Skip to main content

Breast MRI: Techniques and Indications

  • Chapter
  • First Online:
Breast Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 513 Accesses

Abstract

This chapter summarizes technical protocols and clinical indications for magnetic resonance imaging (MRI) of the breast. The established protocol used in the last two decades worldwide, essentially composed of an unenhanced T2-weighted sequence and a contrast-enhanced T1-weighted dynamic study, is firstly described. Thereafter, the new approaches allowed by diffusion-weighted imaging, currently integrated into routine clinical protocols, with a brief mention also of abbreviated contrast-enhanced protocols, are discussed. The following well-recognized indications for breast MRI are considered: screening of women at high risk for breast cancer; assessment of response to neoadjuvant therapy; search for occult primary breast cancer; and evaluation of implant integrity (with dedicated unenhanced sequences). Preoperative breast MRI is discussed describing the limitations of past studies and the new evidences regarding the cooperation between radiologists and surgeons to avoid unnecessary mastectomies and to tailor a conserving personalized treatment. The limited role of MRI in characterizing equivocal findings identified on mammography and/or ultrasound is also illustrated. In addition, the increasing role of MRI in the setting of nipple discharge and its potential for decision-making when lesions with uncertain malignant potential (B3) are found at mammography- or ultrasound-guided biopsy are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We reported here the 95% confidence intervals due to their relevance for this topic.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ACR:

American College of Radiology

ADC:

Apparent diffusion coefficient

AUC :

Area under the curve

BC:

Breast cancer

BI-RADS:

Breast Imaging Reporting and Data System

CE:

Contrast-enhanced

CI:

Confidence interval

DBT:

Digital breast tomosynthesis

DCIS:

Ductal carcinoma in situ

DWI:

Diffusion-weighted imaging

EBM:

Evidence-based medicine

EUSOBI:

European Society of Breast Imaging

EUSOMA:

European Society of Breast Cancer Specialists

Fat-sat:

Fat saturation

GBCA:

Gadolinium-based contrast agent

Gd:

Gadolinium

HER2:

Human epidermal growth factor receptor 2

MIP:

Maximum-intensity projection

MRI:

Magnetic resonance imaging

NAT:

Neoadjuvant therapy

NPV:

Negative predictive value

pCR:

Pathological complete response

PET:

Positron-emission tomography

PPV:

Positive predictive value

RCT:

Randomized controlled trial

RECIST:

Response evaluation criteria in solid tumors

ROI:

Region of interest

SPAIR:

Spectral attenuated inversion recovery

SPIR:

Spectral inversion recovery

STIR :

Short tau inversion recovery

US:

Ultrasound

References

  • Adrada BE, Miranda RN, Rauch GM et al (2014) Breast implant-associated anaplastic large cell lymphoma: sensitivity, specificity and findings of imaging studies in 44 patients. Breast Cancer Res Treat 147:1–14

    Article  PubMed  CAS  Google Scholar 

  • Amarens H, Geuzinge MF, Bakker EAM et al (2021) Cost-effectiveness of magnetic resonance imaging screening for women with extremely dense breast tissue. JNCI: J Natl Cancer Inst 113:1476–1483. https://doi.org/10.1093/jnci/djab119

  • American College of Radiology (2003) Breast Imaging Reporting and Data System Atlas (BI-RADS Atlas), 4th edn. American College of Radiology, Reston, VA

    Google Scholar 

  • American College of Radiology (2012) Appropriateness criteria on breast cancer screening. http://www.med.unc.edu/radiology/breastimaging/breast-density-law-files/american-college-of-radiology-acr. Accessed 12 Aug 2018

  • American College of Radiology (2018) Practice parameter for the performance of contrast-enhanced magnetic resonance imaging (MRI) of the breast. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/mr-contrast-breast.pdf. Accessed 24 Sept 2018

  • American Society of Breast Surgeons (2018). http://www.choosingwisely.org/clinician-lists/breast-surgeons-mris-in-new-breast-cancer-patients/. Accessed 10 Jun 2018

  • American Society of Plastic Surgeons (2018). https://www.plasticsurgery.org/documents/News/Statistics/2017/plastic-surgery-statistics-full-report-2017.pdf. Accessed 17 Aug 2018

  • Bahl M, Pien IJ, Buretta KJ et al (2016) Can vascular patterns on preoperative magnetic resonance imaging help predict skin necrosis after nipple-sparing mastectomy? J Am Coll Surg 223:279–285

    Article  PubMed  Google Scholar 

  • Bahl M, Gadd MA, Lehman CD (2017) Diagnostic utility of MRI after negative or inconclusive mammography for the evaluation of pathologic nipple discharge. AJR Am J Roentgenol 209:1404–1410

    Article  PubMed  Google Scholar 

  • Ballesio L, Gigli S, Di Pastena F et al (2017) Magnetic resonance imaging tumor regression shrinkage patterns after neoadjuvant chemotherapy in patients with locally advanced breast cancer: correlation with tumor biological subtypes and pathological response after therapy. Tumour Biol 39:1010428317694540

    Article  PubMed  Google Scholar 

  • Baltzer PA, Dietzel M, Vag T et al (2011) Clinical MR mammography: impact of hormonal status on background enhancement and diagnostic accuracy. Röfo 183:441–447

    PubMed  CAS  Google Scholar 

  • Baltzer P, Mann RM, Iima M et al (2020) Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur Radiol 30:1436–1450

    Article  PubMed  Google Scholar 

  • Barton SR, Smith IE, Kirby AM et al (2011) The role of ipsilateral breast radiotherapy in management of occult primary breast cancer presenting as axillary lymphadenopathy. Eur J Cancer 47:2099–2106

    Article  PubMed  Google Scholar 

  • Baum F, Fischer U, Vosshenrich R, Grabbe E (2002) Classification of hypervascularized lesions in CE MR imaging of the breast. Eur Radiol 12:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Belli P, Bufi E, Bonatesta A et al (2016) Unenhanced breast magnetic resonance imaging: detection of breast cancer. Eur Rev Med Pharmacol Sci 20:4220–4229

    PubMed  CAS  Google Scholar 

  • Bennani-Baiti B, Baltzer PA (2017) MR imaging for diagnosis of malignancy in mammographic microcalcifications: a systematic review and meta-analysis. Radiology 283:692–701

    Article  PubMed  Google Scholar 

  • Bennani-Baiti B, Bennani-Baiti N, Baltzer PA (2016) Diagnostic performance of breast magnetic resonance imaging in non-calcified equivocal breast findings: results from a systematic review and meta-analysis. PLoS One 11:e0160346

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennani-Baiti B, Dietzel M, Baltzer PA (2017) MRI for the assessment of malignancy in BI-RADS 4 mammographic microcalcifications. PLoS One 12:e0188679

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger N, Luparia A, Di Leo G et al (2017) Diagnostic performance of MRI versus galactography in women with pathologic nipple discharge: a systematic review and meta-analysis. AJR Am J Roentgenol 209:465–471

