Skip to main content

Application of Cathodoluminescence to Carbonate Diagenesis

  • Chapter
Cathodoluminescence in Geosciences

Abstract

Cathodoluminescence (CL) petrography is a popular tool in investigations of carbonate rocks and their diagenesis. The most widespread use of CL in carbonate studies is in cement stratigraphy using zoned cements. Visual CL colors and intensities are commonly correlated with analyzed Mn2+ and Fe2+ contents and then used, often in conjunction with other geochemical data (such as stable and radiogenic isotope data, fluid inclusion and paleomagnetic data, etc.), to interpret salinity, temperature, and Eh of the paleo-formation waters, and possibly paleofluid flow directions. Such applications of CL have great potential for applied research, e.g., via establishing porosity evolution in hydrocarbon reservoirs (e.g., several articles in Barker and Kopp 1991). Another popular use of CL is to identify marine components (cements or biochems, mainly brachiopods) that are unaltered or least altered by recrystallization, in order to determine the isotopic composition of paleo-ocean water (e.g., Popp et al. 1986; Lohmann and Walker 1989; Tobin et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amieux, P, Jeanbourquin, P (1989) Cathodoluminescence et origine diagénétique tardive des cargneules du massif des Aiguilles Rouges (Valais, Suisse). Bulletin Société Géologique France, v. 8, pp 123–132

    Google Scholar 

  • Back W, Hanshaw BB (1970) Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan. Journal of Hydrology, v. 10, pp 330–368

    Article  Google Scholar 

  • Barker CE, Kopp OC (eds) (1991), Luminescence Microscopy and Spectroscopy - Qualitative and quantitative applications. SEPM ( Society for Sedimentary Geology) Short Course, No. 25

    Google Scholar 

  • Barker CE, Higley DK, Dalziel MC (1991) Using cathodoluminescence to map regionally zoned carbonate cements occurring in diagenetic aureoles above oil reservoirs: initial results from the Velma oil fields Oklahoma. In: Barker CE, Kopp OC (eds) Luminescence Microscopy and Spectroscopy–Qualitative and quantitative applications. SEPM (Society for Sedimentary Geology) Short Course, No. 25, pp 155–160

    Google Scholar 

  • Barnaby RJ, Rimstidt DJ (1989) Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. Geological Society of America Bulletin, v. 101, pp 795–804

    Article  Google Scholar 

  • Bodine MW, Holland HD, Borczik M (1965), Coprecipitation of manganese and strontium with calcite. In: Problems of Postmagmatic Ore Deposition, Proceedings of Symposium, Prague, v. 2,pp 401–406

    Google Scholar 

  • Braithwaite CJR, Rizzi, G (1997) The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland. Sedimentology, v 44, pp 421–440

    Article  Google Scholar 

  • Bruckschen P, Neuser RD, Richter DK (1992) Cement stratigraphy in Triassic and Jurassic limestones of the Weserbergland (northwestern Germany). Sedimentary Geology, v 81, pp 195–214

    Article  Google Scholar 

  • Bruckschen P, Bruhn F, Höfert M, Richter DK, Veizer J (1993) Lumineszenz-Verhalten and Geochemie von Karbonaten and Quarzen in Sedimentgesteinen: erste Egebnisse mit der Protonenmikrosonde (PIXE). Zentralblatt Geologie and Paläontologie Teil I ( 1992 (1/2), pp 611–627

    Google Scholar 

  • Bruckschen P, Bruhn F, Richter DK (1997) Basic patterns in cement stratigraphy of Phanerozoic marine limestones: potential or pitfall? 18th IAS Regional European Meeting, Abstracts, GAEA heidelbergensis, pp 89–90

    Google Scholar 

  • Budd DA, Hammes U, Vacher HL (1993) Calcite cementation in the upper Floridan aquifer: a modern example for confined-aquifer cementation models? Geology, v. 21, pp 33–36

    Article  Google Scholar 

  • Burton EA, Walter LM (1990), The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater. Geochimica et Cosmochimica Acta, v. 54, pp 797–808

