Skip to main content
Log in

Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment–water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment–water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta 63:363–372

    Article  Google Scholar 

  • Amiel AJ, Friedman GM, Miller DS (1973) Distribution and nature of incorporation of trace elements in modern aragonitic corals. Sedimentology 20:44–64

    Google Scholar 

  • Barrat JA, Boulègue J, Tiercelin JJ, Lesourd M (2000) Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochim Cosmochim Acta 64:287–298

    Article  Google Scholar 

  • Bayon G, Birot D, Ruffine L, Caprais JC, Ponzevera E, Bollinger C, Donval JP, Charlou JL, Voisset M, Grimaud S (2011) Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth Planet Sci Lett 321:443–452

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Byrne RH, Kim KH (1990) Rare earth element scavenging in seawater. Geochim Cosmochim Acta 54:2645–2656

    Article  Google Scholar 

  • Cantrell KC, Byrne RH (1987) Rare earth element complexation by carbonate and oxalate ions. Geochim Cosmochim Acta 51:597–605

    Article  Google Scholar 

  • De Baar HJW, Bacon MP, Brewer PG, Bruland KW (1985) Rare earth elements in the Pacific and Atlantic Oceans. Geochim Cosmochim Acta 49:1943–1959

    Article  Google Scholar 

  • Elderfield H, Sholkovitz ER (1987) Rare earth elements in the pore waters of reducing nearshore sediments. Earth Planet Sci Lett 82:280–288

    Article  Google Scholar 

  • Feng D, Chen D, Roberts HH (2009a) Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Petrol Geol 26:1190–1198

    Article  Google Scholar 

  • Feng D, Chen DF, Peckmann J (2009b) Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 21:49–56

    Article  Google Scholar 

  • Feng D, Chen D, Peckmann J, Bohrmann G (2010) Authigenic carbonates from methane seeps of the northern Congo fan: microbial formation mechanism. Mar Petrol Geol 27:748–756

    Article  Google Scholar 

  • Fischer D, Sahling H, Nöthen K, Bohrmann G, Zabel M, Kasten S (2012) Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling. Biogeosciences 9:2013–2031. doi:10.5194/bg-9-2013-2012

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartmann B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  Google Scholar 

  • Ge L, Jiang SY, Swennen R, Yang T, Yang JH, Wu NY, Liu J, Chen DH (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277:21–30

    Article  Google Scholar 

  • Goldberg ED, Koide M, Schmitt RA, Smith RH (1963) Rare-earth distributions in the marine environment. J Geophys Res 68:4209–4217

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Erhardt M (1999) Methods of seawater analysis. Wiley–VCH, New York

    Book  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Methane-venting and gas hydrate-related carbonates at the Hydrate Ridge: their classification, distribution and origin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: Occurrence, distribution, and detection. Geophysical Monograph Series, vol 124. AGU, Washington, DC, pp 99–113

    Google Scholar 

  • Haley BA, Klinkhammer GP (2003) Complete separation of rare earth elements from small volume samples by automated ion chromatography: method development and application to benthic flux. Mar Chem 82:197–220

    Article  Google Scholar 

  • Haley BA, Klinkhammer GP, McManus J (2004) Rare earth elements in pore waters of marine sediments. Geochim Cosmochim Acta 68:1265–1279

    Article  Google Scholar 

  • Himmler T, Bach W, Bohrmann G, Peckmann J (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277:126–136

    Article  Google Scholar 

  • Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238

    Article  Google Scholar 

  • Kim JH, Torres ME, Haley BA, Kastner M, Pohlman JW, Riedel M, Lee YJ (2012) The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem Geol 291:152–165

    Article  Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294

    Article  Google Scholar 

  • Koeppenkastrop D, De Carlo EH (1993) Uptake of rare earth elements from solution by metal oxides. Environ Sci Technol 27:1796–1802

    Article  Google Scholar 

  • Kulm LD, Suess E, Moore JC, Carson B, Lewis BT, Ritger SD, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna, and carbonates. Science 231:561–566

    Article  Google Scholar 

  • Lacan F, Jeandel C (2005) Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface. Earth Planet Sci Lett 232:245–257

    Article  Google Scholar 

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67:3403–3421

    Article  Google Scholar 

  • MacKay ME, Moore GF, Cochrane GR, Moore JC, Kulm LD (1992) Landward vergence and oblique structural trends in the Oregon margin accretionary prism: implications and effect on fluid flow. Earth Planet Sci Lett 109:477–491

    Article  Google Scholar 

  • Moffet JM (1990) Microbially mediated cerium oxidation in sea water. Nature 345:421–423

    Article  Google Scholar 

  • Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution–I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551

    Article  Google Scholar 

  • Palmer MR (1985) Rare earth elements in foraminifera tests. Earth Planet Sci Lett 73:285–298

    Article  Google Scholar 

  • Pourret O, Davranche M, Gruau G, Dia A (2008) New insights into cerium anomalies in organic-rich alkaline waters. Chem Geol 251:120–127

    Article  Google Scholar 

  • Qu C, Lu C, Liu G (2009) Enrichment of lanthanides in aragonite. J Rare Earth 27:1062–1065