    Article  PubMed  Google Scholar 

  • Bernardi D, Ciatto S, Pellegrini M, Valentini M, Houssami N (2012) EUSOMA criteria for performing pre-operative MRI staging in candidates for breast conserving surgery: hype or helpful? Breast 21:406–408

    Article  PubMed  Google Scholar 

  • Braman NM, Etesami M, Prasanna P et al (2017) Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 19:57. Erratum in: Breast Cancer Res 2017;19:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Brennan ME, Houssami N, Lord S et al (2009) Magnetic resonance imaging screening of the contralateral breast in women with newly diagnosed breast cancer: systematic review and meta-analysis of incremental cancer detection and impact on surgical management. J Clin Oncol 27:5640–5649

    Article  PubMed  Google Scholar 

  • Bucchi L, Belli P, Benelli E et al (2016) Recommendations for breast imaging follow-up of women with a previous history of breast cancer: position paper from the Italian Group for Mammography Screening (GISMa) and the Italian College of Breast Radiologists (ICBR) by SIRM. Radiol Med 121:891–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Budhdeo S, Watkins J, Atun R, Williams C, Zeltner T, Maruthappu M (2015) Changes in government spending on healthcare and population mortality in the European Union, 1995–2010: a cross-sectional ecological study. J R Soc Med 108:490–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Bufi E, Belli P, Costantini M et al (2015) Role of the apparent diffusion coefficient in the prediction of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Clin Breast Cancer 15:370–380

    Article  PubMed  CAS  Google Scholar 

  • Carbonaro LA, Tannaphai P, Trimboli RM et al (2012) Contrast-enhanced breast MRI: spatial displacement from prone to supine patient’s position. Preliminary results. Eur J Radiol 81:e771–e774

    Article  PubMed  Google Scholar 

  • Chan SE, Liao CY, Wang TY et al (2017) The diagnostic utility of preoperative breast magnetic resonance imaging (MRI) and/or intraoperative sub-nipple biopsy in nipple-sparing mastectomy. Eur J Surg Oncol 43:76–84

    Article  PubMed  Google Scholar 

  • Charehbili A, Wasser MN, Smit VT et al (2014) Accuracy of MRI for treatment response assessment after taxane- and anthracycline-based neoadjuvant chemotherapy in HER2-negative breast cancer. Eur J Surg Oncol 40:1216–1221

    Article  PubMed  CAS  Google Scholar 

  • Chen JH, Feig BA, Hsiang DJ et al (2009) Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer. Ann Surg 249:448–454

    Article  PubMed  Google Scholar 

  • Chiarelli AM, Prummel MV, Muradali D et al (2014) Effectiveness of screening with annual magnetic resonance imaging and mammography: results of the initial screen from the Ontario high risk breast screening program. J Clin Oncol 32:2224–2230

    Article  PubMed  Google Scholar 

  • Cho N, Im SA, Cheon GJ et al (2018) Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 45:328–339

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Choi N, Kim MY et al (2018) Usefulness of abbreviated breast MRI screening for women with a history of breast cancer surgery. Breast Cancer Res Treat 167:495–502

    Article  PubMed  Google Scholar 

  • Chu W, Jin W, Liu D et al (2017) Diffusion-weighted imaging in identifying breast cancer pathological response to neoadjuvant chemotherapy: a meta-analysis. Oncotarget 9:7088–7100

    Article  PubMed  PubMed Central  Google Scholar 

  • Clauser P, Carbonaro LA, Pancot M et al (2015) Additional findings at preoperative breast MRI: the value of second-look digital breast tomosynthesis. Eur Radiol 25:2830–2839

    Article  PubMed  Google Scholar 

  • Clauser P, Mann R, Athanasiou A (2018) A survey by the European Society of Breast Imaging on the utilisation of breast MRI in clinical practice. Eur Radiol 28:1909–1918

    Article  PubMed  Google Scholar 

  • Codari M, Schiaffino S, Sardanelli F, Trimboli RM (2019) Artificial intelligence for breast MRI 2008–2018: a systematic mapping review. AJR Am J Roentgenol 212(2):280–292

    Article  PubMed  Google Scholar 

  • Colin C, Foray N (2012) DNA damage induced by mammography in high family risk patients: only one single view in screening. Breast 21:409–410

    Article  PubMed  Google Scholar 

  • Colin C, Devouassoux-Shisheboran M, Sardanelli F (2014) Is breast cancer overdiagnosis also nested in pathologic misclassification? Radiology 273:652–655

    Article  PubMed  Google Scholar 

  • Colin C, Foray N, Di Leo G, Sardanelli F (2017) Radiation induced breast cancer risk in BRCA mutation carriers from low-dose radiological exposures: a systematic review. Radioprotection 52:231–240. https://doi.org/10.1051/radiopro/2017034

    Article  CAS  Google Scholar 

  • Corrigan-Curay J, Sacks L, Woodcock J (2018) Real-world evidence and real-world data for evaluating drug safety and effectiveness. JAMA. https://doi.org/10.1001/jama.2018.10136

  • Cox C, Holloway CM, Shaheta A et al (2013) What is the burden of axillary disease after neoadjuvant therapy in women with locally advanced breast cancer? Curr Oncol 20:111–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Orsi C, Sickles E, Mendelson E, Morris E (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System, 5th edn. American College of Radiology, Reston, VA

    Google Scholar 

  • De Los Santos JF, Cantor A, Amos KD et al (2013) Magnetic resonance imaging as a predictor of pathologic response in patients treated with neoadjuvant systemic treatment for operable breast cancer. Translational Breast Cancer Research Consortium trial 017. Cancer 119:1776–1783

    Article  PubMed  Google Scholar 

  • Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–44234

    Article  PubMed  Google Scholar 

  • Derias M, Subramanian A, Allan S, Shah E, Teraifi HE, Howlett D (2016) The role of magnetic resonance imaging in the investigation and management of invasive lobular carcinoma - a 3-year retrospective study in two district general hospitals. Breast J 22:384–389

    Article  PubMed  Google Scholar 

  • Di Leo G, Trimboli RM, Benedek A et al (2015) MR imaging for selection of patients for partial breast irradiation: a systematic review and meta-analysis. Radiology 277:716–726

    Article  PubMed  Google Scholar 

  • Dialani V, Chadashvili T, Slanetz PJ (2015) Role of imaging in neoadjuvant therapy for breast cancer. Ann Surg Oncol 22:1416–1424

    Article  PubMed  Google Scholar 

  • Ding JR, Wang DN, Pan JL (2016) Apparent diffusion coefficient value of diffusion-weighted imaging for differential diagnosis of ductal carcinoma in situ and infiltrating ductal carcinoma. J Cancer Res Ther 12:744–750

    Article  PubMed  Google Scholar 

  • Dongfeng H, Daqing M, Erhu J (2012) Dynamic breast magnetic resonance imaging: pretreatment prediction of tumor response to neoadjuvant chemotherapy. Clin Breast Cancer 12:94–101

