Skip to main content
Log in

Surface only modification of bacterial cellulose nanofibres with organic acids

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) nanofibres were modified only on their surface using an esterification reaction with acetic acid, hexanoic acid or dodecanoic acid. This reaction rendered the extremely hydrophilic surfaces of BC nanofibres hydrophobic. The hydrophobicity of BC increased with increasing carbon chain length of the organic acids used for the esterification reaction. Streaming (zeta-) potential measurements showed a slight shift in the isoelectric point and a decrease in ζplateau was also observed after the esterification reactions. This was attributed to the loss of acidic functional groups and increase in hydrophobicity due to esterification of BC with organic acids. A method based on hydrogen/deuterium exchange was developed to evaluate the availability of surface hydroxyl groups of neat and modified BC. The thermal degradation temperature of modified BC sheets decreased with increasing carbon chain length of the organic acids used. This is thought to be a direct result of the esterification reaction, which significantly reduces the packing efficiency of the nanofibres because of a reduction in the number of effective hydrogen bonds between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Since we do not know the molecular weight of BC, this value was obtained by using the molecular weight of the glucose-repeating unit in cellulose (C6H10O5)

  2. Although starting the reaction with freeze-dried BC is possible, which allows for the re-dispersion of BC in the reaction medium, its modification results in significant bulk modification of BC for which we have no explanation to date.

References

  • Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A (2008a) Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate. Comp Sci Tech 68(1):215–227

    Article  CAS  Google Scholar 

  • Baltazar-y-Jimenez A, Juntaro J, Bismarck A (2008b) Effect of atmospheric air pressure plasma treatment on the thermal behaviour of natural fibres and dynamical mechanical properties of randomly-oriented short fibre composites. J Biobased Mater Bioenergy 2(3):264–272

    Article  Google Scholar 

  • Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state C-13 nuclear magnetic-resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22(4):1615–1617

    Article  CAS  Google Scholar 

  • Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151

    Article  CAS  Google Scholar 

  • Bismarck A (2008) Are hierarchical composite structures the way forward to improve the properties of truly green composites? Express Polym Lett 2(10):687

    Article  Google Scholar 

  • Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Blaker JJ, Lee KY, Li XX, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem 11(9):1321–1326

    Article  CAS  Google Scholar 

  • Callies M, Quere D (2005) On water repellency. Soft Matter 1(1):55–61

    Article  CAS  Google Scholar 

  • Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215(6):989–996

    Article  CAS  Google Scholar 

  • Cichocki FR, Thomason JL (2002) Thermoelastic anisotropy of a natural fiber. Comp Sci Tech 62(5):669–678

    Article  CAS  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 113–4:403–411

    Article  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291–307

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102

    Article  CAS  Google Scholar 

  • Frilette VJ, Hanle J, Mark H (1948) Rate of exchange of cellulose with heavy water. J Amer Chem Soc 70(3):1107–1113

    Article  CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhesion Sci Technol 22(5–6):545–567

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Comp Sci Tech 64(15):2407–2413

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651

    Article  CAS  Google Scholar 

  • Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513

    Article  CAS  Google Scholar 

  • Hunter RJ (1993) Introduction to modern colloid science. Oxford University Press Inc., New York

    Google Scholar 

  • Ifuku S, Nogi M, Kentaro A, Keishin H, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optical transparent composites: dependence on acetyl-group DS. Biomacromolecules 8(6):1937–1978

    Article  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270

    Article  CAS  Google Scholar 

  • Ilharco LM, Gracia RR, daSilva JL, Ferreira LFV (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132

    Article  CAS  Google Scholar 

  • Jandura P, Riedl B, Kokta BV (2000) Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab 70(3):387–394

    Article  CAS  Google Scholar 

  • Juntaro J (2009) Environmentally friendly hierarchical composites. PhD Thesis, Imperial College London, London

  • Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces 14(7–9):753–762

    Article  CAS  Google Scholar 

  • Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20(16):3122–3126

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Comp Sci Tech 69(15–16):2724–2733

    Article  CAS  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310

    Article  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforcced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Comp Sci Techn 69(7–8):1293–1297

    Article  CAS  Google Scholar 

  • Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechancial properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composites. Macromolecules 37(20):7683–7687

    Article  CAS  Google Scholar 

  • Nishiyama Y, Isogai A, Okano T, Muller M, Chanzy H (1999) Intracrystalline deuteration of native cellulase. Macromolecules 32(6):2078–2081

    Article  CAS  Google Scholar 

  • Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Property enhancement of optical transparent bionanofiber composites by acetylation. Appl Phys Lett 89(23):233123

    Article  Google Scholar 

  • Olah A, Hillborg H, Vancso GJ (2005) Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Appl Surf Sci 239(3–4):410–423

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978

    Article  CAS  Google Scholar 

  • Pedersen NR, Wimmer R, Emmersen J, Degn P, Pedersen LH (2002) Effect of fatty acid chain length on initial reaction rates and regioselectivity of lipase-catalysed esterification of disaccharides. Carbohydr Res 337(13):1179–1184

    Article  CAS  Google Scholar 

  • Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9(6):1643–1651

    Article  CAS  Google Scholar 

  • Radiman C, Yulianil G (2008) Coconut water as a potential resource for cellulose acetate membrane preparation. Polym Int 57(3):502–508

    Article  CAS  Google Scholar 

  • Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical-properties of cellulose. Macromol Theory Simul 4(4):725–743

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  Google Scholar 

  • Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  • Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676

    Article  CAS  Google Scholar 

  • Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin-Jr AE, Conrad CM (1959) An emperical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Suetsugu M, Kotera M, Nishino T (2009) Cellulosic nanocomposite prepared by acetylation of bacterial cellulose using supercritical carbon dioxide. In: Conference proceedings of the 17th international conference of composite materials, Edinburgh, 2009

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24(14):4168–4175

    Article  CAS  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Comp Sci Tech 69(7–8):1187–1192

    Article  CAS  Google Scholar 

  • Thomason JL (2009) Why are natural fibres failing to deliver on composite performance? In: Conference proceedings of the 17th international conference of composite materials, Edinburgh, 2009

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576

    Article  CAS  Google Scholar 

  • Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1996) Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci Biotech Biochem 59(8):1498–1502

    Article  Google Scholar 

  • van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8(4):1353–1357

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the funding provided by the UK Engineering and Physical Science Research Council (EPSRC) for KYL (EP/F032005/1), FQ (EP/F028946/1) and the Challenging Engineering Programme of the EPSRC (EP/E007538/1) for JJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bismarck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KY., Quero, F., Blaker, J.J. et al. Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18, 595–605 (2011). https://doi.org/10.1007/s10570-011-9525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9525-z

Keywords

Navigation