    Article  Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Article  Google Scholar 

  • Rongemaille E, Bayon G, Pierre C, Bollinger C, Chu NC, Fouquet Y, Riboulot V, Voisset M (2011) Rare earth elements in cold seep carbonates from the Niger delta. Chem Geol 286:196–206

    Google Scholar 

  • Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Article  Google Scholar 

  • Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246

    Article  Google Scholar 

  • Sholkovitz ER, Elderfield H (1988) Cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochem Cycles 2:157–176

    Article  Google Scholar 

  • Sholkovitz ER, Shen GT (1995) The incorporation of rare earth elements in modern coral. Geochim Cosmochim Acta 59:2749–2756

    Article  Google Scholar 

  • Sholkovitz ER, Piepgras DJ, Jacobsen SB (1989) The pore water chemistry of rare earth elements in Buzzards Bay sediments. Geochim Cosmochim Acta 53:2847–2856

    Article  Google Scholar 

  • Sholkovitz ER, Shaw TJ, Schneider DL (1992) The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochim Cosmochim Acta 56:3389–3402

    Article  Google Scholar 

  • Sholkovitz ER, Landing WM, Lewis BL (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta 58:1567–1579

    Article  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    Article  Google Scholar 

  • Teichert BMA, Eisenhauer A, Bohrmann G, Haase-Schramm A, Bock B, Linke P (2003) U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations. Geochim Cosmochim Acta 67:3845–3857

    Article  Google Scholar 

  • Teichert BMA, Bohrmann G, Suess E (2005) Chemoherms on Hydrate Ridge – Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeogr Palaeoclimat Palaeoecol 227:67–85

    Article  Google Scholar 

  • Terakado Y, Masuda A (1988) The coprecipitation of rare-earth elements with calcite and aragonite. Chem Geol 69:103–110

    Article  Google Scholar 

  • Torres ME, McManus J, Hammond DE, de Angelis MA, Heeschen KU, Colbert SL, Tryon MD, Brown KM, Suess E (2002) Fluids and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces. Earth Planet Sci Lett 201:525–540

    Article  Google Scholar 

  • Torres ME, Embley RW, Merle SG, Tréhu AM, Collier RW, Suess E, Heeschen KU (2009) Methane sources feeding cold seeps on the shelf and upper continental slope off central Oregon, USA. Geochem Geophys Geosyst 10:Q11003. doi:10.1029/2009GC002518

    Article  Google Scholar 

  • Tréhu AM, Torres ME, Moore GF, Suess E, Bohrmann G (1999) Temporal and spatial evolution of a gas hydrate-bearing accretionary ridge on the Oregon continental margin. Geology 27:939–942

    Article  Google Scholar 

  • Tréhu AM, Bohrmann G, Rack FR, Torres ME, Bangs NL, Barr SR, Borowski WS, Claypool GE, Collett TS, Delwiche ME, Dickens GR, Goldberg DS, Gràcia E, Guèrin G, Holland M, Johnson JE, Lee Y-J, Liu C-S, Long PE, Milkov AV, Riedel M, Schultheiss P, Su X, Teichert B, Tomaru H, Vanneste M, Watanabe M, Weinberger JL (2003) Initial reports. Proc ODP. doi:10.2973/odp.proc.ir.204.2003

    Google Scholar 

  • Treude T, Boetius A, Knittel K, Wallmann K, Jørgensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific. Mar Ecol Prog Ser 264:1–14

    Article  Google Scholar 

  • Valentine DL, Kastner M, Wardlaw GD, Wang X, Purdy A, Bartlett DH (2005) Biogeochemical investigations of marine methane seeps, Hydrate Ridge. Oregon J Geophys Res 110, G02005. doi:10.1029/2005JG000025

    Article  Google Scholar 

  • Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60:5013–5020

    Article  Google Scholar 

  • Whittaker EJW, Muntus R (1970) Ionic radii for use in geochemistry. Geochim Cosmochim Acta 34:945–956

    Article  Google Scholar 

  • Zhong S, Mucci A (1995) Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations. Geochim Cosmochim Acta 59:443–453

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the master and the crew for the support at sea, and appreciate the skilful and experienced work of the ALVIN team during R/V Atlantis cruise AT3-35b. Andy Ungerer (Oregon State University) is acknowledged for analytical guidance. Thanks go to two anonymous referees for constructive comments, and to Burg W. Flemming and Monique T. Delafontaine for editorial remarks that improved the quality of the paper. Valuable comments provided by Wolfgang Bach, Germain Bayon, Gerald Dickens and Alan Shiller on earlier versions of this manuscript are acknowledged. Funding was provided through the DFG-Research Center/Excellence Cluster ‘The Ocean in the Earth Systems’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Himmler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 141 kb)

ESM 2

(PDF 142 kb)

ESM 3

(PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himmler, T., Haley, B.A., Torres, M.E. et al. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Mar Lett 33, 369–379 (2013). https://doi.org/10.1007/s00367-013-0334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-013-0334-2

Keywords

Navigation