    Article  PubMed  Google Scholar 

  • Dorrius MD, Jansen-van der Weide MC et al (2011) Computer-aided detection in breast MRI: a systematic review and meta-analysis. Eur Radiol 21:1600–1608

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorrius MD, Dijkstra H, Oudkerk M, Sijens PE (2014) Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol 24:2835–2847

    Article  PubMed  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  PubMed  CAS  Google Scholar 

  • Ellis RL (2009) Optimal timing of breast MRI examinations for premenopausal women who do not have a normal menstrual cycle. AJR Am J Roentgenol 193:1738–1740

    Article  PubMed  Google Scholar 

  • Elmore JG, Longton GM, Carney PA et al (2015) Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313:1122–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elster AD (2018) Questions and answers in MRI. http://mriquestions.com/making-a-dw-image.html. Accessed 12 Aug 2018

  • Etxano J, Insausti LP, Elizalde A et al (2015) Analysis of the changes induced by bevacizumab using a high temporal resolution DCE-MRI as prognostic factors for response to further neoadjuvant chemotherapy. Acta Radiol 56:1300–1307

    Article  PubMed  Google Scholar 

  • European Medicines Agency (2017) PRAC confirms restrictions on the use of linear gadolinium agents. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/gadolinium_contrast_agents_31/Recommendation_provided_by_Pharmacovigilance_Risk_Assessment_Committee/WC500230928.pdf. Accessed 20 Aug 2017

  • Evans DG, Kesavan N, Lim Y et al, MARIBS Group (2014) MRI breast screening in high-risk women: cancer detection and survival analysis. Breast Cancer Res Treat 145:663–672

    Google Scholar 

  • Evans A, Trimboli RM, et al, European Society of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition (2018) Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. https://doi.org/10.1007/s13244-018-0636-z

  • Fakkert IE, Mourits MJ, Jansen L et al (2012) Breast cancer incidence after risk-reducing salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers. Cancer Prev Res (Phila) 5:1291–1297

    Article  CAS  Google Scholar 

  • Fallenberg EM, Schmitzberger FF, Amer H et al (2017) Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation. Eur Radiol 27:2752–2764

    Article  PubMed  Google Scholar 

  • Fan M, Wu G, Cheng H et al (2017) Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients. Eur J Radiol 94:140–147

    Article  PubMed  CAS  Google Scholar 

  • Fatayer H, Sharma N, Manuel D et al (2016) Serial MRI scans help in assessing early response to neoadjuvant chemotherapy and tailoring breast cancer treatment. Eur J Surg Oncol 42:965–972

    Article  PubMed  CAS  Google Scholar 

  • Fausto A, Magaldi A, Babaei Paskeh B et al (2007) MR imaging and proton spectroscopy of the breast: how to select the images useful to convey the diagnostic message. Radiol Med 112:1060–1068

    Article  PubMed  CAS  Google Scholar 

  • Fayanju OM, Jeffe DB, Margenthaler JA (2013) Occult primary breast cancer at a comprehensive cancer center. J Surg Res 185:684–689

    Article  PubMed  Google Scholar 

  • Fischer U, Vosshenrich R, Keating D et al (1994) MR-guided biopsy of suspect breast lesions with a simple stereotaxic add-on-device for surface coils. Radiology 192:272–273

    Article  PubMed  CAS  Google Scholar 

  • Fisher B, Anderson S, Bryant J et al (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1341

    Article  PubMed  Google Scholar 

  • Fukuda T, Horii R, Gomi N et al (2016) Accuracy of magnetic resonance imaging for predicting pathological complete response of breast cancer after neoadjuvant chemotherapy: association with breast cancer subtype. Springerplus 5:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Francesco S, Rubina MT, Nehmat H et al (2022) Magnetic resonance imaging before breast cancer surgery: results of an observational multicenter international prospective analysis (MIPA). Eur J Radiol 32:1611–1623. https://doi.org/10.1007/s00330-021-08240-x

  • Gao W, Guo N, Dong T (2018) Diffusion-weighted imaging in monitoring the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis. World J Surg Oncol 16:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Gervais MK, Maki E, Schiller DE, Crystal P, McCready DR (2017) Preoperative MRI of the breast and ipsilateral breast tumor recurrence: long-term follow up. J Surg Oncol 115:231–237

    Article  PubMed  CAS  Google Scholar 

  • Giannini V, Mazzetti S, Marmo A et al (2017) A computer-aided diagnosis (CAD) scheme for pretreatment prediction of pathological response to neoadjuvant therapy using dynamic contrast-enhanced MRI texture features. Br J Radiol 90:20170269

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez V, Sandelin K, Karlsson A et al (2014) Preoperative MRI of the breast (POMB) influences primary treatment in breast cancer: a prospective, randomized, multicenter study. World J Surg 38:1685–1693

    Article  PubMed  Google Scholar 

  • Green LA, Karow JA, Toman JE, Lostumbo A, Xie K (2018) Review of breast augmentation and reconstruction for the radiologist with emphasis on MRI. Clin Imaging 47:101–117. https://doi.org/10.1016/j.clinimag.2017.08.007

    Article  PubMed  Google Scholar 

  • Grimm LJ, Soo MS, Yoon S et al (2015) Abbreviated screening protocol for breast MRI: a feasibility study. Acad Radiol 22:1157–1162

    Article  PubMed  Google Scholar 

  • Gu YL, Pan SM, Ren J, Yang ZX, Jiang GQ (2017) Role of magnetic resonance imaging in detection of pathologic complete remission in breast cancer patients treated with neoadjuvant chemotherapy: a meta-analysis. Clin Breast Cancer 17:245–255

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez RL, Strigel RM, Partridge SC et al (2012) Dynamic breast MRI: does lower temporal resolution negatively affect clinical kinetic analysis? AJR Am J Roentgenol 199:703–708

    Article  PubMed  Google Scholar 

  • Ha SM, Chae EY, Cha JH, Kim HH, Shin HJ, Choi WJ (2018) Breast MR imaging before surgery: outcomes in patients with invasive lobular carcinoma by using propensity score matching. Radiology 287:771–777

    Article  PubMed  Google Scholar 

  • Halshtok Neiman O, Erlich Z, Friedman E et al (2016) Automated breast volumetric sonography compared with magnetic resonance imaging in Jewish BRCA 1/2 mutation carriers. Isr Med Assoc J 18:609–612

    PubMed  Google Scholar 

  • Harms SE, Flamig DP, Hesley KL et al (1993) MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology 187:493–501

    Article  PubMed  CAS  Google Scholar 

  • Harvey SC, Di Carlo PA, Lee B et al (2016) An abbreviated protocol for high-risk screening breast MRI saves time and resources. J Am Coll Radiol 13:374–380

    Article  PubMed  Google Scholar 

  • He M, Tang LC, Yu KD et al (2012) Treatment outcomes and unfavorable prognostic factors in patients with occult breast cancer. Eur J Surg Oncol 38:1022–1028

