Skip to main content

miRNA-Based Genetic Engineering for Crop Improvement and Production of Functional Foods

  • Chapter
  • First Online:
Functional Cereals and Cereal Foods
  • 497 Accesses

Abstract

microRNA, also known as miRNA, is a class of short, non-coding, endogenous RNAs with a length of 20–22 nucleotides that have been discovered to negatively regulate gene expression. Remarkable progress in the field of bioinformatics has permitted the study of miRNA regulation and take advantage of its enormous potential in crop improvement. miRNA has been discovered to govern a variety of biochemical and molecular processes that influence plant growth and architecture. Furthermore, numerous evidences have demonstrated that miRNA families play an important role in inducing drought tolerance, nematode resistance, virus resistance, nutrient deprivation tolerance, salinity tolerance and contributing towards improvement of various agronomic traits, such as increased grain yield, flower development, fruit development and parthenocarpy in various agricultural crops. As a result, miRNAs have been regarded as “master controllers” in crop improvement. However, because of an emerging technology, role of miRNAs in production of functional foods has been limited. We have reviewed different aspects of miRNA in this chapter, offering a thorough grasp of trait regulation in crop plants by miRNAs and their role in crop improvement. The technique has been concluded as a promising tool for crop genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., & Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232(4751), 738–743.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal, S., Mangrauthia, S.K. and Sarla, N. (2018). Genomic approaches for micronutrients biofortification of rice. In Plant Micronutrient Use Efficiency (pp. 245–260). Academic Press.

    Google Scholar 

  • Albright, S. R., & Tjian, R. (2000). TAFs revisited: More data reveal new twists and confirm old ideas. Gene, 242(1–2), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Angelovici, R., Fait, A., Fernie, A. R., & Galili, G. (2011). A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. New Phytologist, 189(1), 148–159.

    Article  CAS  PubMed  Google Scholar 

  • Aung, B., Gruber, M. Y., Amyot, L., Omari, K., Bertrand, A., & Hannoufa, A. (2015). Micro RNA 156 as a promising tool for alfalfa improvement. Plant Biotechnology Journal, 13(6), 779–790.

    Article  CAS  PubMed  Google Scholar 

  • Axtell, M. J., & Bowman, J. L. (2008). Evolution of plant microRNAs and their targets. Trends in Plant Science, 13(7), 343–349.

    Article  CAS  PubMed  Google Scholar 

  • Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartwal, A., Mall, R., Lohani, P., Guru, S. K., & Arora, S. (2013). Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation, 32(1), 216–232.

    Article  CAS  Google Scholar 

  • Basso, M. F., Ferreira, P. C. G., Kobayashi, A. K., Harmon, F. G., Nepomuceno, A. L., Molinari, H. B. C., & Grossi-de-Sa, M. F. (2019). Micro RNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnology Journal, 17(8), 1482–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berezikov, E., Cuppen, E., & Plasterk, R. H. (2006). Approaches to microRNA discovery. Nature Genetics, 38(6), S2–S7.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, S., Hazra, S., & Chattopadhyay, S. (2016). Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum(Himalayan Mayapple). Plant Gene, 6, 82–89.

    Article  CAS  Google Scholar 

  • Boke, H., Ozhuner, E., Turktas, M., Parmaksiz, I., Ozcan, S., & Unver, T. (2015). Regulation of the alkaloid biosynthesis by mi RNA in opium poppy. Plant Biotechnology Journal, 13(3), 409–420.

    Article  CAS  PubMed  Google Scholar 

  • Buiatti, M., Christou, P., & Pastore, G. (2013). The application of GMOs in agriculture and in food production for a better nutrition: Two different scientific points of view. Genes & Nutrition, 8(3), 255–270.

    Article  CAS  Google Scholar 

  • Campo, S., Peris, C., Siré, C., Moreno, A. B., Donaire, L., Zytnicki, M., Notredame, C., Llave, C., & San Segundo, B. (2013). Identification of a novel microRNA (mi RNA) from rice that targets an alternatively spliced transcript of the Nramp6 (natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytologist, 199(1), 212–227.

    Article  CAS  PubMed  Google Scholar 

  • Čertík, M., Klempová, T., Guothová, L., Mihálik, D., & Kraic, J. (2013). Biotechnology for the functional improvement of cereal-based materials enriched with PUFA and pigments. European Journal of Lipid Science and Technology, 115(11), 1247–1256.