    Article  Google Scholar 

  • Burton EA, Machel HG, Qi J (1993) Thermodynamic constraints on anomalous magnetization in shallow and deep hydrocarbon seepage environments. In: Aïssaoui DM McNeill DF, Hurley, NF (eds), Applications of paleomagnetism to Sedimentary Geology. SEPM (Society for Sedimentary Geology) Special Publication, No. 49, pp 193–207

    Google Scholar 

  • Carpenter AB, Oglesby TW (1976) A model for the formation of luminescently zoned calcite cements and its implications. Geological Society of America Abstracts with Programs, v. 8, pp 469–470

    Google Scholar 

  • Dromgoole E, Walter LM (1990) Iron and manganese incorporation into calcite: effects of growth kinetics, temperature, and solution chemistry. Chemical Geology, v. 81, pp 311–336

    Article  Google Scholar 

  • Edmunds WM (1973) Trace element variations across an oxidation-reduction barrier in a limestone aquifer.In: Ingerson E (ed) Proceedings of Symposium on Hydrogeochemistry and Biogeochemistry, v 1, pp 500–526

    Google Scholar 

  • Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer. Geochimica et Cosmochimica Acta, v 46, pp 2069–2081

    Article  Google Scholar 

  • Edmunds WM, Miles DL, Cook JM (1984) Redox processes in aquifers. IAHS Publication No. 150, pp 3–70

    Google Scholar 

  • Edmunds WM, Cook JM, Darling WG, Kinniburgh DG, Miles DL, Bath AH, Morgan-Jones M, Andrews JN (1987), Baseline geochemical conditions in the Chalk aquifer, Berkshire, U.K.: a basis for groundwater management: Applied Geochemistry, v 2, pp 251–274

    Article  Google Scholar 

  • Emery D, Dickson JAD (1989) A syndepositional meteoric phreatic lens in the Middle Jurassic Lincolnshire Limestone, England, U.K.. Sedimentary Geology, v. 65, pp 273–284

    Article  Google Scholar 

  • Foucke BW, Reeder RJ (1992) Surface structural controls on dolomite composition: evidence from sectoral zoning. Geochimica et Cosmochimica Acta, v. 56, pp 4015–4024

    Article  Google Scholar 

  • Fraser DG (1990) Applications of the high-resolution scanning proton microprobe in the earth sciences: an overview. Chemical Geology, v. 83, pp 27–37

    Article  Google Scholar 

  • Gies H (1976) Zur Beziehung zwischen Photolumineszenz and Chemismus natürlicher Karbonate. Neues Jahrbuch für Mineralogie Abhandlungen, v 127, pp 1–46

    Google Scholar 

  • Goetze J.W. (1999) Cathoduluminescence microscopy and spectoscopy in applied mineralogy. Habilitationsschrift TU Bergakademie Freiberg (unpub.), 128 pp.

    Google Scholar 

  • Goff K.J. (1971) Hydrology and chemistry of the Shoal Lakes Basin, Interlake Area, Manitoba. M.S. thesis, Univ. Manitoba

    Google Scholar 

  • Gregg J.M, Hagni R.D. (1986) Irregular cathodoluminescent banding in late dolomite cements: evidence for complex faceting and metalliferous brines. Geolgical Society of America Bulletin, v 98, p

    Google Scholar 

  • Habermann D (1997) Quantitative hochauflösende Kathodenlumineszenz-Spektroskopie von Calict and Dolomit. Unveröff. Dissertation Ruhr-Universität Bochum, 152 pp

    Google Scholar 

  • Habermann D, Neuser RD, Richter DK (1996a) REE-activated cathodoluminescence of calcite and dolomite: high-resolution spectrometric analysis of CL-emission (HRS-CL). Sedimentary Geology, v 101, pp 1–7

    Article  Google Scholar 

  • Habermann D, Neuser RD Richter DK (1996b) Hochauflösende Spektralanalyse der Kathodenlumineszenz (KL) von Dolomit and Calcit: Beispiele der Mn-and SEE-aktivierten KL in Karbonatsedimenten. Zentralblatt Geologie and Paläontologie Teil I ( 1995 (1/2), pp 145–157