    Article  PubMed  CAS  Google Scholar 

  • Heacock L, Melsaether AN, Heller SL et al (2016) Evaluation of a known breast cancer using an abbreviated breast MRI protocol: correlation of imaging characteristics and pathology with lesion detection and conspicuity. Eur J Radiol 85:815–823

    Article  PubMed  Google Scholar 

  • Hegenscheid K, Schmidt CO, Seipel R et al (2012) Contrast enhancement kinetics of normal breast parenchyma in dynamic MR mammography: effects of menopausal status oral contraceptives and postmenopausal hormone therapy. Eur Radiol 22:2633–2640

    Article  PubMed  Google Scholar 

  • Heldahl MG, Bathen TF, Rydland J et al (2010) Prognostic value of pretreatment dynamic contrast-enhanced MR imaging in breast cancer patients receiving neoadjuvant chemotherapy: overall survival predicted from combined time course and volume analysis. Acta Radiol 51:604–612

    Article  PubMed  Google Scholar 

  • Henderson TO, Amsterdam A, Bhatia S et al (2010) Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent or young adult cancer. Ann Intern Med 152:444–455; W144–W154

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendrick RE (2010) Breast magnetic resonance imaging acquisition protocols. In: Hendrick RE (ed) Breast MRI. Fundamentals and technical aspects. Springer, New York, pp 135–171

    Google Scholar 

  • Heywang SH, Hahn D, Schmidt H et al (1986) MR imaging of the breast using gadolinium-DTPA. J Comput Assist Tomogr 10:199–204

    Article  PubMed  CAS  Google Scholar 

  • Heywang-Köbrunner S, Beck R (1996) Contrast-enhanced MRI of the breast. Springer, Berlin

    Book  Google Scholar 

  • Heywang-Köbrunner SH, Heinig A, Schaumlöffel U et al (1999) MR-guided percutaneous excisional and incisional biopsy of breast lesions. Eur Radiol 9:1656–1665

    Article  PubMed  Google Scholar 

  • Heywang-Köbrunner SH, Sinnatamby R, Lebeau A et al, Consensus Group (2009) Interdisciplinary consensus on the uses and technique of MR-guided vacuum-assisted breast biopsy (VAB): results of a European consensus meeting. Eur J Radiol 72:289–294

    Google Scholar 

  • Holland R, Veling SH, Mravunac M, Hendriks JH (1985) Histologic multifocality of Tis, T1-2 breast carcinomas. Implications for clinical trials of breast-conserving surgery. Cancer 56:979–990

    Article  PubMed  CAS  Google Scholar 

  • Houssami N, Ciatto S (2010) Design-related bias in estimates of accuracy when comparing imaging tests: examples from breast imaging research. Eur Radiol 20:2061–2066

    Article  PubMed  Google Scholar 

  • Houssami N, Solin LJ (2010) An appraisal of pre-operative MRI in breast cancer: more effective staging of the breast or much ado about nothing? Maturitas 67:291–293

    Article  PubMed  CAS  Google Scholar 

  • Houssami N, Ciatto S, Bilous M, Vezzosi V, Bianchi S (2007) Borderline breast core needle histology: predictive values for malignancy in lesions of uncertain malignant potential (B3). Br J Cancer 96:1253–1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houssami N, Ciatto S, Macaskill P et al (2008) Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol 26:3248–3258

    Article  PubMed  Google Scholar 

  • Houssami N, Macaskill P, Marinovich ML et al (2010) Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy. Eur J Cancer 46:3219–3232

    Article  PubMed  Google Scholar 

  • Houssami N, Turner R, Morrow M (2013) Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. Ann Surg 257:249–255

    Article  PubMed  Google Scholar 

  • Houssami N, Turner R, Macaskill P et al (2014) An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol 32:392–401

    Article  PubMed  Google Scholar 

  • Houssami N, Turner RM, Morrow M (2017) Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat 165:273–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Hylton NM (2005) Breast magnetic resonance imaging techniques. In: Morris E, Liberman L (eds) Breast MRI. Diagnosis and intervention. Springer, New York, pp 7–14

    Chapter  Google Scholar 

  • Iacconi C, Galman L, Zheng J et al (2016) Multicentric cancer detected at breast MR imaging and not at mammography: important or not? Radiology 279:378–384

    Article  PubMed  Google Scholar 

  • IBIS Breast Cancer Risk Evaluation Tool (2018). http://www.ems-trials.org/riskevaluator/. Accessed 12 Aug 2018

  • Jatoi I, Benson JR (2013) The case against routine preoperative breast MRI. Future Oncol 9:347–353

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WA (1989) Magnetic resonance tomography of the breast. The results of 253 examinations. Dtsch Med Wochenschr 114:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WA (1993) Optimum procedure for the MRM examination. In: Kaiser WA (ed) MR mammography (MRM). Springer, Berlin, pp 29–35

    Chapter  Google Scholar 

  • Kaiser WA (1994) False-positive results in dynamic MR mammography. Causes, frequency and methods to avoid. Magn Reson Imaging Clin N Am 2:539–555

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WA (2008) Signs in MR-mammography. Springer, Berlin

    Book  Google Scholar 

  • Kanal E (2017) Gadolinium-based contrast agents: the plot thickens. Radiology 285:340–342

    Article  PubMed  Google Scholar 

  • Kazama T, Kuroki Y, Kikuchi M et al (2012) Diffusion-weighted MRI as an adjunct to mammography in women under 50 years of age: an initial study. J Magn Reson Imaging 36:139–144

    Article  PubMed  Google Scholar 

  • Khoury T, Kumar PR, Li Z et al (2016) Lobular neoplasia detected in MRI-guided core biopsy carries a high risk for upgrade: a study of 63 cases from four different institutions. Mod Pathol 29:25–33

    Article  PubMed  Google Scholar 

  • Kim YS, Chang JM, Moon HG et al (2016) Residual mammographic microcalcifications and enhancing lesions on MRI after neoadjuvant systemic chemotherapy for locally advanced breast cancer: correlation with histopathologic residual tumor size. Ann Surg Oncol 23:1135–1142

    Article  PubMed  Google Scholar 

  • Kim SY, Cho N, Park IA et al (2018) Dynamic contrast-enhanced breast MRI for evaluating residual tumor size after neoadjuvant chemotherapy. Radiology 289:327–334. https://doi.org/10.1148/radiol.2018172868

    Article  PubMed  Google Scholar 

  • Koolen BB, Pengel KE, Wesseling J et al (2013) FDG PET/CT during neoadjuvant chemotherapy may predict response in ER-positive/HER2-negative and triple negative, but not in HER2-positive breast cancer. Breast 22:691–697

    Article  PubMed  Google Scholar 

  • Krammer J, Price ER, Jochelson MS et al (2017) Breast MR imaging for the assessment of residual disease following initial surgery for breast cancer with positive margins. Eur Radiol 27:4812–4818

