Skip to main content

Gadd45 in Neuronal Development, Function, and Injury

  • Chapter
  • First Online:
Gadd45 Stress Sensor Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1360))

Abstract

The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah MW, Mortensen EL, Greaves-Lord K, Larsen N, Bonefeld-Jørgensen EC, Nørgaard-Pedersen B, Hougaard DM, Grove J (2013) Neonatal levels of neurotrophic factors and risk of autism spectrum disorders. Acta Psychiatr Scand 128(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann DA (1991) Sequence and expression of a cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines. Oncogene 6:165–167

    CAS  PubMed  Google Scholar 

  • Abdolmaleky HM, Cheng K-H, Russo A, Smith CL, Faraone SV, Wilcox M, Shafa R, Glatt SJ, Nguyen G, Ponte JF, Thiagalingam S, Tsuang MT (2005) Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet 134B:60–66

    Article  PubMed  Google Scholar 

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52:258–266

    Article  CAS  PubMed  Google Scholar 

  • Asuthkar S, Nalla AK, Gondi CS, Dinh DH, Gujrati M, Mohanam S, Rao JS (2011) Gadd45a sensitizes medulloblastoma cells to irradiation and suppresses MMP-9-mediated EMT. Neuro-Oncology 13:1059–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675

    Article  CAS  PubMed  Google Scholar 

  • Barrette B, Calvo E, Vallières N, Lacroix S (2010) Transcriptional profiling of the injured sciatic nerve of mice carrying the Wld(S) mutant gene: identification of genes involved in neuroprotection, neuroinflammation, and nerve regeneration. Brain Behav Immun 24:1254–1267

    Article  CAS  PubMed  Google Scholar 

  • Beadling C, Johnson KW, Smith KA (1993) Isolation of interleukin 2-induced immediate-early genes. Proc Natl Acad Sci U S A 90:2719–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Befort K, Karchewski L, Lanoue C, Woolf CJ (2003) Selective up-regulation of the growth arrest DNA damage-inducible gene Gadd45 alpha in sensory and motor neurons after peripheral nerve injury. Eur J Neurosci 18:911–922

    Article  PubMed  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bgatova N, Dubatolova T, Omelyanchuk L, Plyusnina E, Shaposhnikov M, Moskalev A (2015) Gadd45 expression correlates with age dependent neurodegeneration in Drosophila melanogaster. Biogerontology 16:53–61

    Article  CAS  PubMed  Google Scholar 

  • Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkman AB, Gu H, Bartels SJJ, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg HG (2012) Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22:1128–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito DVC, Gulmez Karaca K, Kupke J, Mudlaff F, Zeuch B, Gomes R, Lopes LV, Oliveira AMM (2020a) Modeling human age-associated increase in Gadd45γ expression leads to spatial recognition memory impairments in young adult mice. Neurobiol Aging 94:281–286

    Article  CAS  PubMed  Google Scholar 

  • Brito DVC, Kupke J, Gulmez Karaca K, Zeuch B, Oliveira AMM (2020b) Mimicking age-associated Gadd45γ dysregulation results in memory impairments in young adult mice. J Neurosci 40:1197–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candal E, Thermes V, Joly J-S, Bourrat F (2004) Medaka as a model system for the characterisation of cell cycle regulators: a functional analysis of Ol-Gadd45gamma during early embryogenesis. Mech Dev 121:945–958

    Article  CAS  PubMed  Google Scholar 

  • Candal E, Nguyen V, Joly J-S, Bourrat F (2005) Expression domains suggest cell-cycle independent roles of growth-arrest molecules in the adult brain of the medaka, Oryzias latipes. Brain Res Bull 66:426–430

    Article  CAS  PubMed  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charriaut-Marlangue C, Richard E, Ben-Ari Y (1999) DNA damage and DNA damage-inducible protein Gadd45 following ischemia in the P7 neonatal rat. Brain Res Dev Brain Res 116:133–140

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Uchimura K, Stetler RA, Zhu RL, Nakayama M, Jin K, Graham SH, Simon RP (1998) Transient global ischemia triggers expression of the DNA damage-inducible gene GADD45 in the rat brain. J Cereb Blood Flow Metab 18:646–657

    Article  CAS  PubMed  Google Scholar 

  • Cho CH, Byun HR, Jover-Mengual T, Pontarelli F, Dejesus C, Cho AR, Zukin RS, Hwang JY (2019) Gadd45b acts as neuroprotective effector in global ischemia-induced neuronal death. Int Neurourol J 23(Suppl 1):S11–S21

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi HJ, Kang KS, Fukui M, Zhu BT (2011) Critical role of the JNK-p53-GADD45α apoptotic cascade in mediating oxidative cytotoxicity in hippocampal neurons. Br J Pharmacol 162:175–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou TT, Trojanowski JQ, Lee VM (2001) p38 mitogen-activated protein kinase-independent induction of gadd45 expression in nerve growth factor-induced apoptosis in medulloblastomas. J Biol Chem 276:41120–41127

    Article  CAS  PubMed  Google Scholar 

  • Chwang WB, O’Riordan KJ, Levenson JM, Sweatt JD (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 13:322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costigan M, Befort K, Karchewski L, Griffin RS, D’Urso D, Allchorne A, Sitarski J, Mannion JW, Pratt RE, Woolf CJ (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyle JT, Duman RS (2003) Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38:157–160

    Article  CAS  PubMed  Google Scholar 

  • Damodaran TV, Attia MK, Abou-Donia MB (2011) Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: a study of molecular, cellular, and anatomical parameters. Toxicol Appl Pharmacol 256:348–359

    Article  CAS  PubMed  Google Scholar 

  • Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13:1319–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70:813–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Calle-Mustienes E, Glavic A, Modolell J, Gómez-Skarmeta JL (2002) Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech Dev 119:69–80

    Article  PubMed  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  PubMed  Google Scholar 

  • Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454–468

    Article  PubMed  CAS  Google Scholar 

  • Dong E, Gavin DP, Chen Y, Davis J (2012) Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry 2:e159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford JM, Roach BJ, Faustman WO, Mathalon DH (2007) Synch before you speak: auditory hallucinations in schizophrenia. Am J Psychiatry 164:458–466

    Article  PubMed  Google Scholar 

  • Fornace AJ, Alamo I, Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A 85:8800–8804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis YI, Fà M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Arancio O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 18:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuso A, Scarpa S (2011) One-carbon metabolism and Alzheimer’s disease: is it all a methylation matter? Neurobiol Aging 32:1192–1195

    Article  CAS  PubMed  Google Scholar 

  • Fuso A, Cavallaroa RA, Nicolia V, Scarpa S (2012) PSEN1 promoter demethylation in hyperhomocysteinemic TgCRND8 mice is the culprit, not the consequence. Curr Alzheimer Res 9:527–535

    Article  CAS  PubMed  Google Scholar 

  • Galvin KE, Ye H, Erstad DJ, Feddersen R, Wetmore C (2008) Gli1 induces G2/M arrest and apoptosis in hippocampal but not tumor-derived neural stem cells. Stem Cells 26:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavin DP, Sharma RP (2010) Histone modifications, DNA methylation, and schizophrenia. Neurosci Biobehav Rev 34:882–888

    Article  CAS  PubMed  Google Scholar 

  • Gavin DP, Sharma RP, Chase KA, Matrisciano F, Dong E, Guidotti A (2012) 003 Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology 37:531–542

    Article  CAS  PubMed  Google Scholar 

  • Goc A, Al-Azayzih A, Abdalla M, Al-Husein B, Kavuri S, Lee J, Moses K, Somanath PR (2013) P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of TGFβ expression and enhanced MMP9 secretion. J Biol Chem 288(5):3025–3035

    Article  CAS  PubMed  Google Scholar 

  • Gohlke JM, Armant O, Parham FM, Smith MV, Zimmer C, Castro DS, Nguyen L, Parker JS, Gradwohl G, Portier CJ, Guillemot F (2008) Characterization of the proneural gene regulatory network during mouse telencephalon development. BMC Biol 6:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Burgos G, Hashimoto T, Lewis DA (2010) Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 12:335–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Gräff J, Tsai L-H (2013) The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 53:311–330

    Article  PubMed  CAS  Google Scholar 

  • Gräff J, Rei D, Guan J-S, Wang W-Y, Seo J, Hennig KM, Nieland TJF, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai L-H (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grassi D, Franz H, Vezzali R, Bovio P, Heidrich S, Dehghanian F, Lagunas N, Belzung C, Krieglstein K, Vogel T (2017) Neuronal activity, TGFβ-signaling and unpredictable chronic stress modulate transcription of Gadd45 family members and DNA methylation in the hippocampus. Cereb Cortex 27:4166–4181

    Article  PubMed  Google Scholar 

  • Grayson DR, Guidotti A (2013) The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 38:138–166

    Article  CAS  PubMed  Google Scholar 

  • Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 102:9341–9346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai L-H (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidotti A, Dong E, Kundakovic M, Satta R, Grayson DR, Costa E (2009) Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci 30:55–60

    Article  CAS  PubMed  Google Scholar 

  • Guo JU, Ma DK, Mo H, Ball MP, Jang M-H, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E, Zhang K, Ming G-L, Gao Y, Song H (2011a) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14:1345–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JU, Su Y, Zhong C, Ming G-L, Song H (2011b) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30:3589–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suzuki K, Minabe Y, Takei N, Iyo M, Mori N (2006) Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog Neuro-Psychopharmacol Biol Psychiatry 30:1529–1531

    Article  CAS  Google Scholar 

  • Henshall DC, Sinclair J, Simon RP (1999) Relationship between seizure-induced transcription of the DNA damage-inducible gene GADD45, DNA fragmentation, and neuronal death in focally evoked limbic epilepsy. J Neurochem 73:1573–1583

    Article  CAS  PubMed  Google Scholar 

  • Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, Vardanian L, Fornace AJ (2002) Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res 62:7305–7315

    CAS  PubMed  Google Scholar 

  • Hill CE, Harrison BJ, Rau KK, Hougland MT, Bunge MB, Mendell LM, Petruska JC (2010) Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons. J Pain 11:1066–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD, Rosenberg MP, Zhan Q, Fernández-Salguero PM, Morgan WF, Deng CX, Fornace AJ (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23:176–184

    Article  CAS  PubMed  Google Scholar 

  • Hou ST, Tu Y, Buchan AM, Huang Z, Preston E, Rasquinha I, Robertson GS, MacManus JP (1997) Increases in DNA lesions and the DNA damage indicator Gadd45 following transient cerebral ischemia. Biochem Cell Biol 75:383–392

    Article  CAS  PubMed  Google Scholar 

  • Hu BH, Cai Q, Manohar S, Jiang H, Ding D, Coling DE, Zheng G, Salvi R (2009) Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats. Neuroscience 161:915–925

    Article  CAS  PubMed  Google Scholar 

  • Huang H-S, Akbarian S (2007) 006 GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One 2:e809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang HS, Kubish GM, Redmond TM, Turner DL, Thompson RC, Murphy GG, Uhler MD (2010) Direct transcriptional induction of Gadd45gamma by Ascl1 during neuronal differentiation. Mol Cell Neurosci 44:282–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes PE, Alexi T, Yoshida T, Schreiber SS, Knusel B (1996) Excitotoxic lesion of rat brain with quinolinic acid induces expression of p53 messenger RNA and protein and p53-inducible genes Bax and Gadd-45 in brain areas showing DNA fragmentation. Neuroscience 74:1143–1160

    Article  CAS  PubMed  Google Scholar 

  • Irier HA, Jin P (2012) Dynamics of DNA methylation in aging and Alzheimer’s disease. DNA Cell Biol 31(Suppl 1):S42–S48

    Article  PubMed  CAS  Google Scholar 

  • Jacob K et al (2011) Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res 17:4650–4660

    Article  CAS  PubMed  Google Scholar 

  • Jarome TJ, Butler AA, Nichols JN, Pacheco NL, Lubin FD (2015) NF-κB mediates Gadd45β expression and DNA demethylation in the hippocampus during fear memory formation. Front Mol Neurosci 8:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin K, Chen J, Kawaguchi K, Zhu RL, Stetler RA, Simon RP, Graham SH (1996) Focal ischemia induces expression of the DNA damage-inducible gene GADD45 in the rat brain. Neuroreport 7:1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Antinore MJ, Lung FD, Dong X, Zhao H, Fan F, Colchagie AB, Blanck P, Roller PP, Fornace AJ, Zhan Q (2000) The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem 275:16602–16608

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, Mazzacurati L, Li X, Petrik KL, Rajasekaran B, Wu M, Zhan Q (2002) GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21:8696–8704

    Article  CAS  PubMed  Google Scholar 

  • Jin S-G, Guo C, Pfeifer GP (2008) GADD45A does not promote DNA demethylation. PLoS Genet 4:e1000013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15:483–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung N, Yi YW, Kim D, Shong M, Hong SS, Lee HS, Bae I (2000) Regulation of Gadd45gamma expression by C/EBP. Eur J Biochem 267:6180–6187

    Article  CAS  PubMed  Google Scholar 

  • Kappler R, Hess I, Schlegel J, Hahn H (2004) Transcriptional up-regulation of Gadd45a in Patched-associated medulloblastoma. Int J Oncol 25:113–120

    CAS  PubMed  Google Scholar 

  • Kaufmann LT, Niehrs C (2011) Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. Mech Dev 128:401–411

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann LT, Gierl MS, Niehrs C (2011) Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. Gene Expr Patterns 11:465–470

    Article  CAS  PubMed  Google Scholar 

  • Kawahara A, Che Y-S, Hanaoka R, Takeda H, Dawid IB (2005) Zebrafish GADD45beta genes are involved in somite segmentation. Proc Natl Acad Sci U S A 102:361–366

    Article  CAS  PubMed  Google Scholar 

  • Kaya SS, Mahmood A, Li Y, Yavuz E, Göksel M, Chopp M (1999) Apoptosis and expression of p53 response proteins and cyclin D1 after cortical impact in rat brain. Brain Res 818:23–33

    Article  CAS  PubMed  Google Scholar 

  • Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA (1995) Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 11:1675–1683

    CAS  PubMed  Google Scholar 

  • Khare T et al (2012) 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol 19:1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35:870–880

    Article  CAS  PubMed  Google Scholar 

  • Kolluri N, Sun Z, Sampson AR, Lewis DA (2005) Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 162:1200–1202

    Article  PubMed  Google Scholar 

  • Kondo Y (2009) Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 50:455–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurita M et al (2012) HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 15:1245–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrie V, Pai S, Petronis A (2012) Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet 28:427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach PT, Poplawski SG, Kenney JW, Hoffman B, Liebermann DA, Abel T, Gould TJ (2012) Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory. Learn Mem 19:319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  CAS  PubMed  Google Scholar 

  • Levenson JM, Roth TL, Lubin FD, Miller CA, Huang I-C, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281:15763–15773

    Article  CAS  PubMed  Google Scholar 

  • Levkovitch-Verbin H, Spierer O, Vander S, Dardik R (2011) Similarities and differences between primary and secondary degeneration of the optic nerve and the effect of minocycline. Graefes Arch Clin Exp Ophthalmol 249:849–857

    Article  PubMed  Google Scholar 

  • Lewis DA (2012) Cortical circuit dysfunction and cognitive deficits in schizophrenia—implications for preemptive interventions. Eur J Neurosci 35:1871–1878

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis DA, Sweet RA (2009) Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J Clin Invest 119:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chopp M, Powers C (1997a) Granule cell apoptosis and protein expression in hippocampal dentate gyrus after forebrain ischemia in the rat. J Neurol Sci 150:93–102

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chopp M, Powers C, Jiang N (1997b) Apoptosis and protein expression after focal cerebral ischemia in rat. Brain Res 765:301–312

    Article  CAS  PubMed  Google Scholar 

  • Liebermann DA, Hoffman B (2008) Gadd45 in stress signaling. J Mol Signal 3:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lievens JC, Bernal F, Forni C, Mahy N, Kerkerian-Le Goff L (2000) Characterization of striatal lesions produced by glutamate uptake alteration: cell death, reactive gliosis, and changes in GLT1 and GADD45 mRNA expression. Glia 29:222–232

    Article  CAS  PubMed  Google Scholar 

  • Lin C-R, Yang C-H, Huang C-E, Wu C-H, Chen Y-S, Sheen-Chen S-M, Huang H-W, Chen K-H (2011) GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 89:689–699

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Li J, Li L, Yu L, Li C (2012) Electrical stimulation of cerebellar fastigial nucleus promotes the expression of growth arrest and DNA damage inducible gene β and motor function recovery in cerebral ischemia/reperfusion rats. Neurosci Lett 520:110–114

    Article  CAS  PubMed  Google Scholar 

  • Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Łuczkowska K, Rogińska D, Ulańczyk Z, Machaliński B (2020) Effect of bortezomib on global gene expression in PC12-derived nerve cells. Int J Mol Sci 21:751

    Article  PubMed Central  CAS  Google Scholar 

  • Ma DK, Jang M-H, Guo JU, Kitabatake Y, Chang M-L, Pow-Anpongkul N, Flavell RA, Lu B, Ming G-L, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT, Tron VA (2002) GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol 119:22–26

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Navarro M, Lara-Mayorga IM, Negrete R, Bilecki W, Wawrzczak-Bargieła A, Gonçalves L, Dickenson AH, Przewłocki R, Baños JE, Maldonado R (2019) Influence of behavioral traits in the inter-individual variability of nociceptive, emotional and cognitive manifestations of neuropathic pain. Neuropharmacology 148:291–304

    Article  PubMed  CAS  Google Scholar 

  • Massa V, Savery D, Ybot-Gonzalez P, Ferraro E, Rongvaux A, Cecconi F, Flavell R, Greene NDE, Copp AJ (2009) Apoptosis is not required for mammalian neural tube closure. Proc Natl Acad Sci U S A 106:8233–8238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2010) Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 31:2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Matrisciano F, Dong E, Gavin DP, Nicoletti F, Guidotti A (2011) Activation of group II metabotropic glutamate receptors promotes DNA demethylation in the mouse brain. Mol Pharmacol 80:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga E, Nambu S, Oka M, Iriki A (2015) Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex. Neuroscience 284:566–580

    Article  CAS  PubMed  Google Scholar 

  • Maze I, Noh K-M, Allis CD (2013) Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 38:3–22

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18

    Article  CAS  PubMed  Google Scholar 

  • Melis JPM, Luijten M, Mullenders LHF, van Steeg H (2011) The role of XPC: implications in cancer and oxidative DNA damage. Mutat Res 728:107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME (2011) Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 152:3603–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang S-C, Petronis A (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82:696–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  CAS  PubMed  Google Scholar 

  • Miller-Delaney SFC, Das S, Sano T, Jimenez-Mateos EM, Bryan K, Buckley PG, Stallings RL, Henshall DC (2012) Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J Neurosci 32:1577–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita T, Kubik S, Lewandowski G, Guzowski JF (2008) Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol Learn Mem 89:269–284

    Article  CAS  PubMed  Google Scholar 

  • Morrison JP, Ton T-V, Collins JB, Switzer RC, Little PB, Morgan DL, Sills RC (2009) Gene expression studies reveal that DNA damage, vascular perturbation, and inflammation contribute to the pathogenesis of carbonyl sulfide neurotoxicity. Toxicol Pathol 37:502–511

    Article  CAS  PubMed  Google Scholar 

  • Moskalev A, Plyusnina E, Shaposhnikov M, Shilova L, Kazachenok A, Zhavoronkov A (2012) The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle 11:4222–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naegele J (2009) Epilepsy and the plastic mind. Epilepsy Curr 9:166–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen A, Rauch TA, Pfeifer GP, Hu VW (2010) Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J 24:3036–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijboer CH, Heijnen CJ, Groenendaal F, van Bel F, Kavelaars A (2009) Alternate pathways preserve tumor necrosis factor-alpha production after nuclear factor-kappaB inhibition in neonatal cerebral hypoxia-ischemia. Stroke 40:3362–3368

    Article  CAS  PubMed  Google Scholar 

  • Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo I, Barrett SF, Hickson ID, Fornace AJ (1991) Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol Cell Biol 11:1009–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson PH (2011) Modeling autistic features in animals. Pediatr Res 69:34R–40R

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson AD, Hildesheim J, Fornace AJ, Hollander MC (2006) Neural tube development requires the cooperation of p53- and Gadd45a-associated pathways. Birth Defects Res Part A Clin Mol Teratol 76:129–132

    Article  CAS  Google Scholar 

  • Peedicayil J (2011) Epigenetic management of major psychosis. Clin Epigenetics 2:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  CAS  PubMed  Google Scholar 

  • Plyusnina EN, Shaposhnikov MV, Moskalev AA (2011) Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology 12:211–226

    Article  CAS  PubMed  Google Scholar 

  • Plyusnina EN, Shaposhnikov MV, Moskalev AA (2012) Geroprotective effects of activation of D-GADD45 DNA reparation gene in Drosophila melanogaster nervous system. Bull Exp Biol Med 152:340–343

    Article  CAS  PubMed  Google Scholar 

  • Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeh R, Allis CD (2011) Genome-wide “re-”modeling of nucleosome positions. Cell 147:263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha RN, Wissink EM, Bailey ER, Zhao M, Fargo DC, Hwang J-Y, Daigle KR, Fenn JD, Adelman K, Dudek SM (2011) Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II. Nat Neurosci 14:848–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakharkar AJ, Kyzar EJ, Gavin DP, Zhang H, Chen Y, Krishnan HR, Grayson DR, Pandey SC (2019) Altered amygdala DNA methylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. Neuropharmacology 157:107679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiard-Baron D, Gosset P, Nicole A, Sinet PM, Christen Y, Ceballos-Picot I (1999) Identification of beta-amyloid-responsive genes by RNA differential display: early induction of a DNA damage-inducible gene, gadd45. Exp Neurol 158:206–213

    Article  CAS  PubMed  Google Scholar 

  • Santiard-Baron D, Lacoste A, Ellouk-Achard S, Soulié C, Nicole A, Sarasin A, Ceballos-Picot I (2001) The amyloid peptide induces early genotoxic damage in human preneuron NT2. Mutat Res 479:113–120

    Article  CAS  PubMed  Google Scholar 

  • Sarkisian MR, Siebzehnrubl D (2012) Abnormal levels of gadd45alpha in developing neocortex impair neurite outgrowth. PLoS One 7:e44207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkisian MR, Bartley CM, Chi H, Nakamura F, Hashimoto-Torii K, Torii M, Flavell RA, Rakic P (2006) MEKK4 signaling regulates filamin expression and neuronal migration. Neuron 52:789–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Kastner R, Zhao W, Truettner J, Belayev L, Busto R, Ginsberg MD (1998) Pixel-based image analysis of HSP70, GADD45 and MAP2 mRNA expression after focal cerebral ischemia: hemodynamic and histological correlates. Brain Res Mol Brain Res 63:79–97

    Article  CAS  PubMed  Google Scholar 

  • Sharma RP, Grayson DR, Gavin DP (2008) Histone deacetylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res 98:111–117

    Article  PubMed  Google Scholar 

  • Sheng N, Xie Z, Wang C, Bai G, Zhang K, Zhu Q, Song J, Guillemot F, Chen Y-G, Lin A, Jing N (2010) Retinoic acid regulates bone morphogenic protein signal duration by promoting the degradation of phosphorylated Smad1. Proc Natl Acad Sci U S A 107:18886–18891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin C, McNamara JO (1994) Mechanism of epilepsy. Annu Rev Med 45:379–389

    Article  CAS  PubMed  Google Scholar 

  • Shulha HP, Cheung I, Whittle C, Wang J, Virgil D, Lin CL, Guo Y, Lessard A, Akbarian S, Weng Z (2012) Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Arch Gen Psychiatry 69:314–324

    Article  CAS  PubMed  Google Scholar 

  • Song C-X, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen C-H, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    Article  CAS  PubMed  Google Scholar 

  • Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23:7407–7411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stilling RM, Fischer A (2011) The role of histone acetylation in age-associated memory impairment and Alzheimer’s disease. Neurobiol Learn Mem 96:19–26

    Article  CAS  PubMed  Google Scholar 

  • Sultan FA, Day JJ (2011) Epigenetic mechanisms in memory and synaptic function. Epigenomics 3:157–181

    Article  CAS  PubMed  Google Scholar 

  • Sultan FA, Wang J, Tront J, Liebermann DA, Sweatt JD (2012) Genetic deletion of gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity. J Neurosci 32:17059–17066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweatt JD (2009) Mechanisms of memory. Academic

    Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    Article  CAS  PubMed  Google Scholar 

  • Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF (2012) GADD45 proteins: central players in tumorigenesis. Curr Mol Med 12:634–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y-W, Zhang S-J, Hoffmann T, Bading H (2012) Increasing levels of wild-type CREB up-regulates several activity-regulated inhibitor of death (AID) genes and promotes neuronal survival. BMC Neurosci 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taoufik E, Probert L (2008) Ischemic neuronal damage. Curr Pharm Des 14:3565–3573

    Article  CAS  PubMed  Google Scholar 

  • Torp R, Su JH, Deng G, Cotman CW (1998) GADD45 is induced in Alzheimer’s disease, and protects against apoptosis in vitro. Neurobiol Dis 5:245–252

    Article  CAS  PubMed  Google Scholar 

  • Uberti D, Carsana T, Bernardi E, Rodella L, Grigolato P, Lanni C, Racchi M, Govoni S, Memo M (2002) Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer’s disease patients. J Cell Sci 115:3131–3138

    Article  CAS  PubMed  Google Scholar 

  • Uchino S, Waga C (2013) SHANK3 as an autism spectrum disorder-associated gene. Brain Dev 35(2):106–110

    Article  PubMed  Google Scholar 

  • Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough CB, Brindle PK, Abel T, Wood MA (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci 27:6128–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, Guidotti A, Costa E (2004) 008 DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 101:348–353

    Article  CAS  PubMed  Google Scholar 

  • Veldic M, Guidotti A, Maloku E, Davis JM, Costa E (2005) 009 In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 102:2152–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Qin Z-H (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15:1382–1402

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJ, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A 96:3706–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sun H, Penna Della K, Benz RJ, Xu J, Gerhold DL, Holder DJ, Koblan KS (2002) Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 114:529–546

    Article  CAS  PubMed  Google Scholar 

  • Wang S-C, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Zhou C, Wang Z, Liu J, Jing Z, Zhang Z, Wang Y (2011) Dynamic variation of genes profiles and pathways in the hippocampus of ischemic mice: a genomic study. Brain Res 1372:13–21

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Ding D, Salvi R (2010) Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience 168:288–299

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Sun YE (2009) Reversing DNA methylation: new insights from neuronal activity-induced Gadd45b in adult neurogenesis. Sci Signal 2:pe17

    Article  PubMed  CAS  Google Scholar 

  • Xiao H-S, Huang Q-H, Zhang F-X, Bao L, Lu Y-J, Guo C, Yang L, Huang W-J, Fu G, Xu S-H, Cheng X-P, Yan Q, Zhu Z-D, Zhang X, Chen Z, Han Z-G, Zhang X (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 99:8360–8365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Miyamoto Y, Sanbe A, Tanoue A (2006) JNK phosphorylation of paxillin, acting through the Rac1 and Cdc42 signaling cascade, mediates neurite extension in N1E-115 cells. Exp Cell Res 312:2954–2961

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi J, Miyamoto Y, Murabe M, Fujiwara Y, Sanbe A, Fujita Y, Murase S, Tanoue A (2007) Gadd45a, the gene induced by the mood stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E-115 neuroblastoma cells. Exp Cell Res 313:1886–1896

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Schneider EL, Mori N (1994) Cloning of the rat Gadd45 cDNA and its mRNA expression in the brain. Gene 151:253–255

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Okazaki T, Hughes PE, Schneider EL, Mori N (1996) Cloning of rat GADD45 gene and induction analysis following ionizing radiation in vivo. FEBS Lett 380:87–92

    Article  CAS  PubMed  Google Scholar 

  • Zeman RJ, Zhao J, Zhang Y, Zhao W, Wen X, Wu Y, Pan J, Bauman WA, Cardozo C (2009) Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflugers Arch 458:525–535

    Article  CAS  PubMed  Google Scholar 

  • Zhan Q, Chen IT, Antinore MJ, Fornace AJ (1998) Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol 18:2768–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Bae I, Krishnaraju K, Azam N, Fan W, Smith K, Hoffman B, Liebermann DA (1999) CR6: a third member in the MyD118 and Gadd45 gene family which functions in negative growth control. Oncogene 18:4899–4907

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B, Klibanski A (2002) Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 87:1262–1267

    CAS  PubMed  Google Scholar 

  • Zhang S-J, Zou M, Lu L, Lau D, Ditzel DAW, Delucinge-Vivier C, Aso Y, Descombes P, Bading H (2009) Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5:e1000604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu RL, Graham SH, Jin J, Stetler RA, Simon RP, Chen J (1997) Kainate induces the expression of the DNA damage-inducible gene, GADD45, in the rat brain. Neuroscience 81:707–720

    Article  CAS  PubMed  Google Scholar 

  • Zipperly ME, Sultan FA, Graham GE, Brane AC, Simpkins NA, Carullo N, Ianov L, Day JJ (2021) Regulation of dopamine-dependent transcription and cocaine action by Gadd45b. Neuropsychopharmacology 46:709–720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Pr J. David Sweat for his help with the initial chapter and his continuous unlimited unconditional support. This work is supported by an NIH-NIA grant AG054411 awarded to BES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraz A. Sultan .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sultan, F.A., Sawaya, B.E. (2022). Gadd45 in Neuronal Development, Function, and Injury. In: Zaidi, M.R., Liebermann, D.A. (eds) Gadd45 Stress Sensor Genes. Advances in Experimental Medicine and Biology, vol 1360. Springer, Cham. https://doi.org/10.1007/978-3-030-94804-7_9

Download citation

Publish with us

Policies and ethics