    Google Scholar 

  • Handford CR Kendall AC, Prezbindowski DR, Dunham JB, Logan BW (1984) Salina-margin tepees, pisoliths and aragonite cements, Lake MacLeod, Western Australia: their significance in interpreting ancient analogs. Geology, v 12, pp 523–527

    Article  Google Scholar 

  • Hanshaw BB, Back W, Deike RG (1971) A geochemical hypothesis for dolomitization by ground water. Economic Geology, v 66, pp 710–724

    Article  Google Scholar 

  • Hemming NG, Meyers WJ, Grams JC (1989) Cathodoluminescence in diagenetic calcites: the roles of Fe and Mn as deduced from electron microprobe and spectroscopic measurements. Journal of Sedimentary Petrology, v. 59, pp 404–411

    Google Scholar 

  • Hendry JP, Marshall JD (1991) Disequilibrium trace element partitioning in Jurassic sparry calcite cements: implications for crystal growth mechanisms during diagenesis. Journal of the Geological Society London, v 148, pp 835–848

    Article  Google Scholar 

  • Herman JS, Lorah MM (1988) Calcite precipitation rates in the field: Measurement and prediction for a travertine-depositing stream. Geochimica et Cosmochimica Acta, v. 52, pp 2347–2355

    Article  Google Scholar 

  • Heydari E, Moore CH (1993) Zonation and geochemical patterns of burial calcite cements: Upper Smackover Formation, Clarke County, Mississippi. Journal of Sedimentary Petrology, v. 63, pp 44–60

    Google Scholar 

  • Horbury AD, Adams AE (1989) Meteoric-phreatic diagenesis in cyclic late Dinatian carbonates, northwest England. Sedimentary Geology, v. 65, pp 319–344

    Article  Google Scholar 

  • Jacobson, RL, Langmuir D (1970) The chemical history of some spring waters in carbonate rocks. Ground Water, v. 8, pp 5–9

    Article  Google Scholar 

  • Kharaka YK Gunter WD, Aggarwal PK, Perkins EH, Debraal JD (1988) SOLMINEQ.88. A computer program for geochemical modeling of water-rock interactions: U.S.G.S. Water Resources Investigations Report, v. 88–4227

    Google Scholar 

  • Khawlie MR, Carozzi AV (1976) Microfacies and geochemistry of the Brereton Limestone (Middle Pennsylvanian) of southwestern Illinois, U.S.A.. Archives des Sciences, Geneve, v 29, pp 670–710

    Google Scholar 

  • Kremling K (1983) Trace metal fronts in European shelf waters: Nature, v. 303, pp 225–227

    Google Scholar 

  • Kubanek F, Parekh PP (1976) A study of trace element distribution in an interlaminated limestone-dolostone. Geologisches Jahrbuch, D-20, pp 23–39

    Google Scholar 

  • Langmuir D, Whittemore DO (1971), Variation in the stability of precipitated ferric oxyhydroxides. in HEM, J.D, ed, Proceedings Symposium on Nonequilibrium systems in natural water chemistry: Advances in Chemistry Series #106, American Chemical Society, Washington D.C, pp 209–234

    Chapter  Google Scholar 

  • Lee MR, Harwood GM (1989) Dolomite calcitization and cement zonation related to uplift of the Raisby Formation (Zechstein Carbonate), northeast England. Sedimentary Geology, v. 65, pp 285–305

    Article  Google Scholar 

  • Leventhal JS, Hostermann JW (1982) Chemical and mineralogical analysis of Devonian black shale samples from Martin County, Kentucky; Caroll and Washington Counties, Ohio; Wise County, Virginia; and Overton County, Tennessee, U.S.A.. Chemical Geology, v. 37, pp 239–264

    Article  Google Scholar 

  • Lohmann KC, Walker JCG (1989) The 818O record of Phanerozoic abiotic marine calcite cements. Geophysical Research Letters, v 16, pp 319–322