    Article  PubMed  Google Scholar 

  • Kriege M, Brekelmans CT, Boetes C et al, Magnetic Resonance Imaging Screening Study Group (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351:427–437

    Google Scholar 

  • Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy and transfer to clinical practice. Radiology 244:356–378

    Article  PubMed  Google Scholar 

  • Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    Article  PubMed  CAS  Google Scholar 

  • Kuhl C, Weigel S, Schrading S et al (2010) Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol 28:1450–1457

    Article  PubMed  Google Scholar 

  • Kuhl CK, Schrading S, Strobel K et al (2014) Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J Clin Oncol 32:2304–2310

    Article  PubMed  Google Scholar 

  • Kurniawan ED, Wong MH, Windle I et al (2008) Predictors of surgical margin status in breast-conserving surgery within a breast screening program. Ann Surg Oncol 15:2542–2549

    Article  PubMed  Google Scholar 

  • Lauby-Secretan B, Scoccianti C, Loomis D et al, International Agency for Research on Cancer Handbook Working Group (2015) Breast-cancer screening—viewpoint of the IARC Working Group. N Engl J Med 372:2353–3258

    Google Scholar 

  • Leach MO, Boggis CR, Dixon AK et al (2005) Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365:1769–1778

    Article  PubMed  CAS  Google Scholar 

  • Lee AHS, Denley HE, Pinder SE et al, for the Nottingham Breast Team (2003) Excision biopsy findings of patients with breast needle core biopsies reported as suspicious of malignancy (B4) or lesion of uncertain malignant potential (B3). Histopathology 42:331–336

    Google Scholar 

  • Lee J, Tanaka E, Eby PR et al (2017a) Preoperative breast MRI: surgeons’ patient selection patterns and potential bias in outcomes analyses. AJR Am J Roentgenol 208:923–932

    Article  PubMed  Google Scholar 

  • Lee SJ, Trikha S, Moy L et al (2017b) ACR Appropriateness criteria. Evaluation of nipple discharge. J Am Coll Radiol 14(5S):S138–S153

    Article  PubMed  Google Scholar 

  • Lee J, Kim SH, Kang BJ (2018) Pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: perfusion metrics of dynamic contrast enhanced MRI. Sci Rep 8:9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman CD, Gatsonis C, Kuhl CK et al (2007) MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Leithner D, Wengert GJ, Helbich TH et al (2018) Clinical role of breast MRI now and going forward. Clin Radiol 73:700–714

    Article  PubMed  CAS  Google Scholar 

  • Li H, Yao L, Jin P et al (2018) MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. Breast 40:106–115

    Article  PubMed  Google Scholar 

  • Linda A, Zuiani C, Londero V, Bazzocchi M (2008a) Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size. Breast 17:51–57

    Article  PubMed  Google Scholar 

  • Linda A, Zuiani C, Bazzocchi M, Furlan A, Londero V (2008b) Borderline breast lesions diagnosed at core needle biopsy: can magnetic resonance mammography rule out associated malignancy? Preliminary results based on 79 surgically excised lesions. Breast 17:125–131

    Article  PubMed  Google Scholar 

  • Liu Q, Wang C, Li P, Liu J, Huang G, Song S (2016) The role of (18)F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review and meta-analysis. Biomed Res Int 2016:3746232. Erratum in: Biomed Res Int 2016:1235429

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo WC, Li W, Jones EF, Newitt DC et al (2016) Effect of imaging parameter thresholds on MRI prediction of neoadjuvant chemotherapy response in breast cancer subtypes. PLoS One 11:e0142047

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo G, Scaranelo AM, Aboras H et al (2017) Evaluation of the utility of screening mammography for high-risk women undergoing screening breast MR imaging. Radiology 285:36–43

    Article  PubMed  Google Scholar 

  • Lobbes MB, Vriens IJ, van Bommel AC et al (2017) Breast MRI increases the number of mastectomies for ductal cancers, but decreases them for lobular cancers. Breast Cancer Res Treat 162:353–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Londero V, Zuiani C, Linda A, Girometti R, Bazzocchi M, Sardanelli F (2012) High-risk breast lesions at imaging-guided needle biopsy: usefulness of MRI for treatment decision. AJR Am J Roentgenol 199:W240–W250

    Article  PubMed  Google Scholar 

  • Macedo FI, Eid JJ, Flynn J, Jacobs MJ, Mittal VK (2016) Optimal surgical management for occult breast carcinoma: a meta-analysis. Ann Surg Oncol 23:1838–1844

    Article  PubMed  Google Scholar 

  • Machida Y, Shimauchi A, Kanemaki Y et al (2017) Feasibility and potential limitations of abbreviated breast MRI: an observer study using an enriched cohort. Breast Cancer 24:411–419

    Article  PubMed  Google Scholar 

  • Maijers MC, Niessen FB, Veldhuizen JF, Ritt MJ, Manoliu RA (2014) MRI screening for silicone breast implant rupture: accuracy, inter- and intraobserver variability using explantation results as reference standard. Eur Radiol 24:1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Malya FU, Kadioglu H, Bektasoglu HK et al (2018) The role of PET and MRI in evaluating the feasibility of skin-sparing mastectomy following neoadjuvant therapy. J Int Med Res 46:626–636

    Article  PubMed  PubMed Central  Google Scholar 

  • Mango VL, Morris EA, Dershaw D et al (2015) Abbreviated protocol for breast MRI: are multiple sequences needed for cancer detection? Eur J Radiol 84:65–70

    Article  PubMed  Google Scholar 

  • Mann RM, Boetes C (2010) MRI for breast conservation surgery. Lancet 375:2213

    Article  PubMed  CAS  Google Scholar 

  • Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18:1307–1318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mann RM, Loo CE, Wobbes T et al (2010) The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat 119:415–422

    Article  PubMed  CAS  Google Scholar 

  • Mann RM, Balleyguier C, Baltzer PA et al (2015) Breast MRI: EUSOBI recommendations for women’s information. Eur Radiol 25:3669–3678

    Article  PubMed  PubMed Central  Google Scholar 

  • Marije F, Bakker SV, de Lange RM, et al (2019) Supplemental MRI screening for women with extremely dense breast tissue. New Eng J Med 381:2091–2102. https://doi.org/10.1056/NEJMoa1903986

  • Marinovich ML, Sardanelli F, Ciatto S et al (2012) Early prediction of pathologic response to neoadjuvant therapy in breast cancer: systematic review of the accuracy of MRI. Breast 21:669–677

    Article  PubMed  CAS  Google Scholar 

  • Marinovich ML, Houssami N, Macaskill P et al (2013a) Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy. J Natl Cancer Inst 105:321–333

    Article  PubMed  CAS  Google Scholar 

  • Marinovich ML, Macaskill P, Irwig L et al (2013b) Meta-analysis of agreement between MRI and pathologic breast tumour size after neoadjuvant chemotherapy. Br J Cancer 109:1528–1536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marinovich ML, Macaskill P, Irwig L et al (2015) Agreement between MRI and pathologic breast tumor size after neoadjuvant chemotherapy and comparison with alternative tests: individual patient data meta-analysis. BMC Cancer 15:662

