Boyce AJ et al (2015) Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 418:213–228

    Article  Google Scholar 

  • Loyd SJ, Sample J, Tripati RE et al (2016) Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures. Nat Commun 7:12274

    Article  Google Scholar 

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67(18):3404–3421

    Article  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221:337–353

    Article  Google Scholar 

  • Machel HG (2000) Application of cathodoluminescence to carbonate diagenesis. In: Pagel M, Barbin V, Blanc P et al (eds) Cathodoluminescence in geosciences. Springer, New York, pp 271–301

    Chapter  Google Scholar 

  • MacRae ND, Nesbitt HW, Kronberg BI (1992) Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett 109(3/4):585–591

    Article  Google Scholar 

  • Matsumoto R (2001) Methane hydrates. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean sciences, 1st edn. Elsevier, New York, pp 1745–1757

    Chapter  Google Scholar 

  • Matveeva T, Savvichev AD, Semenova A et al (2015) Source, origin and spatial distribution of shallow sediment methane in the Chukchi Sea. Oceanography 28(3):202–217

    Article  Google Scholar 

  • Mazzini A, Ivanov MK, Parnell J et al (2004) Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Mar Geol 212:153–181

    Article  Google Scholar 

  • McArthur JM, Kennedy WJ, Chen M et al (1994) Strontium isotope stratigraphy for Late Cretaceous time: direct numerical calibration of the Sr isotope curve based on the US Western Interior. Palaeogeogr Palaeoclimatol Palaeoecol 108:95–119

    Article  Google Scholar 

  • McConnaughey TA (1989) 13C and 18O isotopic disequilibria in biological carbonates: I, patterns. Geochim Cosmochim Acta 53:151−162

    Google Scholar 

  • McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299

    Article  Google Scholar 

  • McLennan SM (1989) Rare-earth elements in sedimentary rocks—influence of provenance and sedimentary processes. Rev Mineral 21:169–200

    Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L et al (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546

    Article  Google Scholar 

  • Miyajima Y, Jenkins RG (this volume) Biomarkers in ancient hydrocarbon-seep carbonates. In: Kaim A, Cochran JK, Landman NH (eds) Ancient hydrocarbon seeps. Topics in geobiology, vol 50. Springer, New York

    Google Scholar 

  • Miyajima Y, Watanabe Y, Jenkins RG et al (2018) Diffusive methane seepage in ancient deposits: examples from the Neogene Shin’etsu sedimentary basin, central Japan. J Sediment Res 88:449–466

    Article  Google Scholar 

  • Naehr TH, Eichhubl P, Orphan VJ et al (2007) Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study. Deep-Sea Res II 54:1268–1291

    Article  Google Scholar 

  • Natalicchio M, Birgel D, Dela Pierre F et al (2012) Polyphasic carbonate precipitation in the shallow subsurface: insights from microbially-formed authigenic carbonate beds in the upper Miocene sediments of the Tertiary Piedmont (NW Italy). Palaeogeogr Palaeoclimatol Palaeoecol 329(330):158–172

    Article  Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68(2):263–283

    Article  Google Scholar 

  • Nöthen K, Kasten S (2011) Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan. Mar Geol 287(1−4):1–13

    Article  Google Scholar 

  • Paull CK, Ussler W III, Holbrook WS et al (2008) Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway. Geo-Mar Lett 28:43–51

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Article  Google Scholar 

  • Peckmann J, Thiel V, Michaelis W et al (1999) Cold seep deposits of Beauvoisin (Oxfordian, southeastern France) and Marmorito (Miocene, northern Italy): microbially induced authigenic carbonates. Int J Earth Sci 88:60–75

    Article  Google Scholar 

  • Peckmann J, Reimer A, Luth U et al (2001) Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Mar Geol 177:129–150

    Article  Google Scholar 

  • Peckmann J, Goedert JL, Thiel V et al (2002) A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49:855–873