    Article  Google Scholar 

  • Machel H.G. (1985) Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geoscience Canada, v 12, pp 139–147

    Google Scholar 

  • Machel HG (1990) Bulk solution disequilibrium in aqueous fluids as exemplified by diagenetic carbonates. In: Meshri, I.D. and Ortoleva, P.J. (eds.): Prediction of reservoir quality through chemical modeling. American Association Petroleum Geologists Memoir, No. 49, pp 71–83

    Google Scholar 

  • Machel HG (1995) Magnetic mineral assemblages and magnetic contrasts in diagenetic environments–with implications for studies of paleomagnetism, hydrocarbon migration and exploration. In: Turner, P. and Turner, A. (eds), Paleomagnetic applications in hydrocarbon exploration and production. Geological Society Spec. Pub, No. 98, pp 9–29

    Google Scholar 

  • Machel HG, Burton EA (1991) Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis. In: Barker, C.E. and Kopp, O.C. (eds)Luminescence Microscopy and Spectroscopy–Qualitative and quantitative applications. SEPM (Society for Sedimentary Geology) Short Course, No. 25, pp 37–57

    Google Scholar 

  • Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Barker, C.E. and Kopp, O.C. (eds)Luminescence Microscopy and Spectroscopy–Qualitative and quantitative applications. SEPM (Society for Sedimentary Geology) Short Course, No. 25, pp 9–25

    Google Scholar 

  • Marfunin AS (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals: Translated from the Russian by V. V. Schiffer, Springer-Verlag, Berlin. 352 pp

    Chapter  Google Scholar 

  • Mason RA (1994) Effects of heating and prolonged electron bombardment on cathodoluminescence emission in synthetic calcite. Chemical Geology, v 111, pp 245–260

    Article  Google Scholar 

  • Mason RA (1997) The influence of heating on cathodoluminescence emission from natural calcite. Canadian Mineralogist, v 35, pp 723–733

    Google Scholar 

  • Mason RA (1998) The response of luminescence in synthetic calcite to laboratory heating. Canadian Mineralogist, v. 36, pp 1089–1104

    Google Scholar 

  • Mason RA, Mariano AN (1990) Cathodoluminescence activation in manganese -bearing and rare-earth bearing synthetic calcites. Chemical Geology, v. 88, pp 191–206

    Article  Google Scholar 

  • Mcintyre WL (1963) Trace element partition coefficients-a review of theory and application to geology. Geochimica et Cosmochimica Acta, v. 27, pp 1209–1264

    Article  Google Scholar 

  • Meyers WJ (1974) Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, v. 44, pp 837–861

    Google Scholar 

  • Meyers WJ (1991) Calcite cement stratigraphy: an overview. In: Barker, C.E. and Kopp, O.C. (eds)Luminescence Microscopy and Spectroscopy–Qualitative and quantitative applications. SEPM (Society for Sedimentary Geology) Short Course, No. 25, pp 133–148

    Google Scholar 

  • Morse JW, Bender ML (1990) Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural waters. Chemical Geology, v 82, pp 265–277

    Article  Google Scholar 

  • Mortimer RJG, Coleman ML, Rae JE (1997) Effect of bacteria on the elemental composition of early diagenetic siderite: implications for paleoenvironmental interpretations. Sedimentology, v 44, pp 759–765

    Article  Google Scholar 

  • Mucci A, Canuel R, Zhong S (1989) The solubility of calcite and aragonite in sulfate-free seawater and the seeded growth kinetics and composition of the precipitates at 25° C. Chemical Geology, v 74, pp 309–320

    Article  Google Scholar 

  • Nelson CS, Harris GJ, Young HR (1989) Burial-dominated cementation in non-tropical carbonates of the Oligocene TeKuti Group, New Zealand. Sedimentary Geology, v. 60, pp 233–250

    Article  Google Scholar 

  • Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1996) Kathodenlumineszenz: Methodik und Anwendung. Zentralblatt Geologie und Paläontologie Teil I ( 1995 (1/2), pp 287–306.