    Article  CAS  Google Scholar 

  • Challam, C., Nandhakumar, N., & Kardile, H. B. (2019). Advances in crop improvement: Use of miRNA technologies for crop improvement. In OMICS-based Approaches in Plant Biotechnology (pp. 55–74). Scrivener Publishing LLC.

    Google Scholar 

  • Chi, X., Yang, Q., Chen, X., Wang, J., Pan, L., Chen, M., Yang, Z., He, Y., Liang, X., & Yu, S. (2011). Identification and characterization of microRNAs from peanut (Arachis hypogea L.) by high-throughput sequencing. PLoS One, 6(11), e27530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuck, G. S., Tobias, C., Sun, L., Kraemer, F., Li, C., Dibble, D., Arora, R., Bragg, J. N., Vogel, J. P., Singh, S., & Simmons, B. A. (2011). Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences, 108(42), 17550–17555.

    Article  CAS  Google Scholar 

  • Couzigou, J. M., & Combier, J. P. (2016). Plant microRNAs: Key regulators of root architecture and biotic interactions. New Phytologist, 212(1), 22–35.

    Article  CAS  PubMed  Google Scholar 

  • Curaba, J., Talbot, M., Li, Z., & Helliwell, C. (2013). Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biology, 13(1), 1–10.

    Article  CAS  Google Scholar 

  • Davuluri, G. R., Van Tuinen, A., Fraser, P. D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D. A., King, S. R., Palys, J., Uhlig, J., & Bramley, P. M. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 23(7), 890–895.

    Article  CAS  PubMed  Google Scholar 

  • Ding, Y., Gong, S., Wang, Y., Wang, F., Bao, H., Sun, J., Cai, C., Yi, K., Chen, Z., & Zhu, C. (2018). MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiology, 177(4), 1691–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djami-Tchatchou, A. T., Sanan-Mishra, N., Ntushelo, K., & Dubery, I. A. (2017). Functional roles of microRNAs in agronomically important plants—Potential as targets for crop improvement and protection. Frontiers in Plant Science, 8, 378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebert, M. S., & Sharp, P. A. (2010). Emerging roles for natural microRNA sponges. Current Biology, 20(19), R858–R861.

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., Givan, S. A., Law, T. F., Grant, S. R., Dangl, J. L., & Carrington, J. C. (2007). High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS One, 2(2), e219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan, Y., Yang, J., Mathioni, S. M., Yu, J., Shen, J., Yang, X., Wang, L., Zhang, Q., Cai, Z., Xu, C., & Li, X. (2016). PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences, 113(52), 15144–15149.

    Article  CAS  Google Scholar 

  • Feng, H., Wang, X., Zhang, Q., Fu, Y., Feng, C., Wang, B., Huang, L., & Kang, Z. (2014). Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1839(1), 1–12.

    Article  CAS  Google Scholar 

  • Ferdous, J., Whitford, R., Nguyen, M., Brien, C., Langridge, P., & Tricker, P. J. (2017). Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Functional & Integrative Genomics, 17(2–3), 279–292.

    Article  CAS  Google Scholar 

  • Fu, C., Sunkar, R., Zhou, C., Shen, H., Zhang, J. Y., Matts, J., Wolf, J., Mann, D. G., Stewart, C. N., Jr., Tang, Y., & Wang, Z. Y. (2012). Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal, 10(4), 443–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., & Zhu, J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology, 15(22), 2038–2043.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Yang, L., Zeng, H. Q., Zhou, Z. S., Yang, Z. M., Li, H., Sun, D., Xie, F., & Zhang, B. (2016). A cotton miRNA is involved in regulation of plant response to salt stress. Scientific Reports, 6(1), 1–14.

    CAS  Google Scholar 

  • Gao, Z., Nie, J., & Wang, H. (2020). MicroRNA biogenesis in plant. Plant Growth Regulation, 93(5), 1–12.

    Google Scholar 

  • Garcia, D. (2008). A miRacle in plant development: Role of microRNAs in cell differentiation and patterning. Seminars in Cell & Developmental Biology, 19(6), 586–595.

    Article  CAS  Google Scholar 

  • Gao, P., Bai, X., Yang, L., Lv, D., Li, Y., Cai, H., Ji, W., Guo, D., Zhu, Y. (2010). Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta, 231(5), pp. 991–1001.

    Article  CAS  PubMed  Google Scholar 

  • Gasser, C. S., & Fraley, R. T. (1989). Genetically engineering plants for crop improvement. Science, 244(4910), 1293–1299.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, S. (2011). Micro RNA-biogenesis, mechanism of action and applications – A review. International Journal of Research in Biotechnology and Biochemistry, 1(1), 11–36.

    Google Scholar 

  • Goetz, M., Hooper, L. C., Johnson, S. D., Rodrigues, J. C. M., Vivian-Smith, A., & Koltunow, A. M. (2007). Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiology, 145(2), 351–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou, J. Y., Felippes, F. F., Liu, C. J., Weigel, D., & Wang, J. W. (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell, 23(4), 1512–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32(suppl_1), D109–D111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones, S., Saini, H. K., Van Dongen, S., & Enright, A. J. (2007). miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36(suppl_1), D154–D158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guan, X., Pang, M., Nah, G., Shi, X., Ye, W., Stelly, D. M., & Chen, Z. J. (2014). miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications, 5(1), 1–14.

    Article  CAS  Google Scholar 

  • Guo, S., Xu, Y., Liu, H., Mao, Z., Zhang, C., Ma, Y., Zhang, Q., Meng, Z., & Chong, K. (2013). The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications, 4(1), 1–12.

    Article  Google Scholar 

  • Gupta, O. P., Sharma, P., Gupta, R. K., & Sharma, I. (2014). MicroRNA mediated regulation of metal toxicity in plants: Present status and future perspectives. Plant Molecular Biology, 84(1–2), 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, L., Bussell, J. D., Pacurar, D. I., Schwambach, J., Pacurar, M., & Bellini, C. (2009). Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. The Plant Cell, 21(10), 3119–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524.

    Article  CAS  PubMed  Google Scholar 

  • Hajyzadeh, M., Turktas, M., Khawar, K. M., & Unver, T. (2015). miR408 overexpression causes increased drought tolerance in chickpea. Gene, 555(2), 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Hewezi, T., Maier, T. R., Nettleton, D., & Baum, T. J. (2012). The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiology, 159(1), 321–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houmard, N. M., Mainville, J. L., Bonin, C. P., Huang, S., Luethy, M. H., & Malvar, T. M. (2007). High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnology Journal, 5(5), 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, S. D., Lin, F. M., Wu, W. Y., Liang, C., Huang, W. C., Chan, W. L., Tsai, W. T., Chen, G. Z., Lee, C. J., Chiu, C. M., & Chien, C. H. (2011). miRTarBase: A database curates experimentally validated microRNA–target interactions. Nucleic Acids Research, 39(suppl_1), D163–D169.

    Article  CAS  PubMed  Google Scholar 

  • Jatan, R., & Lata, C. H. A. R. U. (2019). Role of MicroRNAs in abiotic and biotic stress resistance in plants. Proceedings of the Indian National Science Academy, 85, 553–567.

    Google Scholar 

  • Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., & Qian, Q. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 42(6), 541–544.

    Article  CAS  PubMed  Google Scholar 

  • John, M. E., & Stewart, J. M. (2010). Genetic engineering applications in crop improvement. In Physiology of cotton (pp. 394–403). Springer.

    Chapter  Google Scholar 

  • Jones-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 57, 19–53.

    Article  CAS  PubMed  Google Scholar 

  • Kahl, G., & Winter, P. (1995). Plant genetic engineering for crop improvement. World Journal of Microbiology and Biotechnology, 11(4), 449–460.

    Article  CAS  PubMed  Google Scholar 

  • Kamthan, A., Chaudhuri, A., Kamthan, M., & Datta, A. (2015). Small RNAs in plants: Recent development and application for crop improvement. Frontiers in Plant Science, 6, 208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawashima, C. G., Yoshimoto, N., Maruyama-Nakashita, A., Tsuchiya, Y. N., Saito, K., Takahashi, H., & Dalmay, T. (2009). Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. The Plant Journal, 57(2), 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., & Frank, W. (2008). Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: An alternative to targeted gene knockouts. Plant Physiology, 148(2), 684–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 137–148.

    Article  CAS  Google Scholar 

  • Kim, J. J., Lee, J. H., Kim, W., Jung, H. S., Huijser, P., & Ahn, J. H. (2012). The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiology, 159(1), 461–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68–D73.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., & Zhang, B. (2016). MicroRNAs in control of plant development. Journal of Cellular Physiology, 231(2), 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Li, W. X., Oono, Y., Zhu, J., He, X. J., Wu, J. M., Iida, K., Lu, X. Y., Cui, X., Jin, H., & Zhu, J. K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 20(8), 2238–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, G., He, H., Li, Y., & Yu, D. (2012). A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta, 235(6), 1421–1429.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. M., Livny, J., Lawrence, M. S., Kimball, M. D., Waldor, M. K., & Camilli, A. (2009). Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Research, 37(6), e46–e46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, J., Liu, X., Zhang, S., Liang, S., Luan, W., & Ma, X. (2021). TarDB: An online database for plant miRNA targets and miRNA-triggered phased siRNAs. BMC Genomics, 22(1), 1–12.

    Article  Google Scholar 

  • Liu, C., Xin, Y., Xu, L., Cai, Z., Xue, Y., Liu, Y., Xie, D., Liu, Y. and Qi, Y. (2018). Arabidopsis ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses. Developmental Cell, 44(3), pp. 348–361.

    Google Scholar 

  • Lotfi, A., Pervaiz, T., Jiu, S., Faghihi, F., Jahanbakhshian, Z., Khorzoghi, E. G., & Fang, J. (2017). Role of microRNAs and their target genes in salinity response in plants. Plant Growth Regulation, 82(3), 377–390.

    Article  CAS  Google Scholar 

  • Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., & Chiang, V. L. (2005). Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. The Plant Cell, 17(8), 2186–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Q., Guo, F., Xu, Q., & Cang, J. (2020). LncRNA improves cold resistance of winter wheat by interacting with miR398. Functional Plant Biology, 47(6), 544–557.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y., Zhang, X., Luo, Z., Zhang, Q., & Liu, J. (2015). Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. BMC Plant Biology, 15(1), 1–18.

    Article  CAS  Google Scholar 

  • Mandal, K., Boro, P., & Chattopadhyay, S. (2021). Micro-RNA based gene regulation: A potential way for crop improvements. Plant Gene, 27, 100312.

    Article  CAS  Google Scholar 

  • Marin, E., Jouannet, V., Herz, A., Lokerse, A. S., Weijers, D., Vaucheret, H., Nussaume, L., Crespi, M. D., & Maizel, A. (2010). miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. The Plant Cell, 22(4), 1104–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, A., Adam, H., Díaz-Mendoza, M., Zurczak, M., González-Schain, N. D., & Suárez-López, P. (2009). Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 136(17), 2873–2881.

    Article  CAS  PubMed  Google Scholar 

  • Meijer, H. A., Smith, E. M., & Bushell, M. (2014). Regulation of miRNA strand selection: Follow the leader? Biochemical Society Transactions, 42(4), 1135–1140.

    Article  CAS  PubMed  Google Scholar 

  • Mhuantong, W., & Wichadakul, D. (2009). MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs. BMC Genomics, 10(1), 1–8.

    Article  CAS  Google Scholar 

  • Miura, K., Ikeda, M., Matsubara, A., Song, X. J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., & Ashikari, M. (2010). OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 42(6), 545–549.

    Article  CAS  PubMed  Google Scholar 

  • Moxon, S., Jing, R., Szittya, G., Schwach, F., Pilcher, R. L. R., Moulton, V., & Dalmay, T. (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research, 18(10), 1602–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312(5772), 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Patil, S., Joshi, S., Jamla, M., Zhou, X., Taherzadeh, M. J., Suprasanna, P., & Kumar, V. (2021). MicroRNA-mediated bioengineering for climate-resilience in crops. Bioengineered, 12(2), 10430–10456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, S., Datta, S. K., & Datta, K. (2015). miRNA regulation of nutrient homeostasis in plants. Frontiers in Plant Science, 6, 232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phelps-Durr, T. L. (2010). MicroRNAs in Arabidopsis. National Education, 3, 51.

    Google Scholar 

  • Prakash, P., Rajakani, R., & Gupta, V. (2016). Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Computational Biology and Chemistry, 61, 62–74.

    Article  CAS  PubMed  Google Scholar 

  • Qu, J., Ye, J., & Fang, R. (2007). Artificial microRNA-mediated virus resistance in plants. Journal of Virology, 81(12), 6690–6699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, Z., Rahman, S., & Morell, M. (2006). High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences, 103(10), 3546–3551.

    Article  CAS  Google Scholar 

  • Rogers, K., & Chen, X. (2013). Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell, 25(7), 2383–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabzehzari, M., & Naghavi, M. R. (2019). Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants. Gene, 682, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (2021). CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 8(4), 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Sestili, F., Janni, M., Doherty, A., Botticella, E., D'Ovidio, R., Masci, S., Jones, H. D., & Lafiandra, D. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biology, 10(1), 1–12.

