Skip to main content

Advertisement

Log in

Artificial microRNA mediated gene silencing in plants: progress and perspectives

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Homology based gene silencing has emerged as a convenient approach for repressing expression of genes in order to study their functions. For this purpose, several antisense or small interfering RNA based gene silencing techniques have been frequently employed in plant research. Artificial microRNAs (amiRNAs) mediated gene silencing represents one of such techniques which can utilize as a potential tool in functional genomics. Similar to microRNAs, amiRNAs are single-stranded, approximately 21 nt long, and designed by replacing the mature miRNA sequences of duplex within pre-miRNAs. These amiRNAs are processed via small RNA biogenesis and silencing machinery and deregulate target expression. Holding to various refinements, amiRNA technology offers several advantages over other gene silencing methods. This is a powerful and robust tool, and could be applied to unravel new insight of metabolic pathways and gene functions across the various disciplines as well as in translating observations for improving favourable traits in plants. This review highlights general background of small RNAs, improvements made in RNAi based gene silencing, implications of amiRNA in gene silencing, and describes future themes for improving value of this technology in plant science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol (Stuttg) 13:304–316

    Article  CAS  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Belide S, Petrie JR, Shrestha P, Singh SP (2012) Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Front Plant Sci 3:168

    Article  PubMed Central  PubMed  Google Scholar 

  • Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky–Muller-type incompatibility syndrome in plants. PLoS Biol 5:e236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Burgess SJ, Tredwell G, Molnàr A, Bundy JG, Nixon PJ (2012) Artificial microRNA-mediated knockdown of pyruvate formate lyase (PFL1) provides evidence for an active 3-hydroxybutyrate production pathway in the green alga Chlamydomonas reinhardtii. J Biotechnol 162:57–66

  • Butardo VM, Fitzgerald MA, Bird AR, Gidley MJ, Flanagan BM, Larroque O, Resurreccion AP, Laidlaw HK, Jobling SA, Morell MK, Rahman S (2011) Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. J Exp Bot 62:4927–4941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC (2014) New generation of artificial microRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165:15–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen M, Wei X, Shao G, Tang S, Luo J, Hu P (2012) Fragrance of rice grain achieved via artificial micro-RNA induced down-regulation of OsBADH2. Plant Breed 131:584–590

    Article  CAS  Google Scholar 

  • Chen H, Jiang S, Zheng J, Lin Y (2013a) Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic. Plant Biotechnol J 11:336–343

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen Z, Kang J, Kang D, Gu H, Qin G (2013b) AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Rep 31:87–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot 60:3133–3142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of miRNA genes. Plant Cell 23:431–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalmay T, Hamilton A, Mueller E, Baulcombe DC (2000) Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell 12:369–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Lima JC, Loss-Morais G, Margis R (2012) MicroRNAs play critical roles during plant development and in response to abiotic stresses. Genet Mol Biol 35:1069–1077

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding XS, Schneider WL, Chaluvadi SR, Mian MA, Nelson RS (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact 19:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62:3563–3573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eamens AL, Wang MB (2011) Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana. Plant Signal Behav 6:349–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eamens AL, Agius C, Smith NA, Waterhouse PM, Wang MB (2011) Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Mol Plant 4:157–170

  • Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10:150–163

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D, Carrington JC (2010) MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22:1074–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. Plant J 70:541–547

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci USA 107:478–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmoko R, Fanata WI, Yoo JY, Ko KS, Rim YG, Uddin MN, Siswoyo TA, Lee SS, Kim DY, Lee SY, Lee KO (2013) RNA-dependent RNA polymerase 6 is required for efficient hpRNA-induced gene silencing in plants. Mol Cells 35:202–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hauser F, Chen W, Deinlein U, Chang K, Ossowski S, Fitz J, Hannon GJ, Schroeder JI (2013) A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis. Plant Cell 25:2848–2863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He H, He L, Gu M (2014) Role of microRNAs in aluminum stress in plants. Plant Cell Rep 33:831–836

    Article  CAS  PubMed  Google Scholar 

  • Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38:721–725

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo O, Bartholmes C, Gleissberg S (2012) Virus-induced gene silencing (VIGS) in Cysticapnos vesicaria, a zygomorphic-flowered Papaveraceae (Ranunculales, basal eudicots). Ann Bot 109:911–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hileman LC, Drea S, Martino G, Litt A, Irish VF (2005) Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J 44:334–341

    Article  CAS  PubMed  Google Scholar 

  • Iwakawa HO, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52:591–601

    Article  CAS  PubMed  Google Scholar 

  • Jelly NS, Schellenbaum P, Walter B, Maillot P (2012) Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res 21:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Jover-Gil S, Candela H, Ponce MR (2005) Plant microRNAs and development. Int J Dev Biol 49:733–744

    CAS  PubMed  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH, Yeh SD (2012) Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13:303–317

    Article  CAS  PubMed  Google Scholar 

  • Latijnhouwers M, Xu XM, Moller SG (2010) Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232:567–578

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wei J, Lin Y, Chen H (2012) Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. Plant Cell Rep 31:851–862

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L, Chen X (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li JF, Zhang D, Sheen J (2014) Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat Protoc 9:939–949

    Article  CAS  PubMed  Google Scholar 

  • Liang G, He H, Li Y, Yu D (2012) A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 235:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540

    Article  CAS  PubMed  Google Scholar 

  • Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865

    Article  CAS  PubMed  Google Scholar 

  • Liscombe DK, O’Connor SE (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72:1969–1977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Llave C (2010) Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci 15:701–707