    Google Scholar 

  • Oglesby TW (1976) A model for the distribution of manganese, iron, and magnesium in authigenic calcite and dolomite cements in the Upper Smackover Formation in eastern Mississippi. M.S. thesis, Columbia, Missouri, University of Missouri, 122 p

    Google Scholar 

  • Ortoleva PJ (1994) Geochemical self-organization. Oxford Monographs on Geology and Geophysics, No. 23, Oxford University Press, New York, 244 pp

    Google Scholar 

  • Parekh PP, Möller P, Dulski P, Bausch WM (1977) Distribution of trace elements between carbonate and non-carbonate phases in limestone. Earth and Planetary Science Letters, v. 34, pp 39–50

    Article  Google Scholar 

  • Pedone V, Dickson JAD, Meyes WJ (1994) Intracrystalline alteration of low-magnesian calcite cement in the Devonian Pillara Formation, Canning Basin, Western Australia. Journal of Sedimentary Research, v A64, No. 2, pp 160–173

    Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin, v 97, pp 1262–1269

    Article  Google Scholar 

  • Reeder RJ (1991) An overview of zoning in carbonate minerals. In: Barker, C.E. and Kopp, O.C. (eds) Luminescence Microscopy and Spectroscopy–Qualitative and quantitative applications. SEPM (Society for Sedimentary Geology) Short Course, No. 25, pp 77–82

    Google Scholar 

  • Reeder RJ, Paquette J (1989) Sector zoning in natural and synthetic calcites. Sedimentary Geology, v. 65, pp 239–247

    Article  Google Scholar 

  • Render FW (1970) Geohydrology of the metropolitan Winnipeg area as related to groundwater supply and construction. Canadian Technology Journal, v 7, pp 243–274

    Google Scholar 

  • Richter DK, Habermann D, Neuser RD, Oelze R (1995) Kathodenlumineszenz-Untersuchungen an Höhlensintern des nördlichen Sauerlandes. Speläontlogisches Jahrbuch–Verein für Höhlenkunde in Westfahlen, v 33, pp 33–37

    Google Scholar 

  • Scherer M, Seitz H (1980) Rare earth element distribution in Holocene and Pleistocene corals and their redistribution during diagenesis. Chemical Geology, v 28, pp 297–289

    Article  Google Scholar 

  • Schieber J (1988) Redistribution of rare-earth elements during diagenesis of carbonate rocks from the mid-Proterozoic Newland Formation, Montana, U.S.A.. Chemical Geology, v. 69, pp 111–126

    Article  Google Scholar 

  • Shopov YY, Ford DC, Schwarcz HP (1994) Luminescent microbanding in speleothems: high-resolution chronology and paleoclimate. Geology, v 22, pp 407–410

    Article  Google Scholar 

  • Tobin KJ, Walker KR (1996) Ordovician low-to intermediate-Mg calcite marine cements from Sweden: marine alteration and implications for oxygen isotope in Ordovician seawater. Sedimentology, v. 43, pp 719–735

    Article  Google Scholar 

  • Tobin KJ, Walker KR, Steinhauff DM, Mora CI (1996) Fibrous calcite from the Ordovician of Tennessee: preservation of marine oxygen isotopic composition and its implications. Sedimentology, v. 43, pp 235–251

    Article  Google Scholar 

  • Veizer J (1983) Chemical diagenesis of carbonates: Theory and application of trace element technique. In: Arthur MA et al. (eds) Stable isotopes in sedimentary geology: SEPM Short Course #10, pp 3–1–3–100

    Google Scholar 

  • Viau CA, Oldershaw AE (1984) Structural controls on sedimentation and dolomite cementation in the Swan Hills Formation, Swan Hill Field, Central Alberta. In: Eliuk, L, ed, Carbonates in subsurface and outcropp C.S.P.G. Core Conference, Calgary, Alberta, pp 103–131

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Machel, H.G. (2000). Application of Cathodoluminescence to Carbonate Diagenesis. In: Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (eds) Cathodoluminescence in Geosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04086-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04086-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08526-0

  • Online ISBN: 978-3-662-04086-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics