Skip to main content
Log in

Carbon isotopes in mollusk shell carbonates

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 . Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  Google Scholar 

  • Aharon P (1991) Recorders of reef environment histories: stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs 10:71–90

    Article  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003a) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003b) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis. J Exp Mar Biol Ecol 288:1–15

    Article  Google Scholar 

  • Andrus CFT, Rich KW (2008) A preliminary assessment of oxygen isotope fractionation and growth increment periodicity in the estuarine clam Rangia cuneata. In: Gröcke DR, Gillikin DP (eds) Advances in mollusc sclerochronology and sclerochemistry: tools for understanding climate and environment. Proc Pages, SSHRC Worksh, 11–13 July 2007, Parks Canada Discovery Centre, Ontario, Canada. Geo-Mar Lett SI 28 (in press)

    Google Scholar 

  • Aucour AM, Sheppard SMF, Savoye R (2003) d13C of fluvial mollusk shells (Rhône River): a proxy for dissolved inorganic carbon? Limnol Oceanogr 48:2186–2193

    Article  Google Scholar 

  • Balakrishnan M, Yapp CJ (2004) Flux balance models for the oxygen and carbon isotope compositions of land snail shells. Geochim Cosmochim Acta 68:2007–2024

    Article  Google Scholar 

  • Byrne RA, Dietz TH (1997) Ion transport and acid–base balance in freshwater bivalves. J Exp Biol 200:457–465

    Google Scholar 

  • Byrne RA, Dietz TH (2006) Ionic and acid–base consequences of exposure to increased salinity in the Zebra Mussel, Dreissena polymorpha. Biol Bull 211:66–75

    Article  Google Scholar 

  • Byrne RA, McMahon BR (1991) Acid–base and ionic regulation, during and following emersion, in the freshwater bivalve, Anodonta grandis simpsoniana (Bivalvia: Unionidae). Biol Bull 181:289–297

    Article  Google Scholar 

  • Carré M, Bentaleb I, Bruguier O, Ordinola E, Barrett NT, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim Cosmochim Acta 70:4906–4920

    Article  Google Scholar 

  • Chauvaud L, Lorrain A, Dunbar RB, Paulet Y-M, Thouzeau G, Jean F, Guarini J-M, Mucciarone D (2005) The shell of the Great Scallop Pecten maximus as a high frequency archive of paleoenvironmental change. Geochem Geophys Geosys 6:Q08001 doi:10.1029/2004GC000890

    Article  Google Scholar 

  • Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization. Rev Miner Biochem 54:151–187

  • Craig H (1953) The geochemistry of stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    Article  Google Scholar 

  • Crenshaw MA (1972) Inorganic composition of molluscan extrapallial fluid. Biol Bull 143:506–512

    Article  Google Scholar 

  • Crenshaw MA, Neff JM (1969) Decalcification at the mantle—shell interface in molluscs. Am Zool 9:881–885

    Google Scholar 

  • Dangin M, Desport JC, Gachon P, Beaufrère B (1999) Rapid and accurate 13CO2 isotopic measurement in whole blood: comparison with expired gas. Am J Physiol Endocrinol Metab 276:212–216

    Google Scholar 

  • Dettman DL, Reische AK, Lohmann KC (1999) Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochim Cosmochim Acta 63:1049–1057

    Article  Google Scholar 

  • Dillaman RM, Ford SE (1982) Measurement of calcium-carbonate deposition in mollusks by controlled etching of radioactively labeled shells. Mar Biol 66:133–143

    Article  Google Scholar 

  • Dixon DA, Haynes DH (1989) Ca2+ pumping ATPase of cardiac sarcolemma is insensitive to membrane potential produced by K+ and Cl- gradients but requires a source of counter-transportable H+. J Membr Biol 112:169–183

    Article  Google Scholar 

  • Elliot M, deMenocal PB, Linsley BK, Howe SS (2003) Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochem Geophys Geosys 4:1056 doi:10.1029/2002GC000425

    Article  Google Scholar 

  • Emiliani C (1954) Temperatures of Pacific bottom waters and polar superficial waters during the Tertiary. Science 119:853–855

    Article  Google Scholar 

  • Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization. Rev Miner Biochem 54:151–187

  • Fan W, Li C, Li S, Feng Q, Xie L, Zhang R (2007) Cloning, characterization, and expression patterns of three sarco/endoplasmic reticulum Ca2+-ATPase isoforms from pearl oyster (Pinctada fucata). Acta Biochim Biophys Sin 39:722–730

    Article  Google Scholar 

  • Fenger T, Surge D, Schöne BR, Milner N (2007) Sclerochronology and geochemical variation in limpet shells (Patella vulgata): a new archive to reconstruct coastal sea surface temperature. Geochem Geophys Geosys 8:Q07001 doi:10.1029/2006GC001488

    Article  Google Scholar 

  • Fritz P, Poplawski S (1974) 18O and 13C in the shells of freshwater molluscs and their environments. Earth Planet Sci Lett 24:91–98

    Article  Google Scholar 

  • Fry B (2002) Conservative mixing of stable isotopes across estuarine salinity gradients: a conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25:264–271

    Article  Google Scholar 

  • Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Cont Mar Sci 27:13–47

    Google Scholar 

  • Gauldie RW (1996) Biological factors controlling the carbon isotope record in fish otoliths: principles and evidence. Comp Biochem Physiol B 115:201–208

    Article  Google Scholar 

  • Geist J, Auerswald K, Boom A (2005) Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity? Geochim Cosmochim Acta 69:3545–3554

    Article  Google Scholar 

  • Gillikin DP (2005) Geochemistry of marine bivalve shells: the potential for paleoenvironmental reconstruction. Ph.D. thesis, Vrije Universiteit Brussel, Belgium

  • Gillikin DP, De Ridder F, Ulens H, Elskens M, Keppens E, Baeyens W, Dehairs F (2005a) Assessing the reproducibility and reliability of estuarine bivalve shells (Saxidomus giganteus) for sea surface temperature reconstruction: implications for paleoclimate studies. Palaeogeogr Palaeoclimatol Palaeoecol 228:70–85

    Article  Google Scholar 

  • Gillikin DP, Lorrain A, Navez J, Taylor JW, André L, Keppens E, Baeyens W, Dehairs F (2005b) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem Geophys Geosys 6:Q05009 doi:10.1029/2004GC000874

    Article  Google Scholar 

  • Gillikin DP, Dehairs F, Lorrain A, Steenmans D, Baeyens W, André L (2006a) Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochim Cosmochim Acta 70:395–407

    Article  Google Scholar 

  • Gillikin DP, Lorrain A, Bouillon S, Willenz P, Dehairs F (2006b) Shell carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton. Org Geochem 37:1371–1382

    Article  Google Scholar 

  • Gillikin DP, Lorrain A, Meng L, Dehairs F (2007a) A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochim Cosmochim Acta 71:2936–2946

    Article  Google Scholar 

  • Gillikin DP, Hutchinson K, Kumai Y (2007b) Ontogenic increase of metabolic carbon in freshwater mussel shells. Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract B31D-0615

  • Goewert A, Surge D, Carpenter SJ, Downing J (2007) Oxygen and carbon isotope composition of Lampsilis cardium (Unionidae) from two streams in agricultural watersheds, Iowa. Palaeogeogr Palaeoclimatol Palaeoecol 252:637–648

    Article  Google Scholar 

  • Goodfriend GA, Ellis GL (2002) Stable carbon and oxygen isotopic variations in modern Rabdotus land snail shells in the southern Great Plains, USA, and their relation to environment. Geochim Cosmochim Acta 66:1987–2002

    Article  Google Scholar 

  • Griffin S, Griffin E, Druffel RM (1989) Sources of carbon to deep-sea corals. Radiocarbon 31:533–543

    Google Scholar 

  • Gutknecht J, Bisson MJ, Tosteson FC (1977) Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol 55:1–17

    Google Scholar 

  • Hickson JA, Johnson ALA, Heaton THE, Balson PS (1999) The shell of the Queen Scallop Aequipecten opercularisis (L.) as a promising tool for palaeoenvironmental reconstruction: evidence and reasons for equilibrium stable-isotope incorporation. Palaeogeogr Palaeoclimatol Palaeoecol 154:325–337

    Article  Google Scholar 

  • Ip YK, Loong AM, Kiong KC, Wong WP, Chew SF, Reddy K, Sivalonganathan B, Ballantyne JS (2006) Light induces an increase in the pH of and a decrease in the ammonia concentration in the extrapallial fluid of the giant clam Tridacna squamosa. Physiol Biochem Zool 79:656–664

    Article  Google Scholar 

  • Kaandorp RJG, Vonhof HB, Del Busto C, Wesselingh FP, Ganssen GM, Marmól AE, Pittman LR, van Hinte JE (2003) Seasonal stable isotope variations of the modern Amazonian freshwater bivalve Anodontites trapesialis. Palaeogeogr Palaeoclimatol Palaeoecol 194:339–354

    Article  Google Scholar 

  • Kalish JM (1991) 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75:191–203

    Article  Google Scholar 

  • Keith ML, Anderson GM, Eichler R (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochim Cosmochim Acta 28:1757–1786

    Article  Google Scholar 

  • Keller N, Del Piero D, Longinelli A (2002) Isotopic composition, growth rates and biological behaviour of Chamelea gallina and Callista chione from the Gulf of Trieste (Italy). Mar Biol 140:9–15

    Article  Google Scholar 

  • Kennedy H, Richardson CA, Duarte CM, Kennedy DP (2001) Oxygen and carbon stable isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean. Mar Biol 139:1115–1124

    Article  Google Scholar 

  • Kingston A, Gröcke DR, Burchell M (2008) A multi-axial growth analysis of stable isotopes in the modern shell of Saxidomus gigantea: implications for sclerochronology studies. Geochem Geophys Geosyst 9:Q01007 doi:10.1029/2007GC001807

    Article  Google Scholar 

  • Klein RT, Lohmann KC, Thayer CW (1996) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochim Cosmochim Acta 60:4207–4221

    Article  Google Scholar 

  • Krantz DE, Williams DF, Jones DS (1987) Ecological and paleoenvironmental information using stable isotope profiles from living and fossil mollusks. Palaeogeogr Palaeoclimatol Palaeoecol 58:249–266

    Article  Google Scholar 

  • Lécuyer C, Reynard B, Martineau F (2004) Stable isotope fractionation between mollusc shells and marine waters from Martinique Island. Chem Geol 213:293–305

    Article  Google Scholar 

  • Lee-Thorp J (2002) Two decades of progress towards understanding fossilization processes and isotopic signals in calcified mineral tissues. Archaeometry 44:435–446

    Article  Google Scholar 

  • Littlewood DTJ, Young RE (1994) The effect of air-gaping behavior on extrapallial fluid pH in the tropical oyster Crassostrea rhizophorae. Comp Biochem Physiol A Physiol 107:1–6

    Article  Google Scholar 

  • Lorens RB (1978) A study of biological and physiological controls on the trace metal content of calcite and aragonite. Ph.D. thesis, University of Rhode Island

  • Lorrain A, Gillikin DP, Paulet Y-M, Paillard C, Navez J, André L, Dehairs F, Baeyens W, CALMARs group (2004a) Toward a mechanistic understanding of trace element proxy incorporation in bivalve shells. In: Abstr Vol Int Paleo-environments Symp QRA2004, R Belgian Inst Nat Sci, Brussels, Belgium

  • Lorrain A, Paulet Y-M, Chauvaud L, Dunbar R, Mucciarone D, Fontugne M (2004b) δ13C variation in scallop shells: increasing metabolic carbon contribution with body size? Geochim Cosmochim Acta 68:3509–3519

    Article  Google Scholar 

  • McConnaughey TA (1989) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171

    Article  Google Scholar 

  • McConnaughey TA (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22:316–327

    Article  Google Scholar 

  • McConnaughey TA, Falk RH (1991) Calcium-proton exchange during algal calcification. Biol Bull 180:185–195

    Article  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    Article  Google Scholar 

  • McCorkle DC, Emerson SR, Quay PD (1985) Stable carbon isotopes in marine porewaters. Earth Planet Sci Lett 74:13–26

    Article  Google Scholar 

  • Michaelidis B, Rofalikou E, Grieshaber MK (1999) The effects of hypercapnia on force and rate of contraction and intracellular pH of perfused ventricles from the land snail Helix lucorum (L.). J Exp Biol 202:2993–3001

    Google Scholar 

  • Michaelidis B, Haas D, Grieshaber MK (2005) Extracellular and intracellular acid-base status with regard to the energy metabolism in the oyster Crassostrea gigas during exposure to air. Physiol Biochem Zool 78:373–383

    Article  Google Scholar 

  • Michaelidis B, Vavoulidou D, Rousou J, Pörtner HO (2007) The potential role of CO2 in the initiation and maintenance of estivation in the land snail Helix lucorum. Physiol Biochem Zool 80:113–124

    Article  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93:9657–9660

    Article  Google Scholar 

  • Miyamoto H, Miyoshi F, Kohno J (2005) The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool Sci 22:311–315

    Article  Google Scholar 

  • Mook WG (1971) Paleotemperatures and chlorinities from stable carbon and oxygen isotopes in shell carbonate. Palaeogeogr Palaeoclimatol Palaeoecol 9:245–264

    Article  Google Scholar 

  • Mook WG, Vogel JC (1968) Isotopic equilibrium between shells and their environment. Science 159:874–875

    Article  Google Scholar 

  • Niggli VE, Sigel E, Carafoli E (1982) The purified Ca2+ pump of the human erythrocyte membrane catalyzes an electroneutral Ca2+/2H+ exchange in reconstituted liposomal systems. J Biol Chem 257:2350–2356