    Article  Google Scholar 

  • Peckmann J, Goedert JL, Heinrichs T et al (2003) The Late Eocene ‘Whiskey Creek’ methane-seep deposit (western Washington State) part II: petrology, stable isotopes, and biogeochemistry. Facies 48:241–254

    Article  Google Scholar 

  • Peckmann J, Thiel V, Reitner J et al (2004) A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone. Geomicrobiol J 21:247–255. https://doi.org/10.1080/01490450490438757

    Article  Google Scholar 

  • Peckmann J, Campbell KA, Walliser OH et al (2007) A Late Devonian hydrocarbon-seep deposit dominated by dimerelloid brachiopods, Morocco. Palaios 22(2):114–122

    Article  Google Scholar 

  • Peketi A, Mazumdar A, Joshi RK et al (2012) Tracing the paleo sulfate-methane transition zones and H2S seepage events in marine sediments: an application of C-S-Mo systematics. Geochem Geophys Geosyst 13(10):Q10007. https://doi.org/10.1029/2012GC004288

    Article  Google Scholar 

  • Pichler T, Veizer J (2004) The precipitation of aragonite from shallow-water hydrothermal fluids in a coral reef, Tutum Bay, Ambitle Island, Papua New Guinea. Chem Geol 207(1/2):31–45

    Article  Google Scholar 

  • Pierre C, Blanc-Valleron M-M, Caquineau S et al (2014) Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343−U1345). Deep-Sea Res II 125(126):133–144

    Google Scholar 

  • Planavsky NJ, Bekker A, Hofmann A et al (2012) Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. PNAS 109(45):18300–18305

    Article  Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Textural, elemental, and isotopic variations among constituents in Middle Devonian limestones, North America. J Sediment Petrol 56(5):715–727

    Google Scholar 

  • Pourret O, Davranche M, Gruau G et al (2008) New insights into cerium anomalies in organic-rich alkaline waters. Chem Geol 251(1−4):120–127

    Article  Google Scholar 

  • Preisler A, de Beer D, Lichtschlag A et al (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1:341–353. https://doi.org/10.1038/ismej.2007.50

    Article  Google Scholar 

  • Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Reviews in Mineralogy vol 11. Mineralogical Society of America, Chantilly, pp 1−47

    Google Scholar 

  • Reitner J, Peckmann J, Blumenberg M et al (2005) Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol 227:18030

    Article  Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Article  Google Scholar 

  • Roberts HH, Feng D, Joye SB (2010) Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep-Sea Res II 57:2040–2054

    Article  Google Scholar 

  • Rongemaille E, Bayon G, Pierre C et al (2011) Rare earth elements in cold seep carbonates from the Niger Delta. Chem Geol 286:196–206

    Article  Google Scholar 

  • Rowe A, Landman NH, Cochran JK et al (2020) Late Cretaceous methane seeps as habitats for newly hatched ammonites. Palaios 35:1–13

    Article  Google Scholar 

  • Sample JC, Reid MR, Tobin HJ et al (1993) Carbonate cements indicate channeled fluid flow along a zone of vertical faults at the deformation front of the Cascadia accretionary wedge (northwest U.S. coast). Geology 21:507–510

    Article  Google Scholar 

  • Sansone FJ, Martens CS (1981) Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science 211:707–709

    Article  Google Scholar 

  • Savard MM, Beauchamp B, Veizer J (1996) Significance of aragonite cements around Cretaceous methane seeps. J Sediment Res 66(3):430–438

    Google Scholar 

  • Sayama M (2001) Presence of nitrate-accumulating sulfur bacteria and their influence on nitrogen cycling in a shallow coastal marine sediment. Appl Environ Microbiol 67(8):3481–3487. https://doi.org/10.1128/AEM.67.8.3481-3487.2001

    Article  Google Scholar 

  • Schwedt A, Kreutzmann A-C, Polerecky L et al (2012) Sulfur respiration in a marine chemolithitrophic Beggiatoa strain. Front Microbiol 2:276. https://doi.org/10.3389/fmicb.2011.00276

