Skip to main content

Nanocellulose as Reinforcement Materials for Polymer Matrix Composites

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Cellulose is one of the most desirable materials with no exceptions. In recent years, considerable work on nanocellulose-based polymer composites has played a significant role in the production of sustainable and efficient materials. Different kinds of nanocelluloses, derived from bottom-up strategy (bacterial celluloses) to top-down strategy (cellulose nanofiber and nanocrystal), are probably suitable for a wide range of industrial applications. The form of a nanomaterial, as well as the choice of the polymer matrix, is indeed crucial for producing well-defined nanocomposites from a polymer-fill-compatible viewpoint for the desirable reinforcement and precise application. Cellulose nanofiber (CNF) and cellulose nanocrystal (CNC) are some of the nanocellulosic materials to produce the polymer-based nanocomposites. Because of several important properties such as biocompatibility, CNCs have attracted great attention from polymer researchers as strengtheners of nanocomposite fillers. Their preparation is quite challenging because of its extensive formulation, which may lack in compatibility with the polymer. This problem might be averted via several covalent and non-covalent interactions. The main focus is on melting processes and a brief discussion on their synthesis and properties that have not yet been accurately processed and continued to be a challenge. This chapter will provide a general guide for the design and use of nanocellulose properties and the development of functional polymers for polymer/nanocellulose compounds to pave the way for different interactions between polymer and fillers via different processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammani, S., Barhoum, A., Bechelany, M.: Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties. J. Mater. Sci. 53, 1911–1921 (2018)

    Article  CAS  Google Scholar 

  2. Barhoum, A., Jeevanandam, J., Rastogi, A., Samyn, P., Boluk, Y., Dufresne, A., Danquah, M.K., Bechelany, M.: Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale. 12, 22845–22890 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. Punia, H., Tokas, J., Malik, A., Kumar, N.: Enzymes as nanoadditives: A promising alternative for biofuel production. In: Nanomaterials: Application in Biofuels and Bioenergy Production Systems; R. Praveen Kumar and B. Bharathiraja., Eds., 1st edition, Academic Press, London, United Kingdom. Chapter 30, pp. 631–662. ISBN: 9780128224014 (2021). https://doi.org/10.1016/B978-0-12-822401-4.00019-2

  4. Rani, A., Rani, K., Tokas, J., Anamika, Singh, A., Kumar, R., Punia, H., Kumar, S.: Nanomaterials for Agriculture Input Use Efficiency. In: Resources Use Efficiency in Agriculture; Kumar, S., Meena, R.S., Jhariya, M.K., Eds.; Springer Nature Singapore Pvt. Ltd.: Singapore, pp. 137–175. ISBN: 978-981-15-6953-1 (2020). https://doi.org/10.1007/978-981-15-6953-1_5

  5. Punia, H., Bhadu, S. and Tokas, J.: Nanotechnology and Nanomedicine: Going Small Means Aiming Big. 2018. In Advances in Biochemistry & Applications in Medicine; Shrestha, R., Ed.; Open Access eBooks: Las Vegas, Nevada, USA, 2018.Chapter 2, pp. 1–16. (2018)

    Google Scholar 

  6. Sheikhi, A.: Emerging Cellulose-Based Nanomaterials and Nanocomposites. In Nanomaterials and Polymer Nanocomposites: Raw Materials to Applications (pp. 307–351). Elsevier, London, United Kingdom (2018). https://doi.org/10.1016/B978-0-12-814615-6.00009-6

  7. Naz, S., Ali, J.S., Zia, M.: Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Bio-Design Manuf. 2, 187–212 (2019)

    Article  CAS  Google Scholar 

  8. Charreau, H., Cavallo, E., Foresti, M.L.: Patents involving nanocellulose: analysis of their evolution since 2010. Carbohydr. Polym. 237, 116039 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. Carvalho, T., Guedes, G., Sousa, F.L., Freire, C.S.R., Santos, H.A.: Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering. Biotechnol. J. 14, 1900059 (2019)

    Article  CAS  Google Scholar 

  10. Chávez-Guerrero, L., Sepúlveda-Guzmán, S., Silva-Mendoza, J., Aguilar-Flores, C., Pérez-Camacho, O.: Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohydr. Polym. 181, 642–649 (2018)

    Article  PubMed  CAS  Google Scholar 

  11. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Habibi, Y.: Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43, 1519–1542 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Eichhorn, S.J.: Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter. 7, 303–315 (2011)

    Article  CAS  Google Scholar 

  14. Missoum, K., Belgacem, M.N., Bras, J.: Nanofibrillated cellulose surface modification: a review. Materials (Basel). 6, 1745–1766 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Salas, C., Nypelö, T., Rodriguez-Abreu, C., Carrillo, C., Rojas, O.J.: Nanocellulose properties and applications in colloids and interfaces. Curr. Opin. Colloid Interface Sci. 19, 383–396 (2014)

    Article  CAS  Google Scholar 

  16. Nishio, Y., Teramoto, Y., Kusumi, R., Sugimura, K., Aranishi, Y.: Blends and graft copolymers of cellulosics: toward the design and development of advanced films and fibers. 1st ed. (2017); Springer Switzerland. ISBN: 978-3-319-55321-4 

    Google Scholar 

  17. Hao, W., Wang, M., Zhou, F., Luo, H., Xie, X., Luo, F., Cha, R.: A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydr. Polym., 243,116466 (2020)

    Google Scholar 

  18. Siqueira, G., Bras, J., Dufresne, A.: Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel). 2, 728–765 (2010)

    Article  CAS  Google Scholar 

  19. Miao, C., Hamad, W.Y.: Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose. 20, 2221–2262 (2013)

    Article  CAS  Google Scholar 

  20. Lee, K.-Y., Aitomäki, Y., Berglund, L.A., Oksman, K., Bismarck, A.: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105, 15–27 (2014)

    Article  CAS  Google Scholar 

  21. Jarvis, M.C.: Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170045 (2018)

    Article  CAS  Google Scholar 

  22. Mozdyniewicz, D.J., Nieminen, K., Kraft, G., Sixta, H.: Degradation of viscose fibers during acidic treatment. Cellulose. 23, 213–229 (2016)

    Article  CAS  Google Scholar 

  23. Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R.: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose. 22, 935–969 (2015)

    Article  CAS  Google Scholar 

  24. Reid, M.S., Villalobos, M., Cranston, E.D.: Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir. 33, 1583–1598 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. Yano, H.: Production of cellulose nanofibers and their applications. Nippon Gomu Kyokaishi. 85, 376–381 (2012)

    Article  CAS  Google Scholar 

  26. Hubbe, M.A., Ferrer, A., Tyagi, P., Yin, Y., Salas, C., Pal, L., Rojas, O.J.: Nanocellulose in thin films, coatings, and plies for packaging applications: a review. Bioresources. 12, 2143–2233 (2017)

    Article  CAS  Google Scholar 

  27. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y., Liu, Y., Chen, W., Wang, Q., Liu, Y., Li, J., Yu, H.: Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem. 18, 1010–1018 (2016)

    Article  CAS  Google Scholar 

  29. Miao, J., Yu, Y., Jiang, Z., Zhang, L.: One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose. 23, 1209–1219 (2016)

    Article  CAS  Google Scholar 

  30. Luzi, F., Fortunati, E., Jiménez, A., Puglia, D., Pezzolla, D., Gigliotti, G., Kenny, J.M., Chiralt, A., Torre, L.: Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind. Crop. Prod. 93, 276–289 (2016)

    Article  CAS  Google Scholar 

  31. Thambiraj, S., Shankaran, D.R.: Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl. Surf. Sci. 412, 405–416 (2017)

    Article  CAS  Google Scholar 

  32. Kaushik, A., Singh, M., Verma, G.: Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr. Polym. 82, 337–345 (2010)

    Article  CAS  Google Scholar 

  33. Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, A.: Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18, 5002–5010 (2008)

    Article  CAS  Google Scholar 

  34. Dos Santos, R.M., Neto, W.P.F., Silvério, H.A., Martins, D.F., Dantas, N.O., Pasquini, D.: Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Crop. Prod. 50, 707–714 (2013)

    Article  CAS  Google Scholar 

  35. Holland, C., Perzon, A., Cassland, P.R.C., Jensen, J.P., Langebeck, B., Sørensen, O.B., Whale, E., Hepworth, D., Plaice-Inglis, R., Moestrup, Ø.: Nanofibers produced from agro-industrial plant waste using entirely enzymatic pretreatments. Biomacromolecules. 20, 443–453 (2018)

    Article  PubMed  CAS  Google Scholar 

  36. Moharrami, P., Motamedi, E.: Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresour. Technol. 313, 123661 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. Mueller, S., Weder, C., Foster, E.J.: Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv. 4, 907–915 (2014)

    Article  CAS  Google Scholar 

  38. Brown Jr., R.M.: The biosynthesis of cellulose. J. Macromol. Sci. Part A Pure Appl. Chem. 33, 1345–1373 (1996)

    Article  Google Scholar 

  39. Gatenholm, P., Klemm, D.: Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35, 208–213 (2010)

    Google Scholar 

  40. Beck-Candanedo, S., Roman, M., Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 6, 1048–1054 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. Dong, X.M., Kimura, T., Revol, J.-F., Gray, D.G.: Effects of ionic strength on the isotropic− chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir. 12, 2076–2082 (1996)

    Article  CAS  Google Scholar 

  42. Dufresne, A.: Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J. Nanosci. Nanotechnol. 6, 322–330 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Favier, V., Chanzy, H., Cavaillé, J.: Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules. 28, 6365–6367 (1995)

    Article  CAS  Google Scholar 

  44. Araki, J., Wada, M., Kuga, S., Okano, T.: Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A Physicochem. Eng. Asp. 142, 75–82 (1998)

    Article  CAS  Google Scholar 

  45. Strømme, M., Mihranyan, A., Ek, R.: What to do with all these algae? Mater. Lett. 57, 569–572 (2002)

    Article  Google Scholar 

  46. Börjesson, M., Westman, G.: Crystalline nanocellulose – preparation, modification, and properties. Cellul. Asp. Curr. Trends, 159–191 (2015)

    Google Scholar 

  47. Chinga-Carrasco, G., Yu, Y., Diserud, O.: Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and Pinus radiata Kraft pulp fibers. Microsc. Microanal. 17, 563 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. Geng, L., Chen, B., Peng, X., Kuang, T.: Strength and modulus improvement of wet-spun cellulose I filaments by sequential physical and chemical cross-linking. Mater. Des. 136, 45–53 (2017)

    Article  CAS  Google Scholar 

  49. de Souza Lima, M.M., Borsali, R.: Rodlike cellulose microcrystals: structure, properties, and applications. Macromol. Rapid Commun. 25, 771–787 (2004)

    Article  CAS  Google Scholar 

  50. Löbmann, K., Svagan, A.J.: Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. Int. J. Pharm. 533, 285–297 (2017)

    Article  PubMed  CAS  Google Scholar 

  51. Tayeb, P., Tayeb, A.H.: Nanocellulose applications in sustainable electrochemical and piezoelectric systems: a review. Carbohydr. Polym. 224, 115149 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. Shi, Z., Phillips, G.O., Yang, G.: Nanocellulose electroconductive composites. Nanoscale. 5, 3194–3201 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. Bae, S., Shoda, M.: Statistical optimization of culture conditions for bacterial cellulose production using box-Behnken design. Biotechnol. Bioeng. 90, 20–28 (2005)

    Article  CAS  PubMed  Google Scholar 

  54. George, J., Ramana, K.V., Bawa, A.S.: Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int. J. Biol. Macromol. 48, 50–57 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Alemdar, A., Sain, M.: Isolation and characterization of nanofibers from agricultural residues–wheat straw and soy hulls. Bioresour. Technol. 99, 1664–1671 (2008)

    Article  CAS  PubMed  Google Scholar 

  56. Mishra, S.P., Manent, A.-S., Chabot, B., Daneault, C.: Production of nanocellulose from native cellulose–various options utilizing ultrasound. Bioresources. 7, 422–436 (2012)

    CAS  Google Scholar 

  57. Fotie, G., Rampazzo, R., Ortenzi, M.A., Checchia, S., Fessas, D., Piergiovanni, L.: The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials. Polymers (Basel). 9, 415 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  58. De la Torre Roche, R., Servin, A., Hawthorne, J., Xing, B., Newman, L.A., Ma, X., Chen, G., White, J.C.: Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ. Sci. Technol. 49, 11866–11874 (2015)

    Article  PubMed  CAS  Google Scholar 

  59. Bardet, R., Reverdy, C., Belgacem, N., Leirset, I., Syverud, K., Bardet, M., Bras, J.: Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose. 22, 1227–1241 (2015)

    Article  CAS  Google Scholar 

  60. Lee, H., You, J., Jin, H.-J., Kwak, H.W.: Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: a comparison of nanofiber and nanocrystal. Carbohydr. Polym. 232, 115771 (2020)

    Article  CAS  PubMed  Google Scholar 

  61. Klemm, D., Heublein, B., Fink, H., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chemie Int. Ed. 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  62. Bardet, R., Bras, J.: Cellulose nanofibers and their use in paper industry. In: Handbook of green materials: 1 Bionanomaterials: separation processes, characterization and properties, pp. 207–232. World Scientific, Singapore (2014)

    Google Scholar 

  63. Lee, K.-Y., Quero, F., Blaker, J.J., Hill, C.A.S., Eichhorn, S.J., Bismarck, A.: Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose. 18, 595–605 (2011)

    Article  CAS  Google Scholar 

  64. Suetsugu, M., Kotera, M., Nishino, T.: Cellulosic nanocomposite prepared by acetylation of bacterial cellulose using supercritical carbon dioxide. In: Conference proceedings of the 17th international conference of composite materials, Edinburgh (2009)

    Google Scholar 

  65. Iguchi, M., Yamanaka, S., Budhiono, A.: Bacterial cellulose – a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000)

    Article  CAS  Google Scholar 

  66. Shimizu, Y., Sakakibara, K., Akimoto, S., Tsujii, Y.: Effective reinforcement of poly (methyl methacrylate) composites with a well-defined bacterial cellulose nanofiber network. ACS Sustain. Chem. Eng. 7, 13351–13358 (2019)

    Article  CAS  Google Scholar 

  67. Liebner, F., Aigner, N., Schimper, C., Potthast, A., Rosenau, T.: Bacterial cellulose aerogels: from lightweight dietary food to functional materials. In: Liebner, F; Rosenau, T, ACS Symposium Series 1107: Functional Materials from Renewable Sources, 57–74; American Chemical Society and Oxford University Press, Washington, DC (2012). ISBN 978-0-8412-2788-0.

    Google Scholar 

  68. Qiu, K., Netravali, A.N.: A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym. Rev. 54, 598–626 (2014)

    Article  CAS  Google Scholar 

  69. Qiu, K., Netravali, A.N.: Polyvinyl alcohol based biodegradable polymer nanocomposites, vol. 1, pp. 325–379. Nova Science Publisher, Hauppauge (2015)

    Google Scholar 

  70. Sato, A., Kabusaki, D., Okumura, H., Nakatani, T., Nakatsubo, F., Yano, H.: Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos. Part A Appl. Sci. Manuf. 83, 72–79 (2016)

    Article  CAS  Google Scholar 

  71. Heath, L., Thielemans, W.: Cellulose nanowhisker aerogels. Green Chem. 12, 1448–1453 (2010)

    Article  CAS  Google Scholar 

  72. Yang, L., Zhang, H., Yang, Q., Lu, D.: Bacterial cellulose–poly (vinyl alcohol) nanocomposite hydrogels prepared by chemical crosslinking. J. Appl. Polym. Sci. 126, E245–E251 (2012)

    Article  CAS  Google Scholar 

  73. Samyn, P., Laborie, M.-P., Mathew, A.P., Airoudj, A., Haidara, H., Roucoules, V.: Metastable patterning of plasma nanocomposite films by incorporating cellulose nanowhiskers. Langmuir. 28, 1427–1438 (2012)

    Article  CAS  PubMed  Google Scholar 

  74. Choi, S.M., Shin, E.J.: The nanofication and functionalization of bacterial cellulose and its applications. Nano. 10, 406 (2020)

    CAS  Google Scholar 

  75. Bencherif, S.A., Siegwart, D.J., Srinivasan, A., Horkay, F., Hollinger, J.O., Washburn, N.R., Matyjaszewski, K.: Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials. 30, 5270–5278 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Q., Cai, J., Zhang, L., Xu, M., Cheng, H., Han, C.C., Kuga, S., Xiao, J., Xiao, R.: A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J. Mater. Chem. A. 1, 6678–6686 (2013)

    Article  CAS  Google Scholar 

  77. Chen, P., Cho, S.Y., Jin, H.-J.: Modification and applications of bacterial celluloses in polymer science. Macromol. Res. 18, 309–320 (2010)

    Article  CAS  Google Scholar 

  78. Zhang, J., Elder, T.J., Pu, Y., Ragauskas, A.J.: Facile synthesis of spherical cellulose nanoparticles. Carbohydr. Polym. 69, 607–611 (2007)

    Article  CAS  Google Scholar 

  79. Aliyu, M., Hepher, M.J.: Effects of ultrasound energy on degradation of cellulose material. Ultrason. Sonochem. 7, 265–268 (2000)

    Article  CAS  PubMed  Google Scholar 

  80. Dienes, D., Egyhazi, A., Reczey, K.: Treatment of recycled fiber with Trichoderma cellulases. Ind. Crop. Prod. 20, 11–21 (2004)

    Article  CAS  Google Scholar 

  81. Halimi, M.T., Hassen, M.B., Sakli, F.: Cotton waste recycling: quantitative and qualitative assessment. Resour. Conserv. Recycl. 52, 785–791 (2008)

    Article  Google Scholar 

  82. Wrześniewska-Tosik, K., Wesołowska, E., Wawro, D., Struszczyk, H.: Improvement of the enzymatic utilisation of textile waste from cellulose/polyester blends. Fibres Text. East. Eur., 11(3), 63–66 (2003)

    Google Scholar 

  83. Isci, A., Demirer, G.N.: Biogas production potential from cotton wastes. Renew. Energy. 32, 750–757 (2007)

    Article  CAS  Google Scholar 

  84. Jeihanipour, A., Taherzadeh, M.J.: Ethanol production from cotton-based waste textiles. Bioresour. Technol. 100, 1007–1010 (2009)

    Article  CAS  PubMed  Google Scholar 

  85. Wang, L., Zhang, Y., Gao, P., Shi, D., Liu, H., Gao, H.: Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol. Bioeng. 93, 443–456 (2006)

    Article  CAS  PubMed  Google Scholar 

  86. Filson, P.B., Dawson-Andoh, B.E., Schwegler-Berry, D.: Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11, 1808–1814 (2009)

    Article  CAS  Google Scholar 

  87. Satyamurthy, P., Jain, P., Balasubramanya, R.H., Vigneshwaran, N.: Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr. Polym. 83, 122–129 (2011)

    Article  CAS  Google Scholar 

  88. Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6, 612–626 (2005)

    Article  PubMed  CAS  Google Scholar 

  89. Abe, K., Iwamoto, S., Yano, H.: Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 8, 3276–3278 (2007)

    Article  CAS  PubMed  Google Scholar 

  90. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S.: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1–33 (2010)

    Article  CAS  Google Scholar 

  91. Meyabadi, T.F., Sadeghi, G.M.M., Dadashian, F., Asl, H.E.Z.: From cellulosic waste to nanocomposites. Part 2: synthesis and characterization of polyurethane/cellulose nanocomposites. J. Mater. Sci. 48, 7283–7293 (2013)

    Article  CAS  Google Scholar 

  92. Azizinya, S., Ghanadha, M.R., Zali, A.A., Samadi, B.Y., Ahmadi, A.: An evaluation of quantitative traits related to drought resistance in synthetic wheat genotypes in stress and non-stress conditions. Iran. J. Agric. Sci. 36, 281–293 (2005)

    Google Scholar 

  93. Pandey, J.K., Lee, J.-W., Chu, W.-S., Kim, C.-S., Ahn, S.-H., Lee, C.S.-Y.: Cellulose nano whiskers from grass of Korea. Macromol. Res. 16, 396–398 (2008)

    Article  CAS  Google Scholar 

  94. Li, X., Ding, E., Li, G.K.: A method of preparing spherical nano-crystal cellulose with mixed crystalline forms of cellulose I and II. Chin. J. Polym. Sci. 19, 291–296 (2001)

    CAS  Google Scholar 

  95. Lu, P., Hsieh, Y.-L.: Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr. Polym. 82, 329–336 (2010)

    Article  CAS  Google Scholar 

  96. Meyabadi, T.F., Dadashian, F., Sadeghi, G.M.M., Asl, H.E.Z.: Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol. 261, 232–240 (2014)

    Article  CAS  Google Scholar 

  97. Al Hakkak, J., Grigsby, W.J., Kathirgamanathan, K., Edmonds, N.R.: Generation of spherical cellulose nanoparticles from ionic liquid processing via novel nonsolvent addition and drying. Adv. Mater. Sci. Eng. 2019, 1–6 (2019)

    Google Scholar 

  98. Beaumont, M., Nypelö, T., König, J., Zirbs, R., Opietnik, M., Potthast, A., Rosenau, T.: Synthesis of redispersible spherical cellulose II nanoparticles decorated with carboxylate groups. Green Chem. 18, 1465–1468 (2016)

    Article  CAS  Google Scholar 

  99. Lennholm, H., Henriksson, G.: Cellulose and carbohydrate chemistry. In: Pulp and Paper Chemistry and Technology: Wood Chemistry and Wood Biotechnology / [ed] Ek, Monica / Gellerstedt, Göran / Henriksson, Gunnar, Berlin: Walter de Gruyter, 71–99 (2009)

    Google Scholar 

  100. De France, K.J., Chan, K.J.W., Cranston, E.D., Hoare, T.: Enhanced mechanical properties in cellulose nanocrystal–poly (oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules. 17, 649–660 (2016)

    Article  PubMed  CAS  Google Scholar 

  101. Shen, R., Xue, S., Xu, Y., Liu, Q., Feng, Z., Ren, H., Zhai, H., Kong, F.: Research Progress and development demand of Nanocellulose reinforced polymer composites. Polymers (Basel). 12, 2113 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  102. Siró, I., Plackett, D., Hedenqvist, M., Ankerfors, M., Lindström, T.: Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J. Appl. Polym. Sci. 119, 2652–2660 (2011)

    Article  CAS  Google Scholar 

  103. Kim, J.-H., Shim, B.S., Kim, H.S., Lee, Y.-J., Min, S.-K., Jang, D., Abas, Z., Kim, J.: Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf. Technol. 2, 197–213 (2015)

    Article  Google Scholar 

  104. Leitner, J., Hinterstoisser, B., Wastyn, M., Keckes, J., Gindl, W.: Sugar beet cellulose nanofibril-reinforced composites. Cellulose. 14, 419–425 (2007)

    Article  CAS  Google Scholar 

  105. Zimmermann, T., Bordeanu, N., Strub, E.: Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79, 1086–1093 (2010)

    Article  CAS  Google Scholar 

  106. Sriupayo, J., Supaphol, P., Blackwell, J., Rujiravanit, R.: Preparation and characterization of α-chitin whisker-reinforced poly (vinyl alcohol) nanocomposite films with or without heat treatment. Polymer (Guildf). 46, 5637–5644 (2005)

    Article  CAS  Google Scholar 

  107. Ilyas, R.A., Sapuan, S.M., Sanyang, M.L., Ishak, M.R., Zainudin, E.S.: Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Curr. Anal. Chem. 14, 203–225 (2018)

    Article  CAS  Google Scholar 

  108. Liu, Y., Li, Y., Yang, G., Zheng, X., Zhou, S.: Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl. Mater. Interfaces. 7, 4118–4126 (2015)

    Article  CAS  PubMed  Google Scholar 

  109. Hasani, M., Cranston, E.D., Westman, G., Gray, D.G.: Cationic surface functionalization of cellulose nanocrystals. Soft Matter. 4, 2238–2244 (2008)

    Article  CAS  Google Scholar 

  110. Habibi, Y., Dufresne, A.: Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules. 9, 1974–1980 (2008)

    Article  CAS  PubMed  Google Scholar 

  111. Girouard, N.M., Xu, S., Schueneman, G.T., Shofner, M.L., Meredith, J.C.: Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl. Mater. Interfaces. 8, 1458–1467 (2016)

    Article  CAS  PubMed  Google Scholar 

  112. Azzam, F., Heux, L., Putaux, J.-L., Jean, B.: Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules. 11, 3652–3659 (2010)

    Article  CAS  PubMed  Google Scholar 

  113. Ladhar, A., Mabrouk, A.B.., Arous, M., Boufi, S., Kallel, A.: Dielectric properties of nanocomposites based on cellulose nanocrystals (CNCs) and poly (styrene-co-2-ethyl hexylacrylate) copolymer. Polymer (Guildf). 125, 76–89 (2017)

    Article  CAS  Google Scholar 

  114. Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  CAS  Google Scholar 

  115. Petrović, Z.S., Javni, I., Waddon, A., Bánhegyi, G.: Structure and properties of polyurethane–silica nanocomposites. J. Appl. Polym. Sci. 76, 133–151 (2000)

    Article  Google Scholar 

  116. Chan, C.-M., Wu, J., Li, J.-X., Cheung, Y.-K.: Polypropylene/calcium carbonate nanocomposites. Polymer (Guildf). 43, 2981–2992 (2002)

    Article  CAS  Google Scholar 

  117. Rong, M.Z., Zhang, M.Q., Zheng, Y.X., Zeng, H.M., Walter, R., Friedrich, K.: Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer (Guildf). 42, 167–183 (2001)

    Article  CAS  Google Scholar 

  118. Mallick, P.K.: Fiber-reinforced composites: materials, manufacturing, and design. CRC Press, Boca Raton, Florida, USA (2007)

    Google Scholar 

  119. Ash, B.J., Schadler, L.S., Siegel, R.W.: Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater. Lett. 55, 83–87 (2002)

    Article  CAS  Google Scholar 

  120. Siegel, R.W., Chang, S.K., Ash, B.J., Stone, J., Ajayan, P.M.: Mechanical behavior of polymer and ceramic matrix nanocomposites. Scr. Mater. 44, 2061–2064 (2001)

    Article  CAS  Google Scholar 

  121. Jin, L., Bower, C., Zhou, O.: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–1199 (1998)

    Article  CAS  Google Scholar 

  122. Yasmin, A., Luo, J.-J., Daniel, I.M.: Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1182–1189 (2006)

    Article  CAS  Google Scholar 

  123. Oksman, K., Mathew, A.P., Jonoobi, M., Hietala, M., Vargas, N.H.: Cellulose nanocomposites processing using extrusion. (2013)

    Google Scholar 

  124. Ganguly, K., Lim, K.-T.: Nanocellulose-based polymer nanohybrids and nanocomposite applications. In: Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems, pp. 485–504. Elsevier, London, United Kingdom (2020)

    Google Scholar 

  125. Pahimanolis, N., Hippi, U., Johansson, L.-S., Saarinen, T., Houbenov, N., Ruokolainen, J., Seppälä, J.: Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose. 18, 1201–1212 (2011)

    Article  CAS  Google Scholar 

  126. Luong, N.D., Pahimanolis, N., Hippi, U., Korhonen, J.T., Ruokolainen, J., Johansson, L.-S., Nam, J.-D., Seppälä, J.: Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J. Mater. Chem. 21, 13991–13998 (2011)

    Article  CAS  Google Scholar 

  127. Pahimanolis, N., Salminen, A., Penttilä, P.A., Korhonen, J.T., Johansson, L.-S., Ruokolainen, J., Serimaa, R., Seppälä, J.: Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength. Cellulose. 20, 1459–1468 (2013)

    Article  CAS  Google Scholar 

  128. Kiziltas, E.E., Kiziltas, A., Blumentritt, M., Gardner, D.J.: Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr. Polym. 129, 148–155 (2015)

    Article  PubMed  CAS  Google Scholar 

  129. Shah, N., Ul-Islam, M., Khattak, W.A., Park, J.K.: Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym. 98, 1585–1598 (2013)

    Article  CAS  PubMed  Google Scholar 

  130. Hu, W., Chen, S., Yang, J., Li, Z., Wang, H.: Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 101, 1043–1060 (2014)

    Article  CAS  PubMed  Google Scholar 

  131. Ambrosio-Martín, J., Fabra, M.J., Lopez-Rubio, A., Lagaron, J.M.: Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose. 22, 1201–1226 (2015)

    Article  CAS  Google Scholar 

  132. Peng, K., Wang, B., Chen, S., Zhong, C., Wang, H.: Preparation and properties of polystyrene/bacterial cellulose nanocomposites by in situ polymerization. J. Macromol. Sci. Part B. 50, 1921–1927 (2011)

    Article  CAS  Google Scholar 

  133. Figueiredo, A.R.P., Figueiredo, A.G.P.R., Silva, N.H.C.S., Barros-Timmons, A., Almeida, A., Silvestre, A.J.D., Freire, C.S.R.: Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate. Carbohydr. Polym. 123, 443–453 (2015)

    Article  CAS  PubMed  Google Scholar 

  134. Yang, G., Wang, C., Hong, F., Yang, X., Cao, Z.: Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications. Carbohydr. Polym. 115, 636–642 (2015)

    Article  CAS  PubMed  Google Scholar 

  135. Tang, L., Han, J., Jiang, Z., Chen, S., Wang, H.: Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity. Carbohydr. Polym. 117, 230–235 (2015)

    Article  CAS  PubMed  Google Scholar 

  136. Sun, P., Chen, J., Liu, Z.-W., Liu, Z.-T.: Poly (vinyl alcohol) functionalized β-Cyclodextrin as an inclusion complex. J. Macromol. Sci. Part A Pure Appl. Chem. 46, 533–540 (2009)

    Article  CAS  Google Scholar 

  137. Kai, A., Kobayashi, T.: Influence of poly (vinyl alcohol) on the structure of bacterial cellulose spherulite. Polym. J. 24, 131–133 (1992)

    Article  CAS  Google Scholar 

  138. Gea, S., Bilotti, E., Reynolds, C.T., Soykeabkeaw, N., Peijs, T.: Bacterial cellulose–poly (vinyl alcohol) nanocomposites prepared by an in-situ process. Mater. Lett. 64, 901–904 (2010)

    Article  CAS  Google Scholar 

  139. Castro, C., Vesterinen, A., Zuluaga, R., Caro, G., Filpponen, I., Rojas, O.J., Kortaberria, G., Gañán, P.: In situ production of nanocomposites of poly (vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose. 21, 1745–1756 (2014)

    Article  CAS  Google Scholar 

  140. Luo, H., Xiong, G., Yang, Z., Raman, S.R., Si, H., Wan, Y.: A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv. 4, 14369–14372 (2014)

    Article  CAS  Google Scholar 

  141. Si, H., Luo, H., Xiong, G., Yang, Z., Raman, S.R., Guo, R., Wan, Y.: One-step in situ biosynthesis of graphene oxide–bacterial cellulose nanocomposite hydrogels. Macromol. Rapid Commun. 35, 1706–1711 (2014)

    Article  CAS  PubMed  Google Scholar 

  142. Pranger, L., Tannenbaum, R.: Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules. 41, 8682–8687 (2008)

    Article  CAS  Google Scholar 

  143. Zhou, C., Wu, Q., Yue, Y., Zhang, Q.: Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J. Colloid Interface Sci. 353, 116–123 (2011)

    Article  CAS  PubMed  Google Scholar 

  144. Luong, N.D., Korhonen, J.T., Soininen, A.J., Ruokolainen, J., Johansson, L.-S., Seppälä, J.: Processable polyaniline suspensions through in situ polymerization onto nanocellulose. Eur. Polym. J. 49, 335–344 (2013)

    Article  CAS  Google Scholar 

  145. Cao, X., Habibi, Y., Lucia, L.A.: One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J. Mater. Chem. 19, 7137–7145 (2009)

    Article  CAS  Google Scholar 

  146. Mabrouk, A.B.., Magnin, A., Belgacem, M.N., Boufi, S.: Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers. Compos. Sci. Technol. 71, 818–827 (2011)

    Article  CAS  Google Scholar 

  147. Mabrouk, A.B.., Salon, M.C.B., Magnin, A., Belgacem, M.N., Boufi, S.: Cellulose-based nanocomposites prepared via mini-emulsion polymerization: understanding the chemistry of the nanocellulose/matrix interface. Colloids Surf. A Physicochem. Eng. Asp. 448, 1–8 (2014)

    Article  CAS  Google Scholar 

  148. Banerjee, M., Sain, S., Mukhopadhyay, A., Sengupta, S., Kar, T., Ray, D.: Surface treatment of cellulose fibers with methylmethacrylate for enhanced properties of in situ polymerized PMMA/cellulose composites. J. Appl. Polym. Sci. 131 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Punia, H. et al. (2022). Nanocellulose as Reinforcement Materials for Polymer Matrix Composites. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_25

Download citation

Publish with us

Policies and ethics