    Article  CAS  Google Scholar 

  • Shuai, P., Liang, D., Zhang, Z., Yin, W., & Xia, X. (2013). Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics, 14(1), 1–14.

    Article  CAS  Google Scholar 

  • Sidhu, J. S., Kabir, Y., & Huffman, F. G. (2007). Functional foods from cereal grains. International Journal of Food Properties, 10(2), 231–244.

    Article  CAS  Google Scholar 

  • Singh, N., Srivastava, S., & Sharma, A. (2016). Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene, 575(2), 570–576.

    Article  CAS  PubMed  Google Scholar 

  • Sun, G. (2012). MicroRNAs and their diverse functions in plants. Plant Molecular Biology, 80(1), 17–36.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Dong, B., Yin, L., Zhang, R., Du, W., Liu, D., Shi, N., Li, A., Liang, Y., & Mao, L. (2013). PMTED: A plant microRNA target expression database. BMC Bioinformatics, 14(1), 1–7.

    Article  CAS  Google Scholar 

  • Sunkar, R. (2010). MicroRNAs with macro-effects on plant stress responses. In Seminars in Cell & Developmental Biology, 21(8) (pp. 805–811). Academic Press.

    Google Scholar 

  • Szcześniak, M. W., Deorowicz, S., Gapski, J., Kaczyński, Ł., & Makałowska, I. (2012). miRNEST database: An integrative approach in microRNA search and annotation. Nucleic Acids Research, 40(D1), D198–D204.

    Article  PubMed  CAS  Google Scholar 

  • Tang, J., & Chu, C. (2017). MicroRNAs in crop improvement: Fine-tuners for complex traits. Nature Plants, 3(7), 1–11.

    Article  Google Scholar 

  • Tang, G., Xiang, Y., Kang, Z., Mendu, V., Tang, X., Jia, X., Chen, Q. J., & Tang, X. (2008). Small RNA technologies: siRNA, miRNA, antagomiR, target mimicry, miRNA sponge and miRNA profiling. In Current perspectives in microRNAs (miRNA) (pp. 17–33). Springer.

    Chapter  Google Scholar 

  • Teotia, S., & Tang, G. (2017). Silencing of stress-regulated miRNAs in plants by short tandem target mimic (STTM) approach. In Plant stress tolerance (pp. 337–348). Humana Press.

    Chapter  Google Scholar 

  • Thakur, A. K., Chauhan, D. K., Parmar, N., & Verma, V. (2012). Role of genetic engineering in horticultural crop improvement-a review. Agricultural Reviews, 33(3), 248–255.

    Google Scholar 

  • Tiwari, M., Sharma, D., & Trivedi, P. K. (2014). Artificial microRNA mediated gene silencing in plants: Progress and perspectives. Plant Molecular Biology, 86(1–2), 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Toppino, L., Kooiker, M., Lindner, M., Dreni, L., Rotino, G. L., & Kater, M. M. (2011). Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. Plant Biotechnology Journal, 9(6), 684–692.

    Article  CAS  PubMed  Google Scholar 

  • Van Vu, T., Choudhury, N. R., & Mukherjee, S. K. (2013). Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Research, 172(1–2), 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16(2), 123–132.

    Article  CAS  PubMed  Google Scholar 

  • Vitsios, D. M., & Enright, A. J. (2015). Chimira: Analysis of small RNA sequencing data and microRNA modifications. Bioinformatics, 31(20), 3365–3367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669–687.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q. L., & Li, Z. H. (2007). The functions of microRNAs in plants. Frontiers in Bioscience, 12, 3975–3982.

    CAS  PubMed  Google Scholar 

  • Wang, J., Lu, M., Qiu, C., & Cui, Q. (2010). TransmiR: A transcription factor–microRNA regulation database. Nucleic Acids Research, 38(suppl_1), D119–D122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Mei, J., & Ren, G. (2019). Plant microRNAs: Biogenesis, homeostasis, and degradation. Frontiers in Plant Science, 10, 360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q. and Yao, Y. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PloS ONE, 7(11), e 48445.

    Google Scholar 

  • Willmann, M.R. and Poethig, R.S. (2007). Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology, 10(5), pp. 503–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. Elegans. Cell, 75(5), 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Yang, R., Yang, Z., Yao, S., Zhao, S., Wang, Y., Li, P., Song, X., Jin, L., Zhou, T., & Lan, Y. (2017). ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 3(1), 1–7.

    Article  CAS  Google Scholar 

  • Yan, Y., Wang, H., Hamera, S., Chen, X. & Fang, R. (2014). MiR444a has multiple functions in the rice nitrate‐signaling pathway. The Plant Journal, 78(1), pp. 44–55.

    Google Scholar 

  • Yamaguchi, A. and Abe, M. (2012). Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. Journal of Plant Research, 125(6), pp. 693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C., Li, D., Mao, D., Liu, X. U. E., Ji, C., Li, X., Zhao, X., Cheng, Z., Chen, C., & Zhu, L. (2013). Overexpression of microRNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant, Cell & Environment, 36(12), 2207–2218.

    Article  CAS  Google Scholar 

  • Yang, L., Mu, X., Liu, C., Cai, J., Shi, K., Zhu, W., & Yang, Q. (2015). Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. Journal of Integrative Plant Biology, 57(12), 1078–1088.

    Article  CAS  PubMed  Google Scholar 

  • Yogindran, S., & Rajam, M. V. (2021). Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpaarmigera in tomato. Genomics, 113(1), 736–747.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, E.K., Yang, J.H., Lim, J., Kim, S.H., Kim, S.K. & Lee, W.S. (2010). Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Research, 38(4), pp.1382–1391.

    Google Scholar 

  • Yu, S., Lian, H., & Wang, J. W. (2015). Plant developmental transitions: The role of microRNAs and sugars. Current Opinion in Plant Biology, 27, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y., Jia, T., & Chen, X. (2017). The ‘how’ and ‘where’ of plant microRNA s. New Phytologist, 216(4), 1002–1017.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Ni, Z., Wang, Y., Wan, H., Hu, Z., Jiang, Q., Sun, X., Zhang, H. (2019). Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Science, 285, pp. 68–78.

    Google Scholar 

  • Yue, E., Cao, H., Liu, B. (2020). OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants, 9(10), p. 1337.

    Google Scholar 

  • Zhang, B. (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 66(7), 1749–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., & Wang, Q. (2015). MicroRNA-based biotechnology for plant improvement. Journal of Cellular Physiology, 230(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B., & Wang, Q. (2016). MicroRNA, a new target for engineering new crop cultivars. Bioengineered, 7(1), 7–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Zou, Z., Gong, P., Zhang, J., Ziaf, K., Li, H., Xiao, F., & Ye, Z. (2011). Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters, 33(2), 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. P., Yu, Y., Feng, Y. Z., Zhou, Y. F., Zhang, F., Yang, Y. W., Lei, M. Q., Zhang, Y. C., & Chen, Y. Q. (2017). MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiology, 175(3), 1175–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Yu, J., Li, D., Zhang, Z., Liu, F., Zhou, X., Wang, T., Ling, Y. and Su, Z. (2010). PMRD: plant microRNA database. Nucleic Acids Research, 38(suppl_1), pp. D806–D813.

    Google Scholar 

  • Zhang, B. & Unver, T. (2018). A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Plant Science, 274, pp. 193–200.

    Google Scholar 

  • Zhao, M., Ding, H., Zhu, J. K., Zhang, F., & Li, W. X. (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytologist, 190(4), 906–915.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., & Luo, H. (2013). MicroRNA-mediated gene regulation: Potential applications for plant genetic engineering. Plant Molecular Biology, 83(1–2), 59–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhuo, Y., Gao, G., Shi, J., Zhou, X., & Wang, X. (2013). miRNAs: Biogenesis, origin, and evolution, functions on virus-host interaction. Cellular Physiology and Biochemistry, 32(3), 499–510.

    Google Scholar 

  • Zhou, B., Leng, J., Ma, Y., Fan, P., Li, Y., Yan, H., Xu, Q. (2020). BrmiR828 targets Brpap1, Brmyb82 and Brtas4 involved in the light induced anthocyanin biosynthetic pathway in Brassica rapa. International Journal of Molecular Sciences, 21(12), p. 4326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, D., Vanshika, Kaur, A., Manchanda, P. (2022). miRNA-Based Genetic Engineering for Crop Improvement and Production of Functional Foods. In: Punia Bangar, S., Kumar Siroha, A. (eds) Functional Cereals and Cereal Foods. Springer, Cham. https://doi.org/10.1007/978-3-031-05611-6_14

Download citation

Publish with us

Policies and ethics