    Article  Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. Deep Sea Drilling Project Initial Rep 29:743–755

    Google Scholar 

  • Shields GA, Deynoux M, Strauss H et al (2007) Barite-bearing cap dolostones of the Taoudeni Basin, northwest Africa: sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation. Precambrian Res 153:209–235

    Article  Google Scholar 

  • Sholkovitz ER, Piepgras DJ, Jacobsen SB (1989) The pore water chemistry of rare earth elements in Buzzards Bay sediments. Geochim Cosmochim Acta 53:2847–2856

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Klügel A et al (2016) Establishing criteria to distinguish oil-seep from methane-seep carbonates. Geology 44(8):667–670

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Kolonic S et al (2017) Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco. Depositional Rec 3(1):4–37

    Article  Google Scholar 

  • Smrzka D, Zwicker J, Misch D et al (2019) Oil seepage and carbonate formation: a case study from the southern Gulf of Mexico. Sedimentology 66(6):2318–2353

    Article  Google Scholar 

  • Smrzka D, Feng D, Himmler T et al (2020) Trace elements in methane-seep carbonates: potentials, limitations, and perspectives. Earth Sci Rev 208:103263. https://doi.org/10.1016/j.earscirev.2020.103263

    Article  Google Scholar 

  • Soyol-Erdene T-O, Huh Y (2013) Rare earth element cycling in the pore waters of the Bering Sea Slope (IODP Exp. 323). Chem Geol 358:75–89

    Article  Google Scholar 

  • Stakes DS, Orange D, Paduan JB et al (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109

    Article  Google Scholar 

  • Stipp SLS, Lakshtanov LZ, Jensen JT et al (2003) Eu3+ uptake by calcite: preliminary results from coprecipitation experiments and observations with surface-sensitive techniques. J Contam Hydrol 61(1−4):33–43

    Article  Google Scholar 

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67(1):70–78

    Article  Google Scholar 

  • Tachikawa K, Arsouze T, Bayon G et al (2017) The large-scale evolution of neodymium isotopic composition in the global modern and Holocene ocean revealed from seawater and archive data. Chem Geol 457:131–148

    Article  Google Scholar 

  • Teichert BAM, Bohrmann G, Suess E (2005) Chemoherms on Hydrate Ridge—unique microbially-mediated carbonate build-ups growing into to the water column. Palaeogeogr Palaeoclimatol Palaeoecol 227:67–85

    Article  Google Scholar 

  • Tong H, Feng D, Peckmann J et al (2019) Environments favoring dolomite formation at cold seeps: a case study from the Gulf of Mexico. Chem Geol 518:9–18

    Article  Google Scholar 

  • Torres ME, McManus JW, Huh C-A (2002) Fluid seepage along the San Clemente Fault scarp: basin-wide impact on barium cycling. Earth Planet Sci Lett 203:181–194

    Article  Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM et al (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162

    Article  Google Scholar 

  • Tribovillard N, Armynot du Châtelet E, Gay A et al (2013) Geochemistry of cold seepage-impacted sediments: per-ascensum or per-descensum trace metal enrichment? Chem Geol 340:1–12

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific, Oxford

    Book  Google Scholar 

  • Walker RJ, Hanson GN, Papike JJ et al (1986) Nd, O and Sr isotopic constraints on the origin of Precambrian rocks, southern Black Hills, South Dakota. Geochim Cosmochim Acta 50:2833–2846

    Article  Google Scholar 

  • Wang S, Yan W, Chen Z et al (2014) Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea. Mar Pet Geol 57:482–493

    Article  Google Scholar 

  • Wang Q, Tong H, Huang C-Y et al (2018) Tracing fluid sources and formation conditions of Miocene hydrocarbon-seep carbonates in the central Western Foothills, central Taiwan. J Asian Earth Sci 168:186–196

    Article  Google Scholar 

  • Wang Q, Chen D, Peckmann J (2019) Iron shuttle controls on molybdenum, arsenic, and antimony enrichment in Pliocene methane-seep carbonates from the southern Western Foothills, southwestern Taiwan. Mar Pet Geol 100:263–269

    Article  Google Scholar 

  • Webb GE, Nothdurft LD, Kamber BS et al (2009) Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology 56(5):1433–1463

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Wiese F, Kiel S, Pacvk A et al (2015) The beast burrowed, the fluid followed—crustacean burrows as methane conduits. Mar Pet Geol 66:631–640

    Article  Google Scholar 

  • Williscroft K, Grasby SE, Beauchamp B et al (2017) Extensive Early Cretaceous (Albian) methane seepage on Ellef Ringnes Island, Canadian High Arctic. Geol Soc Am Bull 129(7/8):788–805

    Article  Google Scholar 

  • Zhang N, Lin M, Snyder GT et al (2019) Clumped isotope signatures of methane-derived authigenic carbonate presenting equilibrium values of their formation temperatures. Earth Planet Sci Lett 512:207–213

    Article  Google Scholar 

  • Zwicker J, Smrzka D, Gier S et al (2015) Mineralized conduits are part of the uppermost plumbing system of Oligocene methane-seep deposits, Washington Stare (USA). Mar Pet Geol 66:616–630

    Article  Google Scholar 

  • Zwicker J, Smrzka D, Himmler T et al (2018) Rare earth elements as tracers for microbial activity and early diagenesis: a new perspective from carbonate cements of ancient methane-seep deposits. Chem Geol 501:77–85

    Article  Google Scholar 

Download references

Acknowledgments

This chapter has benefited enormously from the helpful reviews by Marcello Natalicchio (University of Torino, Italy) and Daniel Smrzka (Universität Wien, Austria). The authors are grateful for the assistance from Shannon Brophy, Alison Rowe, and Remy Rovelli in the field and Bushra Hussaini, Kathleen Sarg, and Mariah Slovacek in the laboratory. Stephen Thurston provided graphic support. The strontium isotope measurements reported in Appendix Table 1.1 were made at the Stony Brook University FIRST Laboratory. We thank Katie Wooton, Troy Rasbury, and Tyler Levitsky for their efforts. We have benefited from stimulating discussions with Corinne Myers and James Witts. This work was partially supported by the Norman D. Newell Fund and the Landman Research Fund of the American Museum of Natural History.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kirk Cochran .

Editor information

Editors and Affiliations

Appendix

Appendix

Appendix Table 1.1 gives oxygen, carbon, and strontium isotope data measured on seep concretions from three ammonite zones in the Late Cretaceous Western Interior Seaway (WIS) of North America. These data are plotted in Figs. 1.5 and 1.8. The location information (AMNH loc.) is given in Landman et al. (this volume).

Methods

Details on the analytical methods are given in Cochran et al. (2003, 2015) and Landman et al. (2012, 2018). Concretions were sampled sequentially from the outside inward, on a scale of approximately 3 mm, with Sample Number = 1 corresponding to the surface of the concretion. Oxygen and carbon isotopes are reported as permil δ18O and δ13C as relative to the VPDB standard. Values of εSr are calculated from

$$ {\varepsilon}_{Sr}=\left[{\left(\frac{87 Sr}{86 Sr}\right)}_{\mathrm{sample}}-\kern0.5em {\left(\frac{87 Sr}{86 Sr}\right)}_{\mathrm{seawater}}\right]\times {10}^6 $$
(1.13)

where (87Sr/86Sr)seawater represents the coeval seawater dissolved 87Sr/86Sr for the WIS reconstructed by McArthur et al. (1994). Photos of examples of the types of concretions analyzed here are given in Landman et al. (this volume) Figs. 15.12 and 15.13.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cochran, J.K. et al. (2022). Geochemistry of Cold Hydrocarbon Seeps: An Overview. In: Kaim, A., Cochran, J.K., Landman, N.H. (eds) Ancient Hydrocarbon Seeps. Topics in Geobiology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-031-05623-9_1

Download citation

Publish with us

Policies and ethics