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma M, Yan Y, Huang L, Chen M, Zhao H (2012) Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol 12:141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma X, Cao X, Mo B, Chen X (2013) Trip to ER: MicroRNA-mediated translational repression in plants. RNA Biol 10:1582–1592

    Google Scholar 

  • McHale M, Eamens AL, Finnegan EJ, Waterhouse PM (2013) A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. Plant J 76:519–529

    Article  CAS  PubMed  Google Scholar 

  • Melito S, Heuberger AL, Cook D, Diers BW, MacGuidwin AE, Bent AF (2010) A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biol 10:104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meng Y, Chen D, Jin Y, Mao C, Wu P, Chen M (2010) RNA editing of nuclear transcripts in Arabidopsis thaliana. BMC Genom 11:S12

    Article  CAS  Google Scholar 

  • Meng X, Muszynski MG, Danilevskaya ON (2011) The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23:942–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath P, Tuli R (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Misra P, Chandrashekar K, Trivedi PK (2012) Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep 31:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Pieczynski M, Marczewski W, Hennig J, Dolata J, Bielewicz D, Piontek P, Wyrzykowska A, Krusiewicz D, Strzelczyk-Zyta D, Konopka-Postupolska D, Krzeslowska M, Jarmolowski A, Szweykowska-Kulinska Z (2013) Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnol J 11:459–469

    Article  CAS  PubMed  Google Scholar 

  • Poulsen C, Vaucheret H, Brodersen P (2013) Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 25:22–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes CA, De Francesco A, Pena EJ, Costa N, Plata MI, Sendin L, Castagnaro AP, Garcia ML (2011) Resistance to Citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein-RNA silencing. J Biotechnol 151:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Sablok G, Perez-Quintero AL, Hassan M, Tatarinova TV, Lopez C (2011) Artificial microRNAs (amiRNAs) engineering—on how microRNA-based silencing methods have affected current plant silencing research. Biochem Biophys Res Commun 406:315–319

    Article  CAS  PubMed  Google Scholar 

  • Schmollinger S, Strenkert D, Schroda M (2010) An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance. Curr Genet 56:383–389

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz C, Balasubramanian S, Warthmann N, Michael TP, Lempe J, Sureshkumar S, Kobayashi Y, Maloof JN, Borevitz JO, Chory J, Weigel D (2009) Cis-regulatory changes at Flowering Locus T mediate natural variation in flowering responses Arabidopsis thaliana. Genetics 183:723–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat UK, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Simón-Mateo C, García JA (2006) MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80:2429–2436

  • Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724–726

    Article  CAS  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Tang X (2013) Short tandem target mimic: a long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. J Genet Genomics 40:291–296

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Lai Y, Liu Y (2013) Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamiana. Methods Mol Biol 975:99–107

    Article  CAS  PubMed  Google Scholar 

  • Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM (2011) Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. Plant Biotechnol J 9:684–692

    Article  CAS  PubMed  Google Scholar 

  • Unver T, Budak H (2009) Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genomics 2009:198680

    PubMed Central  PubMed  Google Scholar 

  • Vaistij FE, Elias L, George GL, Jones L (2010) Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana. Plant Mol Biol 73:391–397

    Article  CAS  PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Vu TV, Choudhury NR, Mukherjee SK (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45

  • Wang X, Yang Y, Zhou J, Yu C, Cheng Y, Yan C, Chen J (2012) Two-step method for constructing Arabidopsis artificial microRNA vectors. Biotechnol Lett 34:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–151

    Article  CAS  PubMed  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  CAS  PubMed  Google Scholar 

  • Wege S, Scholz A, Gleissberg S, Becker A (2007) Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann Bot 100:641–649

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Xiao YH, Yin MH, Hou L, Pei Y (2006) Direct amplification of intron-containing hairpin RNA construct from genomic DNA. Biotechniques 41:548–552

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64:4271–4287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan H, Deng X, Cao Y, Huang J, Ma L, Zhao B (2011a) A novel approach for the construction of plant amiRNA expression vectors. J Biotechnol 151:9–14

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Zhong X, Jiang S, Zhai C, Ma L (2011b) Improved method for constructing plant amiRNA vectors with blue-white screening and MAGIC. Biotechnol Lett 33:1683–1688

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G (2012a) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24:415–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan P, Shen W, Gao X, Li X, Zhou P, Duan J (2012b) High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. PLoS One 7:e38186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeoh CC, Balcerowicz M, Laurie R, Macknight R, Putterill J (2011) Developing a method for customized induction of flowering. BMC Biotechnol 11:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa M (2013) Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants. Genes Genet Syst 88:77–84

    CAS  PubMed  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Youseff BH, Rappleye CA (2012) RNAi-based gene silencing using a GFP sentinel system in histoplasma capsulatum. Methods Mol Biol 845:151–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li L (2013) SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. Plant J 74:98–109

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20:569–581

    Article  CAS  PubMed  Google Scholar 

  • Zhang SG, Liu CY, Li L, Sun TW, Luo YG, Yun WJ, Zhang JY (2013) Examination of artificial MiRNA mimics with centered-site complementarity for gene targeting. PLoS One 8:e72062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Yu F, Chen B, Wang X, Yang Y, Cheng Y, Yan C, Chen J (2013) Universal vectors for constructing artificial microRNAs in plants. Biotechnol Lett 35:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y (2007) Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res 16:385–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, India in the form of Network Project (BSC-0107). DS thankfully acknowledge the CSIR for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabodh Kumar Trivedi.

Additional information

Manish Tiwari and Deepika Sharma have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, M., Sharma, D. & Trivedi, P.K. Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86, 1–18 (2014). https://doi.org/10.1007/s11103-014-0224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0224-7

Keywords

Navigation