    Google Scholar 

  • O’Donnell TH, Macko SA, Chou J, Davis-Hartten KL, Wehmiller JF (2003) Analysis of δ13C, δ15N, and δ34S in organic matter from the biominerals of modern and fossil Mercenaria spp. Org Geochem 34:165–183

    Article  Google Scholar 

  • Panteleev N, Péronnet F, Hillaire-Marcel C, Lavoie C, Massicotte D (1999) Carbon isotope fractionation between blood and expired CO2 at rest and exercise. Respir Physiol 116:77–83

    Article  Google Scholar 

  • Paull CK, Martens CS, Chanton JP, Neumann AC, Coston J, Jull AJT, Toolin LJ (1989) Old carbon in living organisms and young CaCO3 cements from abyssal brine seeps. Nature 342:166–168

    Article  Google Scholar 

  • Romanek CS, Grossman EL (1989) Stable isotope profiles of Tridacna maxima as environmental indicators. Palaios 4:402–413

    Article  Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Article  Google Scholar 

  • Schoeninger MJ, DeNiro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639

    Article  Google Scholar 

  • Schöne BR, Rodland DL, Surge DM, Fiebig J, Gillikin DP, Baier SM, Goewert A (2006) Comment on “Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity?” by J. Geist et al. (2005). Geochim Cosmochim Acta 70:2658–2661

    Article  Google Scholar 

  • Schwarcz HP, Gao Y, Campana S, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1798–1806

    Article  Google Scholar 

  • Shanahan TM, Pigati JS, Dettman DL, Quade J (2005) Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochim Cosmochim Acta 69:3949–3966

    Article  Google Scholar 

  • Sherwood GD, Rose GA (2003) Influence of swimming form on otolith δ13C in marine fish. Mar Ecol Prog Ser 258:283–289

    Article  Google Scholar 

  • Solomon CT, Weber PK, Cech JJ Jr, Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can J Fish Aquat Sci 63:79–89

    Article  Google Scholar 

  • Spaeth C, Hoefs J, Vetter U (1971) Some aspects of isotopic composition of belemnites and related paleotemperatures. Geol Soc Am Bull 82:3139–3150

    Article  Google Scholar 

  • Spero HJ, Lea DW (1993) Does the carbon isotopic composition of planktonic foraminifera prey affect shell δ13C values? Eos Trans AGU 74:183

    Google Scholar 

  • Stott LD (2002) The influence of diet on the δ13C of shell carbon in the pulmonate snail Helix aspersa. Earth Planet Sci Lett 195:249–259

    Article  Google Scholar 

  • Sullivan CH, Krueger HW (1981) Carbon isotope analysis of separate chemical phases in modem and fossil bone. Nature 292:333–335

    Article  Google Scholar 

  • Tanaka N, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to mollusk and barnacle shell carbonate. Nature 320:520–523

    Article  Google Scholar 

  • Tohse H, Mugiya Y (2004) Sources of carbonate in fish otoliths: incorporation from bicarbonate and glucose. In: Kobayashi I, Ozawa H (eds) Biomineralization: formation, diversity, evolution and application. Tokai University Press, Tokyo, pp 190–193

    Google Scholar 

  • Vander Putten E, Dehairs F, Keppens E, Baeyens W (2000) High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim Cosmochim Acta 64:997–1011

    Article  Google Scholar 

  • Von Shirnding Y, van der Merwe NJ, Vogel JC (1982) Influence of diet and age on carbon isotope ratios of ostrich eggshell. Archaeometry 24:3–20

    Article  Google Scholar 

  • Wada K, Fujinuki T (1976) Biomineralization in bivalve molluscs with emphasis on the chemical composition of the extrapallial fluid. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, SC, pp 175–190

    Google Scholar 

  • Wanamaker AD, Kreutz KJ, Borns HW, Introne DS, Feindel S, Funder S, Rawson PD, Barber BJ (2007) Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of Mytilus edulis collected from Maine and Greenland. Paleoceanography 22:PA2217 doi:10.1029/2006PA001352

    Article  Google Scholar 

  • Watanabe T, Suzuki A, Kawahata H, Kan H, Ogawa S (2004) A 60-year isotopic record from a mid-Holocene fossil giant clam (Tridacna gigas) in the Ryukyu Islands: physiological and paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 212:343–354

    Google Scholar 

  • Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC, Boca Raton, FL, pp 179–216

    Google Scholar 

  • Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca. Academic, New York, pp 235–287

    Google Scholar 

  • Wurster CM, Patterson WP (2003) Metabolic rate of late Holocene freshwater fish: evidence from δ13C values of otoliths. Paleobiology 29:492–505

    Article  Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fraction during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Paul Gillikin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnaughey, T.A., Gillikin, D.P. Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28, 287–299 (2008). https://doi.org/10.1007/s00367-008-0116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-008-0116-4

Keywords

Navigation