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariscotti G, Belli P, Bernardi D et al (2016) Mammography and MRI for screening women who underwent chest radiation therapy (lymphoma survivors): recommendations for surveillance from the Italian College of Breast Radiologists by SIRM. Radiol Med 121:834–837

    Article  PubMed  Google Scholar 

  • Mariscotti G, Durando M, Houssami N et al (2018) Preoperative MRI evaluation of lesion-nipple distance in breast cancer patients: thresholds for predicting occult nipple-areola complex involvement. Clin Radiol 738:735–743

    Article  Google Scholar 

  • Mayer S, Kayser G, Rücker G et al (2017) Absence of epithelial atypia in B3-lesions of the breast is associated with decreased risk for malignancy. Breast 31:144–149

    Article  PubMed  Google Scholar 

  • McCartan DP, Zabor EC, Morrow M, Van Zee KJ, El-Tamer MB (2017) Oncologic outcomes after treatment for MRI occult breast cancer (pT0N+). Ann Surg Oncol 24:3141–3147

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald ES, Hammersley JA, Chou SH et al (2016) Performance of DWI as a rapid unenhanced technique for detecting mammographically occult breast cancer in elevated-risk women with dense breasts. AJR Am J Roentgenol 207:205–216

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire KP, Toro-Burguete J, Dang H et al (2011) MRI staging after neoadjuvant chemotherapy for breast cancer: does tumor biology affect accuracy? Ann Surg Oncol 18:3149–3154

    Article  PubMed  Google Scholar 

  • McGuire KP, Hwang ES, Cantor A et al (2015) Surgical patterns of care in patients with invasive breast cancer treated with neoadjuvant systemic therapy and breast magnetic resonance imaging: results of a secondary analysis of TBCRC 017. Ann Surg Oncol 22:75–81

    Article  PubMed  Google Scholar 

  • Melsaether A, Gudi A (2014) Breast magnetic resonance imaging performance: safety, techniques, and updates on diffusion-weighted imaging and magnetic resonance spectroscopy. Top Magn Reson Imaging 23:373–384

    Article  PubMed  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  • Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA (2018) Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol 15:408–414

    Article  PubMed  Google Scholar 

  • Moon HG, Han W, Ahn SK et al (2013) Breast cancer molecular phenotype and the use of HER2-targeted agents influence the accuracy of breast MRI after neoadjuvant chemotherapy. Ann Surg 257:133–137

    Article  PubMed  Google Scholar 

  • Morrogh M, Morris EA, Liberman L et al (2008) MRI identifies otherwise occult disease in select patients with Paget disease of the nipple. J Am Coll Surg 206:316–321

    Article  PubMed  Google Scholar 

  • Morrow M, Harris JR (2009) More mastectomies: is this what patients really want? J Clin Oncol 27:4038–4040

    Article  PubMed  Google Scholar 

  • National Institute for Clinical Excellence (2013) Breast cancer risk category. https://www.nice.org.uk. Accessed 18 Jan 2018

  • Newitt DC, Tan ET, Wilmes LJ et al (2015) Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the ACRIN 6698 breast cancer trial. J Magn Reson Imaging 42:908–919

    Article  PubMed  PubMed Central  Google Scholar 

  • Obdeijn IM, Winter-Warnars GA, Mann RM et al (2014) Should we screen BRCA1 mutation carriers only with MRI? A multicenter study. Breast Cancer Res Treat 144:577–582

    Article  PubMed  CAS  Google Scholar 

  • Ogston KN, Miller ID, Payne S et al (2003) A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12:320–327

    Article  PubMed  Google Scholar 

  • Oldrini G, Derraz I, Salleron J, Marchal F, Henrot P (2018) Impact of an abbreviated protocol for breast MRI in diagnostic accuracy. Diagn Interv Radiol 24:12–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Onega T, Zhu W, Weiss JE (2018) Preoperative breast MRI and mortality in older women with breast cancer. Breast Cancer Res Treat 170:149–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oxford Centre for Evidence-based Medicine (2009) Levels of Evidence. https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed 16 Aug 2018

  • Panzironi G, Pediconi F, Sardanelli F (2018) Nipple discharge: the state of the art. Br J Radiol Open 1(1):20180016

    Google Scholar 

  • Park SH, Moon WK, Cho N et al (2010) Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology 257(1):56–63

    Article  PubMed  Google Scholar 

  • Park S, Yoon JH, Sohn J et al (2016) Magnetic resonance imaging after completion of neoadjuvant chemotherapy can accurately discriminate between no residual carcinoma and residual ductal carcinoma in situ in patients with triple-negative breast cancer. PLoS One 11:e0149347

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker A, Schroen AT, Brenin DR (2013) MRI utilization in newly diagnosed breast cancer: a survey of practicing surgeons. Ann Surg Oncol 20:2600–2606

    Article  PubMed  Google Scholar 

  • Pediconi F, Padula S, Dominelli V et al (2010) Role of breast MR imaging for predicting malignancy of histologically borderline lesions diagnosed at core needle biopsy: prospective evaluation. Radiology 257:653–666

    Article  PubMed  Google Scholar 

  • Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2:35. https://doi.org/10.1186/s41747-018-0061-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter P, Dhillon R, Bose S, Bourke A (2016) MRI screening-detected breast lesions in high-risk young women: the value of targeted second-look ultrasound and imaging-guided biopsy. Clin Radiol 71:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Peters NH, van Esser S, van den Bosch MA et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET - randomised controlled trial. Eur J Cancer 47:879–886

    Article  PubMed  CAS  Google Scholar 

  • Phi XA, Houssami N, Obdeijn IM et al (2015) Magnetic resonance imaging improves breast screening sensitivity in BRCA mutation carriers age ≥ 50 years: evidence from an individual patient data meta-analysis. J Clin Oncol 33:349–356

    Article  PubMed  Google Scholar 

  • Phi XA, Saadatmand S, De Bock GH et al (2016) Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis. Br J Cancer 114:631–637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phi XA, Houssami N, Hooning MJ et al (2017) Accuracy of screening women at familial risk of breast cancer without a known gene mutation: individual patient data meta-analysis. Eur J Cancer 85:31–38

    Article  PubMed  Google Scholar 

  • Plana MN, Carreira C, Muriel A et al (2012) Magnetic resonance imaging in the preoperative assessment of patients with primary breast cancer: systematic review of diagnostic accuracy and meta-analysis. Eur Radiol 22:26–38

    Article  PubMed  Google Scholar 

  • Podo F, Santoro F, Di Leo G et al (2016) Triple-negative versus non-triple-negative breast cancers in high-risk women: phenotype features and survival from the HIBCRIT-1 MRI-including screening study. Clin Cancer Res 22:895–904

    Article  PubMed  CAS  Google Scholar 

  • Rageth CJ, O’Flynn EA, Comstock C et al (2016) First international consensus conference on lesions of uncertain malignant potential in the breast (B3 lesions). Breast Cancer Res Treat 159:203–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Richard R, Thomassin I, Chapellier M et al (2013) Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 23:2420–2431

    Article  PubMed  Google Scholar 

  • Riedl CC, Luft N, Bernhart C et al (2015) Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age and breast density. J Clin Oncol 33:1128–1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritse M, Mann A, Athanasiou PAT et al (2022) Kuhl breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI). Eur J Radiol. https://doi.org/10.1007/s00330-022-08617-6

  • Saadatmand S, Bretveld R, Siesling S, Tilanus-Linthorst MM (2015a) Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173,797 patients. BMJ 351:h4901

    Article  PubMed  PubMed Central  Google Scholar 

  • Saadatmand S, Obdeijn IM, Rutgers EJ et al (2015b) Survival benefit in women with BRCA1 mutation or familial risk in the MRI screening study (MRISC). Int J Cancer 137:1729–1738

    Article  PubMed  CAS  Google Scholar 

  • Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS (1996) Evidence based medicine: what it is and what it isn’t. BMJ 312:71–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakakibara M, Nagashima T, Sangai T et al (2008) Breast-conserving surgery using projection and reproduction techniques of surgical-position breast MRI in patients with ductal carcinoma in situ of the breast. J Am Coll Surg 207:62–68

    Article  PubMed  Google Scholar 

  • Santamaría G, Bargalló X, Fernández PL et al (2017) Neoadjuvant systemic therapy in breast cancer: association of contrast-enhanced MR imaging findings, diffusion-weighted imaging findings and tumor subtype with tumor response. Radiology 283:663–672

    Article  PubMed  Google Scholar 

  • Santoro F, Podo F, Sardanelli F (2014) MRI screening of women with hereditary predisposition to breast cancer: diagnostic performance and survival analysis. Breast Cancer Res Treat 147:685–687

    Article  PubMed  Google Scholar 

  • Sardanelli F (2010a) Overview of the role of pre-operative breast MRI in the absence of evidence on patient outcomes. Breast 19:3–6

    Article  PubMed  Google Scholar 

  • Sardanelli F (2010b) Additional findings at preoperative MRI: a simple golden rule for a complex problem? Breast Cancer Res Treat 124:717–721

    Article  PubMed  Google Scholar 

  • Sardanelli F (2013) Considerations on the application of EUSOMA criteria for preoperative MRI. Breast 22:368–369

    Article  PubMed  Google Scholar 

  • Sardanelli F, Di Leo G (2009a) Diagnostic performance. In: Sardanelli F, Di Leo G (eds) Biostatistics for radiologist. Springer, Milan, pp 19–40

    Chapter  Google Scholar 

  • Sardanelli F, Di Leo G (2009b) Study design, systematic reviews and levels of evidence. In: Sardanelli F, Di Leo G (eds) Biostatistics for radiologists. Springer, Milan, pp 141–164

    Chapter  Google Scholar 

  • Sardanelli F, Houssami N (2008) Evaluation of lesions of uncertain malignant potential (B3) at core needle biopsy using magnetic resonance imaging: a new approach warrants prospective studies. Breast 17:117–119

    Article  PubMed  Google Scholar 

  • Sardanelli F, Trimboli RM (2012) Preoperative MRI: did randomized trials conclude the debate? Eur J Radiol 81(Suppl 1):S135–S1366

    Article  PubMed  Google Scholar 

  • Sardanelli F, Fausto A, Iozzelli A, Rescinito G, Calabrese M (2004a) Dynamic breast magnetic resonance imaging. Effect of changing the region of interest on early enhancement using 2D and 3D techniques. J Comput Assist Tomogr 28:642–646

    Article  PubMed  Google Scholar 

  • Sardanelli F, Giuseppetti GM, Panizza P et al (2004b) Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in Fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am J Roentgenol 183:1149–1157

    Article  PubMed  Google Scholar 

  • Sardanelli F, Podo F, D’Agnolo G et al (2007) Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results. Radiology 242:698–715

    Article  PubMed  Google Scholar 

  • Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 46:1296–1316

    Article  PubMed  Google Scholar 

  • Sardanelli F, Podo F, Santoro F et al, HIBCRIT-1 Study (2011) Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography and contrast-enhanced magnetic resonance imaging (the high breast cancer risk Italian 1 study): final results. Invest Radiol 46:94–105

    Google Scholar 

  • Sardanelli F, Esseridou A, Del Sole A, Sconfienza LM (2012) Response to treatment: the role of imaging. In: Aglietta M, Regge D (eds) Imaging tumor response to treatment. Springer, Milan, pp 15–37

    Chapter  Google Scholar 

  • Sardanelli F, Carbonaro LA, Montemezzi S, Cavedon C, Trimboli RM (2016a) Clinical breast MR using MRS or DWI: who is the winner? Front Oncol 6:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Sardanelli F, Newstead GM, Putz B et al (2016b) Gadobutrol-enhanced magnetic resonance imaging of the breast in the preoperative setting: results of 2 prospective international multicenter Phase III studies. Invest Radiol 51:454–461

    Article  PubMed  CAS  Google Scholar 

  • Sardanelli F, Alì M, Hunink MG, Houssami N, Sconfienza LM, Di Leo G (2018a) To share or not to share? Expected pros and cons of data sharing in radiological research. Eur Radiol 28:2328–2335

    Article  PubMed  Google Scholar 

  • Sardanelli F, Trimboli RM, Tot T (2018b) Expert review of breast pathology in borderline lesions: a chance to reduce overdiagnosis and overtreatment? JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.1953

  • Sardanelli F, Trimboli RM, Houssami N et al (2020) Solving the preoperative breast MRI conundrum: design and protocol of the MIPA study. Eur Radiol 30(10):5427–5436

    Article  PubMed  Google Scholar 

  • Saslow D, Boetes C, Burke W et al, American Cancer Society Breast Cancer Advisory Group (2007) American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57(2):75–89

    Google Scholar 

  • Schaefgen B, Mati M, Sinn HP et al (2016) Can routine imaging after neoadjuvant chemotherapy in breast cancer predict pathologic complete response? Ann Surg Oncol 23:789–795

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino S, Carbonaro LA, Clauser P et al (2018) Side of contrast injection and breast size correlate with motion artifacts on breast MRI. ISMRM-SBI-EUSOBI workshop on breast MRI: advancing the state of the art Las Vegas, NV, USA, 10–13 Sept 2018. https://www.ismrm.org/workshops/2018/Breast/. Accessed 24 Sept 2018

  • Schmitz AMT, Teixeira SC, Pengel KE et al (2017) Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes. PLoS One 12:e0176782

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrading S, Distelmaier M, Dirrichs T et al (2015) Digital breast tomosynthesis-guided vacuum-assisted breast biopsy: initial experiences and comparison with prone stereotactic vacuum-assisted biopsy. Radiology 274:654–662

    Article  PubMed  Google Scholar 

  • Seely JM, Lamb L, Malik N et al (2016) The yield of pre-operative breast MRI in patients according to breast tissue density. Eur Radiol 26:3280–3289

    Article  PubMed  Google Scholar 

  • Seiler SJ, Sharma PB, Hayes JC et al (2017) Multimodality imaging-based evaluation of single-lumen silicone breast implants for rupture. Radiographics 37:366–382

    Article  PubMed  Google Scholar 

  • Semiglazov V (2015) RECIST for response (clinical and imaging) in neoadjuvant clinical trials in operable breast cancer. J Natl Cancer Inst Monogr 2015(51):21–23

    Article  PubMed  Google Scholar 

  • Shi RY, Yao QY, Wu LM, Xu JR (2018) Breast lesions: diagnosis using diffusion weighted imaging at 1.5T and 3.0T – systematic review and meta-analysis. Clin Breast Cancer 18:e305–e320

    Article  PubMed  Google Scholar 

  • Slanetz PJ, Moy L, Baron P et al (2017) ACR Appropriateness Criteria® monitoring response to neoadjuvant systemic therapy for breast cancer. J Am Coll Radiol 14:S462–S475

    Article  PubMed  Google Scholar 

  • Solin LJ (2010) Counterview: Pre-operative breast MRI (magnetic resonance imaging) is not recommended for all patients with newly diagnosed breast cancer. Breast 19:7–9

    Article  PubMed  Google Scholar 

  • Song JW, Kim HM, Bellfi LT, Chung KC (2011) The effect of study design biases on the diagnostic accuracy of magnetic resonance imaging for detecting silicone breast implant ruptures: a meta-analysis. Plast Reconstr Surg 127:1029–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spick C, Baltzer PA (2014) Diagnostic utility of second-look US for breast lesions identified at MR imaging: systematic review and meta-analysis. Radiology 273:401–409

    Article  PubMed  Google Scholar 

  • Spick C, Bickel H, Pinker K et al (2016a) Diffusion-weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability and diagnostic accuracy. NMR Biomed 29:1445–1453

    Article  PubMed  Google Scholar 

  • Spick C, Schernthaner M, Pinker K et al (2016b) MR-guided vacuum-assisted breast biopsy of MRI-only lesions: a single center experience. Eur Radiol 26:3908–3916

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung JS, Li J, Da Costa G et al (2014) Preoperative breast MRI for early-stage breast cancer: effect on surgical and long-term outcomes. AJR Am J Roentgenol 202:1376–1382

    Article  PubMed  Google Scholar 

  • Tannaphai P, Trimboli RM, Carbonaro LA et al (2012) Washout of mass-like benign breast lesions at dynamic magnetic resonance imaging. J Comput Assist Tomogr 36:301–330

    Article  PubMed  Google Scholar 

  • Teruel JR, Heldahl MG, Goa PE et al (2014) Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. NMR Biomed 27:887–896

    Article  PubMed  Google Scholar 

  • The Council of the European Union (2003) Council recommendation of 2 December 2003 on cancer screening (2003/878/EC). https://ec.europa.eu/jrc/sites/jrcsh/files/2_December_2003%20cancer%20screening.pdf. Accessed 16 Aug 2018

  • Trimboli RM, Verardi N, Cartia F, Carbonaro LA, Sardanelli F (2014) Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR and diffusion-weighted imaging: a proof of concept study. AJR Am J Roentgenol 203:674–681

    Article  PubMed  Google Scholar 

  • Tsuchiya K, Mori N, Schacht DV et al (2017) Value of breast MRI for patients with a biopsy showing atypical ductal hyperplasia (ADH). J Magn Reson Imaging 46:1738–1747

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbull L, Brown S, Harvey I et al (2010) Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomized controlled trial. Lancet 375:563–571

    Article  PubMed  Google Scholar 

  • Tyrer J, Duffy SW, Cuzick J (2004) A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23:1111–1130

    Article  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2017) Medical devices: silicone gel-filled breast implants. https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/BreastImplants/ucm063871.htm. Accessed 17 Aug 2018

  • Um E, Kang JW, Lee S et al (2018) Comparing accuracy of mammography and magnetic resonance imaging for residual calcified lesions in breast cancer patients undergoing neoadjuvant systemic therapy. Clin Breast Cancer 18(5):e1087–e1091

    Article  PubMed  Google Scholar 

  • Verheyden C, Pages-Bouic E, Balleyguier C et al (2016) Underestimation rate at MR imaging-guided vacuum-assisted breast biopsy: a multi-institutional retrospective study of 1,509 breast biopsies. Radiology 281:708–719

    Article  PubMed  Google Scholar 

  • Veronesi U, Cascinelli N, Mariani L et al (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347:1227–1232

    Article  PubMed  Google Scholar 

  • Vriens BE, de Vries B, Lobbes MB et al, INTENS Study Group (2016) Ultrasound is at least as good as magnetic resonance imaging in predicting tumour size post-neoadjuvant chemotherapy in breast cancer. Eur J Cancer 52:67–76

    Google Scholar 

  • Wang SY, Long JB, Killelea BK et al (2018) Associations of preoperative breast magnetic resonance imaging with subsequent mastectomy and breast cancer mortality. Breast Cancer Res Treat 172(2):453–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner E, Plewes DB, Hill KA et al (2004) Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292:1317–1325

    Article  PubMed  CAS  Google Scholar 

  • Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  PubMed  CAS  Google Scholar 

  • Wu LM, Hu JN, Gu HY et al (2012) Can diffusion-weighted MR imaging and contrast-enhanced MR imaging precisely evaluate and predict pathological response to neoadjuvant chemotherapy in patients with breast cancer? Breast Cancer Res Treat 135:17–28

    Article  PubMed  CAS  Google Scholar 

  • Wunderle M, Gass P, Häberle L et al (2018) BRCA mutations and their influence on pathological complete response and prognosis in a clinical cohort of neoadjuvantly treated breast cancer patients. Breast Cancer Res Treat 171:85–94

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Kanemaki Y, Okamoto S, Nakajima Y (2018) Comparison of detectability of breast cancer by abbreviated breast MRI based on diffusion-weighted images and postcontrast MRI. Jpn J Radiol 36:331–339

    Article  PubMed  Google Scholar 

  • Yılmaz E, Sarı O, Yılmaz A et al (2018) Diffusion-weighted imaging for the discrimination of benign and malignant breast masses; utility of ADC and relative ADC. J Belg Soc Radiol 102:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Tang M, Min Z (2016) Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis. Acta Radiol 57:651–660

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sardanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sardanelli, F., Carbonaro, L.A., Schiaffino, S., Trimboli, R.M. (2022). Breast MRI: Techniques and Indications. In: Fuchsjäger, M., Morris, E., Helbich, T. (eds) Breast Imaging . Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-94918-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94918-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94917-4

  • Online ISBN: 978-3-030-94918-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics