Skip to main content

Aberrant Dopamine Homeostasis as a Focal Point in the Mechanism of Environmental Contaminant-Induced Dopaminergic Dysfunction

  • Chapter
  • First Online:
Parkinsonism and the Environment

Abstract

Exposure to several environmental contaminants, including pesticides and herbicides, has been implicated as a significant risk factor for Parkinson’s Disease (PD); however, the adverse outcome pathways linking cellular interaction of such toxic compounds with adverse outcomes (e.g., PD) are lacking. In addition, there is no clear and consistent toxicophore relating the pesticide or herbicide structure with the proposed activity, raising questions about a common mechanistic target. Recent work has shown that interference with DA homeostasis is a shared toxic property of many environmental agents linked to neurodegenerative disease. Numerous studies have demonstrated the critical importance for proper dopamine (DA) signaling, metabolism, and trafficking for the health of catecholaminergic neurons, which has implications for neurodevelopment and later neurodegenerative disease (i.e., PD). Interference with DA homeostasis produces elevated levels of reactive oxygen species, and endogenous, toxic DA-related products, specifically, the DA-quinone and the monoamine oxidase metabolite, 3,4-dihydroxyphenylacetaldehyde (DOPAL). These reactive DA-related species modify proteins, inhibit cellular function and disturb proteostasis, thereby, compromising the health of DA neurons and potentially glial cells. Mitigating the production of toxic DA-metabolites is predicted to subvert initiating and/or key events related to adverse outcomes, such as neuro- degenerative or developmental disease. In addition, accurate and sensitive means to measure downstream products of reactive DA metabolites (e.g., protein adducts or DOPAL-conjugates) could reveal novel biomarkers of impaired dopamine homeostasis and pathogenic mechanisms indicative of later disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Moneim Ibrahim K, Abdelrahman SM, Elhakim HKA, Ragab EA. Single or combined exposure to chlorpyrifos and cypermethrin provoke oxidative stress and downregulation in monoamine oxidase and acetylcholinesterase gene expression of the rat's brain. Environ Sci Pollut Res Int. 2020;27:12692–703.

    Article  CAS  PubMed  Google Scholar 

  • Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. Environ Int. 2017;99:55–77.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal S, Dixit A, Singh A, Tripathi P, Singh D, Patel DK, Singh MP. Cyclosporine A and MnTMPyP Alleviate α-Synuclein Expression and Aggregation in Cypermethrin-Induced Parkinsonism. Mol Neurobiol. 2015;52:1619–28.

    Article  CAS  PubMed  Google Scholar 

  • Akhmedova, S.N., Yakimovsky, A.K., and Schwartz, E.I. (2001). Paraoxonase 1 Met--Leu 54 polymorphism is associated with Parkinson's disease. J Neurol Sci 184, 179–182.

    Google Scholar 

  • Aldridge A, Niman A. Pyrethroids: Tier II Epidemiology Report. United States Environmental Protection Agency: Washington, DC; 2019. p. 1–134.

    Google Scholar 

  • Aldridge JE, Meyer A, Seidler FJ, Slotkin TA. Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect. 2005;113:1027–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, M.T., and Levy, L.S. (2013). Parkinson's disease and pesticide exposure--a new assessment. Crit Rev Toxicol 43, 515–534.

    Google Scholar 

  • Allen EM, Florang VR, Davenport LL, Jinsmaa Y, Doorn JA. Cellular localization of dieldrin and structure-activity relationship of dieldrin analogues in dopaminergic cells. Chem Res Toxicol. 2013;26:1043–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DG, Mariappan SV, Buettner GR, Doorn JA. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem. 2011a;286:26978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DG, Mariappan SVS, Buettner GR, Doorn JA. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem. 2011b;286:26978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DG, Florang VR, Schamp JH, Buettner GR, Doorn JA. Antioxidant-mediated modulation of protein reactivity for 3,4-Dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Chem Res Toxicol. 2016;29:1098–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bavithra S, Selvakumar K, Pratheepa Kumari R, Krishnamoorthy G, Venkataraman P, Arunakaran J. Polychlorinated biphenyl (PCBs)-induced oxidative stress plays a critical role on cerebellar dopaminergic receptor expression: ameliorative role of quercetin. Neurotox Res. 2012;21:149–59.

    Article  CAS  PubMed  Google Scholar 

  • Bemis JC, Seegal RF. Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro. Environ Health Perspect. 1999;107:879–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bemis JC, Seegal RF. PCB-induced inhibition of the vesicular monoamine transporter predicts reductions in synaptosomal dopamine content. Toxicol Sci. 2004;80:288–95.

    Article  CAS  PubMed  Google Scholar 

  • Bordoni L, Nasuti C, Mirto M, Caradonna F, Gabbianelli R. Intergenerational effect of early life exposure to permethrin: changes in global DNA methylation and in Nurr1 gene expression. Toxics. 2015;3:451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordoni L, Fedeli D, Nasuti C, Capitani M, Fiorini D, Gabbianelli R. Permethrin pesticide induces NURR1 up-regulation in dopaminergic cell line: Is the pro-oxidant effect involved in toxicant-neuronal damage? Comp Biochem Physiol C Toxicol Pharmacol. 2017;201:51–7.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T.P., Rumsby, P.C., Capleton, A.C., Rushton, L., and Levy, L.S. (2006). Pesticides and Parkinson's disease--is there a link? Environ Health Perspect 114, 156–164.

    Google Scholar 

  • Burke WJ. 3,4-dihydroxyphenylacetaldehyde: a potential target for neuroprotective therapy in Parkinson's disease. Curr Drug Targets CNS Neurol Disord. 2003;2:143–8.

    Article  CAS  PubMed  Google Scholar 

  • Burke WJ, Kumar VB, Pandey N, Panneton WM, Gan Q, Franko MW, O'Dell M, Li SW, Pan Y, Chung HD, et al. Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol. 2008;115:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Burns CJ, Pastoor TP. Pyrethroid epidemiology: a quality-based review. Crit Rev Toxicol. 2018;48:297–311.

    Article  CAS  PubMed  Google Scholar 

  • Cagle BS, Crawford RA, Doorn JA. Biogenic aldehyde-mediated mechanisms of toxicity in neurodegenerative disease. Curr Opin Toxicol. 2019;13:16–21.

    Article  PubMed  Google Scholar 

  • Callahan CL, Hamad LA, Olson JR, Ismail AA, Abdel-Rasoul G, Hendy O, Rohlman DS, Bonner MR. Longitudinal assessment of occupational determinants of chlorpyrifos exposure in adolescent pesticide workers in Egypt. Int J Hyg Environ Health. 2017;220:1356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carloni M, Nasuti C, Fedeli D, Montani M, Amici A, Vadhana MS, Gabbianelli R. The impact of early life permethrin exposure on development of neurodegeneration in adulthood. Exp Gerontol. 2012;47:60–6.

    Article  CAS  PubMed  Google Scholar 

  • Carloni M, Nasuti C, Fedeli D, Montani M, Vadhana MS, Amici A, Gabbianelli R. Early life permethrin exposure induces long-term brain changes in Nurr1, NF-kB and Nrf-2. Brain Res. 2013;1515:19–28.

    Article  CAS  PubMed  Google Scholar 

  • Carvey PM, Punati A, Newman MB. Progressive Dopamine Neuron Loss in Parkinson's Disease: The Multiple Hit Hypothesis. Cell Transplant. 2006;15:239–50.

    Article  PubMed  Google Scholar 

  • Casida JE. Pyrethrum flowers and pyrethroid insecticides. Environ Health Perspect. 1980;34:189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caudle WM, Richardson JR, Delea KC, Guillot TS, Wang M, Pennell KD, Miller GW. Polychlorinated Biphenyl–Induced Reduction of Dopamine Transporter Expression as a Precursor to Parkinson's Disease–Associated Dopamine Toxicity. Toxicol Sci. 2006;92:490–9.

    Article  CAS  PubMed  Google Scholar 

  • Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL, Colebrooke RE, Di Monte DA, Emson PC, Miller GW. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci. 2007;27:8138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan KR, Kodavanti PR, McKinney JD. Assessing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein. Toxicol Appl Pharmacol. 2000;162:10–21.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Yang Y, Ma J, Wang W, Liu X, Sakamoto M, Qu Y, Shi W. Assessing noxious effects of dietary exposure to methylmercury, PCBs and Se coexisting in environmentally contaminated rice in male mice. Environ Int. 2009;35:619–25.

    Article  CAS  PubMed  Google Scholar 

  • Chiu CC, Yeh TH, Lai SC, Wu-Chou YH, Chen CH, Mochly-Rosen D, Huang YC, Chen YJ, Chen CL, Chang YM, et al. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp Neurol. 2015;263:244–53.

    Article  CAS  PubMed  Google Scholar 

  • Choksi NY, Kodavanti PR, Tilson HA, Booth RG. Effects of polychlorinated biphenyls (PCBs) on brain tyrosine hydroxylase activity and dopamine synthesis in rats. Fundam Appl Toxicol. 1997;39:76–80.

    Article  CAS  PubMed  Google Scholar 

  • Coelho-Cerqueira E, de Araujo Correia Campos C, Follmer C. Formation of large oligomers of DOPAL-modified alpha-synuclein is modulated by the oxidation of methionine residues located at C-terminal domain. Biochem Biophys Res Commun. 2019;509:367–72.

    Article  CAS  PubMed  Google Scholar 

  • Corrigan FM, French M, Murray L. Organochlorine compounds in human brain. Hum Exp Toxicol. 1996;15:262–4.

    Article  CAS  PubMed  Google Scholar 

  • Corrigan FM, Murray L, Wyatt CL, Shore RF. Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson's disease. Exp Neurol. 1998;150:339–42.

    Article  CAS  PubMed  Google Scholar 

  • Corrigan FM, Wienburg CL, Shore RF, Daniel SE, Mann D. Organochlorine insecticides in substantia nigra in Parkinson's disease. J Toxicol Environ Health A. 2000;59:229–34.

    Article  CAS  PubMed  Google Scholar 

  • Costa LG. Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol Sci. 2018;162:24–35.

    Article  CAS  PubMed  Google Scholar 

  • Costa LG, Giordano G, Guizzetti M, Vitalone A. Neurotoxicity of pesticides: a brief review. Front Biosci. 2008;13:1240–9.

    Article  CAS  PubMed  Google Scholar 

  • Datla KP, Blunt SB, Dexter DT. Chronic L-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeCl(3) nigrostriatal lesions. Mov Disord. 2001;16:424–34.

    Article  CAS  PubMed  Google Scholar 

  • Deas E, Cremades N, Angelova PR, Ludtmann MH, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, et al. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease. Antioxid Redox Signal. 2016;24:376–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deveci HA, Karapehlivan M. Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. Pestic Biochem Physiol. 2018;144:36–41.

    Article  CAS  PubMed  Google Scholar 

  • Durfee RL, Contos G. PCBs in the United States Industrial Use and Environmental Distribution. Washington, DC: US Environment Protection Agency; 1976.

    Google Scholar 

  • Elsworth JD, Roth RH. Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson's disease. Exp Neurol. 1997;144:4–9.

    Article  CAS  PubMed  Google Scholar 

  • Elwan MA, Richardson JR, Guillot TS, Caudle WM, Miller GW. Pyrethroid pesticide-induced alterations in dopamine transporter function. Toxicol Appl Pharmacol. 2006;211:188–97.

    Article  CAS  PubMed  Google Scholar 

  • Enayah SH, Vanle BC, Fuortes LJ, Doorn JA, Ludewig G. PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology. 2018;394:93–101.

    Article  CAS  PubMed  Google Scholar 

  • Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, Wolff MS. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect. 2011;119:1182–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • EPA U, OA, OEAEE, OWC. EPA Bans PCB Manufacture. Phases Out: Use; 1979.

    Google Scholar 

  • Erickson B. US EPA: Chlorpyrifos is here to stay. Chemical and Engineering News. 2019;

    Google Scholar 

  • Erickson MD, Kaley RG. Applications of polychlorinated biphenyls. Environ Sci Pollut Res. 2011;18:135–51.

    Article  CAS  Google Scholar 

  • Eubig PA, Aguiar A, Schantz SL. Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environ Health Perspect. 2010;118:1654–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedler N, Rohitrattana J, Siriwong W, Suttiwan P, Ohman Strickland P, Ryan PB, Rohlman DS, Panuwet P, Barr DB, Robson MG. Neurobehavioral effects of exposure to organophosphates and pyrethroid pesticides among Thai children. Neurotoxicology. 2015;48:90–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol. 2005;62:91–5.

    Article  PubMed  Google Scholar 

  • Fitzgerald EF, Belanger EE, Gomez MI, Cayo M, McCaffrey RJ, Seegal RF, Jansing RL, Hwang SA, Hicks HE. Polychlorinated biphenyl exposure and neuropsychological status among older residents of upper Hudson River communities. Environ Health Perspect. 2008;116:209–15.

    Article  CAS  PubMed  Google Scholar 

  • Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O'Donnell KC, Barnhill L, Casida JE, Cockburn M, Sagasti A, et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110:636–41.

    Article  CAS  PubMed  Google Scholar 

  • Flannigan SA, Tucker SB, Key MM, Ross CE, Fairchild EJ 2nd, Grimes BA, Harrist RB. Synthetic pyrethroid insecticides: a dermatological evaluation. Br J Ind Med. 1985;42:363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR. Parkinson's disease and brain levels of organochlorine pesticides. Ann Neurol. 1994;36:100–3.

    Article  CAS  PubMed  Google Scholar 

  • Follmer C, Coelho-Cerqueira E, Yatabe-Franco DY, Araujo GD, Pinheiro AS, Domont GB, Eliezer D. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem. 2015;290:27660–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freire C, Koifman S. Pesticide exposure and Parkinson's disease: epidemiological evidence of association. Neurotoxicology. 2012;33:947–71.

    Article  CAS  PubMed  Google Scholar 

  • Furlong M, Tanner CM, Goldman SM, Bhudhikanok GS, Blair A, Chade A, Comyns K, Hoppin JA, Kasten M, Korell M, et al. Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson's disease. Environ Int. 2015;75:144–50.

    Article  CAS  PubMed  Google Scholar 

  • Gabrio T, Piechotowski I, Wallenhorst T, Klett M, Cott L, Friebel P, Link B, Schwenk M. PCB-blood levels in teachers, working in PCB-contaminated schools. Chemosphere. 2000;40:1055–62.

    Article  CAS  PubMed  Google Scholar 

  • Galal MK, Khalaf AA, Ogaly HA, Ibrahim MA. Vitamin E attenuates neurotoxicity induced by deltamethrin in rats. BMC Complement Altern Med. 2014;14:458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasmi S, Rouabhi R, Kebieche M, Boussekine S, Salmi A, Toualbia N, Taib C, Bouteraa Z, Chenikher H, Henine S, et al. Effects of Deltamethrin on striatum and hippocampus mitochondrial integrity and the protective role of Quercetin in rats. Environ Sci Pollut Res Int. 2017;24:16440–57.

    Article  CAS  PubMed  Google Scholar 

  • Gaum PM, Esser A, Schettgen T, Gube M, Kraus T, Lang J. Prevalence and incidence rates of mental syndromes after occupational exposure to polychlorinated biphenyls. Int J Hyg Environ Health. 2014;217:765–74.

    Article  CAS  PubMed  Google Scholar 

  • Gaum, P.M., Gube, M., Esser, A., Schettgen, T., Quinete, N., Bertram, J., Putschögl, F.M., Kraus, T., and Lang, J. (2019). Depressive symptoms after PCB exposure: hypotheses for underlying pathomechanisms via the thyroid and dopamine system. Int J Environ Res Publ Health 16.

    Google Scholar 

  • Gezer AO, Kochmanski J, VanOeveren SE, Cole-Strauss A, Kemp CJ, Patterson JR, Miller KM, Kuhn NC, Herman DE, McIntire A, et al. Developmental exposure to the organochlorine pesticide dieldrin causes male-specific exacerbation of α-synuclein-preformed fibril-induced toxicity and motor deficits. Neurobiol Dis. 2020;141:104947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girotto S, Sturlese M, Bellanda M, Tessari I, Cappellini R, Bisaglia M, Bubacco L, Mammi S. Dopamine-derived quinones affect the structure of the redox sensor DJ-1 through modifications at Cys-106 and Cys-53. J Biol Chem. 2012;287:18738–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein DS, Sullivan P, Holmes C, Kopin IJ, Basile MJ, Mash DC. Catechols in post-mortem brain of patients with Parkinson disease. Eur J Neurol. 2011a;18:703–10.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DS, Sullivan P, Holmes C, Kopin IJ, Basile MJ, Mash DC. Catechols in post-mortem brain of patients with Parkinson disease. Eur J Neurol. 2011b;18:703–10.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R, Mash DC, Kopin IJ, Sharabi Y. Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson's disease. J Neurochem. 2013;126:591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein DS, Jinsmaa Y, Sullivan P, Holmes C, Kopin IJ, Sharabi Y. 3,4-Dihydroxyphenylethanol (Hydroxytyrosol) Mitigates the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Neurochem Res. 2016;41:2173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein DS, Jinsmaa Y, Sullivan P, Sharabi Y. N-Acetylcysteine Prevents the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Neurochem Res. 2017;42:3289–95.

    Article  CAS  PubMed  Google Scholar 

  • Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978;14:633–43.

    CAS  PubMed  Google Scholar 

  • Graves SM, Xie Z, Stout KA, Zampese E, Burbulla LF, Shih JC, Kondapalli J, Patriarchi T, Tian L, Brichta L, et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat Neurosci. 2020;23:15–20.

    Article  CAS  PubMed  Google Scholar 

  • Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman Ă…, Robertson LW. Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol. 2015;45:245–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gultekin F, Ozturk M, Akdogan M. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch Toxicol. 2000;74:533–8.

    Article  CAS  PubMed  Google Scholar 

  • Hanley GD, Beblo DA, Wohlers D, Avallone A, Bosch S, Plewak D. Toxicological profile for aldrin/dieldrin. Agency for Toxic Substances and Disease Registry; 2002.

    Google Scholar 

  • Hansen MRH, Jørs E, Lander F, Condarco G, Debes F, Bustillos NT, SchlĂĽnssen V. Neurological Deficits After Long-term Pyrethroid Exposure. Environ Health Insights. 2017;11:1178630217700628.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa T, Matsuzaki-Kobayashi M, Takeda A, Sugeno N, Kikuchi A, Furukawa K, Perry G, Smith MA, Itoyama Y. Alpha-synuclein facilitates the toxicity of oxidized catechol metabolites: implications for selective neurodegeneration in Parkinson's disease. FEBS Lett. 2006;580:2147–52.

    Article  CAS  PubMed  Google Scholar 

  • Hatcher JM, Richardson JR, Guillot TS, McCormack AL, Di Monte DA, Jones DP, Pennell KD, Miller GW. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol. 2007;204:619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatcher JM, Delea KC, Richardson JR, Pennell KD, Miller GW. Disruption of dopamine transport by DDT and its metabolites. Neurotoxicology. 2008;29:682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Wang S, Liu L, Chen S, Zhang Z, Sun J. Clinical manifestations and diagnosis of acute pyrethroid poisoning. Arch Toxicol. 1989;63:54–8.

    Article  CAS  PubMed  Google Scholar 

  • Heinz GH, Hill EF, Contrera JF. Dopamine and norepinephrine depletion in ring doves fed DDE, dieldrin, and Aroclor 1254. Toxicol Appl Pharmacol. 1980;53:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Hens B, Hens L. Persistent Threats by Persistent Pollutants: Chemical Nature, Concerns and Future Policy Regarding PCBs-What Are We Heading For? Toxics. 2017;6

    Google Scholar 

  • Hertz-Picciotto I, Sass JB, Engel S, Bennett DH, Bradman A, Eskenazi B, Lanphear B, Whyatt R. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med. 2018;15:e1002671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu D, Lehmler HJ, Martinez A, Wang K, Hornbuckle KC. Atmospheric PCB congeners across Chicago. Atmos Environ. 2010a;1994(44):1550–7.

    Article  CAS  Google Scholar 

  • Hu X, Adamcakova-Dodd A, Lehmler HJ, Hu D, Kania-Korwel I, Hornbuckle KC, Thorne PS. Time course of congener uptake and elimination in rats after short-term inhalation exposure to an airborne polychlorinated biphenyl (PCB) mixture. Environ Sci Technol. 2010b;44:6893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussien HM, Abdou HM, Yousef MI. Cypermethrin induced damage in genomic DNA and histopathological changes in brain and haematotoxicity in rats: the protective effect of sesame oil. Brain Res Bull. 2013;92:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Iyengar AR, Pande AH. Organophosphate-hydrolyzing enzymes as first-line of defence against nerve agent-poisoning: perspectives and the road ahead. Protein J. 2016;35:424–39.

    Article  CAS  PubMed  Google Scholar 

  • Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol. 2003;53(Suppl 3):S26–36. discussion S36-28

    Article  CAS  PubMed  Google Scholar 

  • Jinsmaa Y, Florang VR, Rees JN, Mexas LM, Eckert LL, Allen EM, Anderson DG, Doorn JA. Dopamine-derived biological reactive intermediates and protein modifications: Implications for Parkinson's disease. Chem Biol Interact. 2011;192:118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinsmaa Y, Sullivan P, Sharabi Y, Goldstein DS. DOPAL is transmissible to and oligomerizes alpha-synuclein in human glial cells. Auton Neurosci. 2016;194:46–51.

    Article  CAS  PubMed  Google Scholar 

  • Jinsmaa Y, Sharabi Y, Sullivan P, Isonaka R, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde-Induced Protein Modifications and Their Mitigation by N-Acetylcysteine. J Pharmacol Exp Ther. 2018;366:113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinsmaa Y, Isonaka R, Sharabi Y, Goldstein DS. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing alpha-Synuclein. J Pharmacol Exp Ther. 2020;372:157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen EB, Fonnum F, Lausund PL, Walaas SI, Bærland NE, Wøien G, Sagvolden T. Behavioral changes following PCB 153 exposure in the spontaneously hypertensive rat - an animal model of Attention-Deficit/Hyperactivity Disorder. Behav Brain Funct. 2014;10:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorgenson JL. Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ Health Perspect. 2001;109(Suppl 1):113–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Neurotoxicology. 2005;26:701–19.

    Article  CAS  PubMed  Google Scholar 

  • Karen DJ, Li W, Harp PR, Gillette JS, Bloomquist JR. Striatal dopaminergic pathways as a target for the insecticides permethrin and chlorpyrifos. Neurotoxicology. 2001;22:811–7.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa M, Anantharam V, Kanthasamy AG. Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic Biol Med. 2001;31:1473–85.

    Article  CAS  PubMed  Google Scholar 

  • Kochmanski J, VanOeveren SE, Patterson JR, Bernstein AI. Developmental Dieldrin Exposure Alters DNA Methylation at Genes Related to Dopaminergic Neuron Development and Parkinson's Disease in Mouse Midbrain. Toxicol Sci. 2019;169:593–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristal BS, Conway AD, Brown AM, Jain JC, Ulluci PA, Li SW, Burke WJ. Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria. Free Radic Biol Med. 2001;30:924–31.

    Article  CAS  PubMed  Google Scholar 

  • LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005;11:1214–21.

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Baek SM, Ho DH, Suk JE, Cho ED, Lee SJ. Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers. Exp Mol Med. 2011;43:216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Notter SA, Thiruchelvam M, Dever DP, Fitzpatrick R, Kostyniak PJ, Cory-Slechta DA, Opanashuk LA. Subchronic polychlorinated biphenyl (Aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems. Toxicol Sci. 2012a;125:496–508.

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Park JH, Shin IC, Koh HC. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharmacol. 2012b;263:148–62.

    Article  CAS  PubMed  Google Scholar 

  • Leong SL, Cappai R, Barnham KJ, Pham CL. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res. 2009;34:1838–46.

    Article  CAS  PubMed  Google Scholar 

  • Liebl B, Schettgen T, Kerscher G, Broding HC, Otto A, Angerer J, Drexler H. Evidence for increased internal exposure to lower chlorinated polychlorinated biphenyls (PCB) in pupils attending a contaminated school. Int J Hyg Environ Health. 2004;207:315–24.

    Article  CAS  PubMed  Google Scholar 

  • Lindsay AE. Chlorpyrifos: End-Use Products Cacncellation Order. New York: United States Environmental Protection Agency; 2001.

    Google Scholar 

  • Linert W, Jameson GN. Redox reactions of neurotransmitters possibly involved in the progression of Parkinson's Disease. J Inorg Biochem. 2000;79:319–26.

    Article  CAS  PubMed  Google Scholar 

  • Liu GP, Shi N. The inhibitory effects of deltamethrin on dopamine biosynthesis in rat PC12 cells. Toxicol Lett. 2006;161:195–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, Zheng W, Sastry N, Luo J, Rudow G, et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest. 2014;124:3032–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo JP, Berger DF, Hunt A, Carpenter DO. Inhalation of Polychlorinated Biphenyls (PCB) Produces Hyperactivity in Rats. J Toxicol Environ Health A. 2015;78:1142–53.

    Article  CAS  PubMed  Google Scholar 

  • LĂłpez-Granero C, Cañadas F, Cardona D, Yu Y, GimĂ©nez E, Lozano R, Avila DS, Aschner M, Sánchez-Santed F. Chlorpyrifos-, diisopropylphosphorofluoridate-, and parathion-induced behavioral and oxidative stress effects: are they mediated by analogous mechanisms of action? Toxicol Sci. 2013;131:206–16.

    Article  PubMed  CAS  Google Scholar 

  • Lovato AK, Creton R, Colwill RM. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on larval zebrafish behavior. Neurotoxicol Teratol. 2016;53:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Liu Y, Niu D, Li X. Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus). Environ Toxicol. 2015;30:422–9.

    Article  CAS  PubMed  Google Scholar 

  • Mallajosyula JK, Kaur D, Chinta SJ, Rajagopalan S, Rane A, Nicholls DG, Di Monte DA, Macarthur H, Andersen JK. MAO-B elevation in mouse brain astrocytes results in Parkinson's pathology. PLoS One. 2008;3:e 1616.

    Article  CAS  Google Scholar 

  • Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology. 2010;21:87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marek RF, Thorne PS, Herkert NJ, Awad AM, Hornbuckle KC. Airborne PCBs and OH-PCBs Inside and Outside Urban and Rural U.S. Schools Environ Sci Technol. 2017;51:7853–60.

    Article  CAS  PubMed  Google Scholar 

  • Mariussen E, Andersson PL, Tysklind M, Fonnum F. Effect of polychlorinated biphenyls on the uptake of dopamine into rat brain synaptic vesicles: a structure-activity study. Toxicol Appl Pharmacol. 2001;175:176–83.

    Article  CAS  PubMed  Google Scholar 

  • van der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R. Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environ Health Perspect. 2012;120:340–7.

    Article  PubMed  CAS  Google Scholar 

  • Masoud ST, Vecchio LM, Bergeron Y, Hossain MM, Nguyen LT, Bermejo MK, Kile B, Sotnikova TD, Siesser WB, Gainetdinov RR, et al. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis. 2015;74:66–75.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola JL, Sirover MA. Alteration of intracellular structure and function of glyceraldehyde-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology. 2002;23:603–9.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy D, Lueras P, Bhide PG. Elevated dopamine levels during gestation produce region-specific decreases in neurogenesis and subtle deficits in neuronal numbers. Brain Res. 2007;1182:11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer SN, Halsall CJ, Harner T, Peters AJ, Ockenden WA, Johnston AE, Jones KC. Organochlorine pesticide residues in archived UK soil. Environ Sci Technol. 2001;35:1989–95.

    Article  CAS  PubMed  Google Scholar 

  • Mexas LM, Florang VR, Doorn JA. Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Neurotoxicology. 2011;32:471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileson BE, Chambers JE, Chen WL, Dettbarn W, Ehrich M, Eldefrawi AT, Gaylor DW, Hamernik K, Hodgson E, Karczmar AG, et al. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol Sci. 1998;41:8–20.

    CAS  PubMed  Google Scholar 

  • Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP. Cypermethrin Activates Autophagosome Formation Albeit Inhibits Autophagy Owing to Poor Lysosome Quality: Relevance to Parkinson's Disease. Neurotox Res. 2018;33:377–87.

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi H, Ghassemi-Barghi N, Malakshah O, Ashari S. Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol. 2019;70:74–89.

    Article  CAS  PubMed  Google Scholar 

  • Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013;7:260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan JP. The Jamaica ginger paralysis. JAMA. 1982;248:1864–7.

    Article  CAS  PubMed  Google Scholar 

  • Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62:218–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murer MG, Dziewczapolski G, Menalled LB, GarcĂ­a MC, Agid Y, Gershanik O, Raisman-Vozari R. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann Neurol. 1998;43:561–75.

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase. the initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–7.

    Article  CAS  PubMed  Google Scholar 

  • Nair A, Dureja P, Pillai MK. Aldrin and dieldrin residues in human fat, milk and blood serum collected from Delhi. Hum Exp Toxicol. 1992;11:43–5.

    Article  CAS  PubMed  Google Scholar 

  • Nandipati S, Litvan I. Environmental exposures and Parkinson's disease. Int J Environ Res Public Health. 2016;13

    Google Scholar 

  • Narahashi T. Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol. 1996;79:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Narayan S, Liew Z, Paul K, Lee PC, Sinsheimer JS, Bronstein JM, Ritz B. Household organophosphorus pesticide use and Parkinson's disease. Int J Epidemiol. 2013;42:1476–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasuti C, Carloni M, Fedeli D, Gabbianelli R, Di Stefano A, Serafina CL, Silva I, Domingues V, Ciccocioppo R. Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of pre-senescent rats. Toxicology. 2013;303:162–8.

    Article  CAS  PubMed  Google Scholar 

  • Nasuti C, Brunori G, Eusepi P, Marinelli L, Ciccocioppo R, Gabbianelli R. Early life exposure to permethrin: a progressive animal model of Parkinson's disease. J Pharmacol Toxicol Methods. 2017;83:80–6.

    Article  CAS  PubMed  Google Scholar 

  • Nelson MM, Builta ZJ, Monroe TB, Doorn JA, Anderson EJ. Biochemical characterization of the catecholaldehyde reactivity of L-carnosine and its therapeutic potential in human myocardium. Amino Acids. 2019;51:97–102.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends Neurosci. 2019;42:140–9.

    Article  CAS  PubMed  Google Scholar 

  • Park YS, Park JH, Ko J, Shin IC, Koh HC. mTOR inhibition by rapamycin protects against deltamethrin-induced apoptosis in PC12 Cells. Environ Toxicol. 2017;32:109–21.

    Article  CAS  PubMed  Google Scholar 

  • Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci. 2016;1378:17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen EB, Ebbehøj NE, Göen T, Meyer HW, Jacobsen P. Exposure to 27 polychlorinated biphenyls in the indoor environment of a workplace: a controlled bio-monitoring study. Int Arch Occup Environ Health. 2016;89:43–7.

    Article  CAS  PubMed  Google Scholar 

  • Petersen MS, Halling J, Bech S, Wermuth L, Weihe P, Nielsen F, Jorgensen PJ, Budtz-Jorgensen E, Grandjean P. Impact of dietary exposure to food contaminants on the risk of Parkinson's disease. Neurotoxicology. 2008;29:584–90.

    Article  CAS  PubMed  Google Scholar 

  • Petrelli F, Dallerac G, Pucci L, Cali C, Zehnder T, Sultan S, Lecca S, Chicca A, Ivanov A, Asensio CS, et al. Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Mol Psychiatry. 2018;

    Google Scholar 

  • Pezdirc M, Heath E, Bizjak Mali L, Bulog B. PCB accumulation and tissue distribution in cave salamander (Proteus anguinus anguinus, Amphibia, Urodela) in the polluted karstic hinterland of the Krupa River, Slovenia. Chemosphere. 2011;84:987–93.

    Article  CAS  PubMed  Google Scholar 

  • Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol. 2005;19:433–46.

    Article  CAS  PubMed  Google Scholar 

  • Puspita L, Chung SY, Shim JW. Oxidative stress and cellular pathologies in Parkinson's disease. Mol Brain. 2017;10:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinete N, Schettgen T, Bertram J, Kraus T. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. Environ Sci Pollut Res Int. 2014;21:11951–72.

    Article  CAS  PubMed  Google Scholar 

  • Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, Whyatt R. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119:1196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauh VA, Garcia WE, Whyatt RM, Horton MK, Barr DB, Louis ED. Prenatal exposure to the organophosphate pesticide chlorpyrifos and childhood tremor. Neurotoxicology. 2015;51:80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray DE, Fry JR. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol Ther. 2006;111:174–93.

    Article  CAS  PubMed  Google Scholar 

  • Rees JN, Florang VR, Anderson DG, Doorn JA. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Chem Res Toxicol. 2007;20:1536–42.

    Article  CAS  PubMed  Google Scholar 

  • Rees JN, Florang VR, Eckert LL, Doorn JA. Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chem Res Toxicol. 2009;22:1256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JR, Miller GW. Acute exposure to aroclor 1016 or 1260 differentially affects dopamine transporter and vesicular monoamine transporter 2 levels. Toxicol Lett. 2004;148:29–40.

    Article  CAS  PubMed  Google Scholar 

  • Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW. Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease. FASEB J. 2006;20:1695–7.

    Article  CAS  PubMed  Google Scholar 

  • Richardson RJ, Hein ND, Wijeyesakere SJ, Fink JK, Makhaeva GF. Neuropathy target esterase (NTE): overview and future. Chem Biol Interact. 2013;203:238–44.

    Article  CAS  PubMed  Google Scholar 

  • Richardson JR, Taylor MM, Shalat SL, Guillot TS 3rd, Caudle WM, Hossain MM, Mathews TA, Jones SR, Cory-Slechta DA, Miller GW. Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. FASEB J. 2015;29:1960–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol. 2019;138:343–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez EA, Li X, Lehmler HJ, Robertson LW, Duffel MW. Sulfation of lower chlorinated polychlorinated biphenyls increases their affinity for the major drug-binding sites of human serum albumin. Environ Sci Technol. 2016;50:5320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez EA, Vanle BC, Doorn JA, Lehmler HJ, Robertson LW, Duffel MW. Hydroxylated and sulfated metabolites of commonly observed airborne polychlorinated biphenyls display selective uptake and toxicity in N27, SH-SY5Y, and HepG2 cells. Environ Toxicol Pharmacol. 2018;62:69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlman DS, Ismail A, Bonner MR, Abdel Rasoul G, Hendy O, Ortega Dickey L, Wang K, Olson JR. Occupational pesticide exposure and symptoms of attention deficit hyperactivity disorder in adolescent pesticide applicators in Egypt. Neurotoxicology. 2019;74:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero A, Ramos E, Castellano V, MartĂ­nez MA, Ares I, MartĂ­nez M, MartĂ­nez-Larrañaga MR, AnadĂłn A. Cytotoxicity induced by deltamethrin and its metabolites in SH-SY5Y cells can be differentially prevented by selected antioxidants. Toxicol In Vitro. 2012;26:823–30.

    Article  CAS  PubMed  Google Scholar 

  • Ross SM, McManus IC, Harrison V, Mason O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit Rev Toxicol. 2013;43:21–44.

    Article  CAS  PubMed  Google Scholar 

  • Saghir SA, Hansen LG, Holmes KR, Kodavanti PR. Differential and non-uniform tissue and brain distribution of two distinct 14C-hexachlorobiphenyls in weanling rats. Toxicological sciences: an official journal of the Society of Toxicology. 2000;54:60–70.

    Article  CAS  Google Scholar 

  • Sagiv SK, Thurston SW, Bellinger DC, Tolbert PE, Altshul LM, Korrick SA. Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol. 2010;171:593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Santed F, Colomina MT, Herrero Hernández E. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417–26.

    Article  PubMed  Google Scholar 

  • Saoudi M, Badraoui R, Bouhajja H, Ncir M, Rahmouni F, Grati M, Jamoussi K, Feki AE. Deltamethrin induced oxidative stress in kidney and brain of rats: Protective effect of Artemisia campestris essential oil. Biomed Pharmacother. 2017;94:955–63.

    Article  CAS  PubMed  Google Scholar 

  • Sarafian TA, Yacoub A, Kunz A, Aranki B, Serobyan G, Cohn W, Whitelegge JP, Watson JB. Enhanced mitochondrial inhibition by 3,4-dihydroxyphenyl-acetaldehyde (DOPAL)-oligomerized alpha-synuclein. J Neurosci Res. 2019;97:1689–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schamp JH, Doorn JA. Dopamine metabolism and the generation of a reactive aldehyde. In: Oxidative stress and redox signalling in Parkinson's disease. London: The Royal Society of Chemistry; 2017. p. 97–115.

    Chapter  Google Scholar 

  • Schmidt JT, Rushin A, Boyda J, Souders CL 2nd, Martyniuk CJ. Dieldrin-induced neurotoxicity involves impaired mitochondrial bioenergetics and an endoplasmic reticulum stress response in rat dopaminergic cells. Neurotoxicology. 2017;63:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Shafer TJ, Meyer DA, Crofton KM. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect. 2005;113:123–36.

    Article  CAS  PubMed  Google Scholar 

  • Sharma H, Zhang P, Barber DS, Liu B. Organochlorine pesticides dieldrin and lindane induce cooperative toxicity in dopaminergic neurons: Role of oxidative stress. Neurotoxicology. 2010;31:215–22.

    Article  CAS  PubMed  Google Scholar 

  • Sharma H, Hirko AC, King MA, Liu B. Role of NADPH oxidase in cooperative reactive oxygen species generation in dopaminergic neurons induced by combined treatment with dieldrin and lindane. Toxicol Lett. 2018;299:47–55.

    Article  CAS  PubMed  Google Scholar 

  • Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020;36:1–12.

    Article  PubMed  Google Scholar 

  • Singh AK, Tiwari MN, Prakash O, Singh MP. A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharmacol. 2012a;10:64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP. Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging. 2012b;33:404–15.

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Lawana V, Luo J, Phong P, Abdalla A, Palanisamy B, Rokad D, Sarkar S, Jin H, Anantharam V, et al. Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis. 2018;117:82–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderlund DM. State-Dependent Modification of Voltage-Gated Sodium Channels by Pyrethroids. Pestic Biochem Physiol. 2010;97:78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderlund DM. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol. 2012;86:165–81.

    Article  CAS  PubMed  Google Scholar 

  • Steenland K, Hein MJ, Cassinelli RT 2nd, Prince MM, Nilsen NB, Whelan EA, Waters MA, Ruder AM, Schnorr TM. Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology. 2006;17:8–13.

    Article  PubMed  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res. 1999;55:659–65.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol. 2013;106-107:17–32.

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Anantharam V, Latchoumycandane C, Kanthasamy A, Kanthasamy AG. Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death. J Pharmacol Exp Ther. 2005;315:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Sutton PM, Vergara X, Beckman J, Nicas M, Das R. Pesticide illness among flight attendants due to aircraft disinsection. Am J Ind Med. 2007;50:345–56.

    Article  PubMed  Google Scholar 

  • Tan J, Soderlund DM. Human and rat Nav1.3 voltage-gated sodium channels differ in inactivation properties and sensitivity to the pyrethroid insecticide tefluthrin. Neurotoxicology. 2009;30:81–9.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Fujiwara M, Shindo A, Yin G, Kitazawa T, Teraoka H. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. Chemosphere. 2018;193:1207–15.

    Article  CAS  PubMed  Google Scholar 

  • Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease. Neurochem Int. 2013;62:803–19.

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL. Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Lett. 2001;500:105–8.

    Article  CAS  PubMed  Google Scholar 

  • Van Laar VS, Mishizen AJ, Cascio M, Hastings TG. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis. 2009;34:487–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Maele-Fabry G, Hoet P, Vilain F, Lison D. Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies. Environ Int. 2012;46:30–43.

    Article  PubMed  CAS  Google Scholar 

  • Vanle BC, Florang VR, Murry DJ, Aguirre AL, Doorn JA. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by the dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde. Biochem Biophys Res Commun. 2017;492:275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman P, Selvakumar K, Krishnamoorthy G, Muthusami S, Rameshkumar R, Prakash S, Arunakaran J. Effect of melatonin on PCB (Aroclor 1254) induced neuronal damage and changes in Cu/Zn superoxide dismutase and glutathione peroxidase-4 mRNA expression in cerebral cortex, cerebellum and hippocampus of adult rats. Neurosci Res. 2010;66:189–97.

    Article  CAS  PubMed  Google Scholar 

  • Vermeer LM, Florang VR, Doorn JA. Catechol and aldehyde moieties of 3,4-dihydroxyphenylacetaldehyde contribute to tyrosine hydroxylase inhibition and neurotoxicity. Brain Res. 2012;1474:100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verschoyle RD, Aldridge WN. Structure-activity relationships of some pyrethroids in rats. Arch Toxicol. 1980;45:325–9.

    Article  CAS  PubMed  Google Scholar 

  • Wagner SR, Greene FE. Dieldrin-induced alterations in biogenic amine content of rat brain. Toxicol Appl Pharmacol. 1978;43:45–55.

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B. The association between ambient exposure to organophosphates and Parkinson's disease risk. Occup Environ Med. 2014;71:275–81.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Martinez MA, Dai M, Chen D, Ares I, Romero A, Castellano V, Martinez M, Rodriguez JL, Martinez-Larranaga MR, et al. Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ Res. 2016;149:86–104.

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf MG, Knekt P, O'Reilly EJ, Lyytinen J, Reunanen A, Laden F, Altshul L, Ascherio A. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology. 2010;74:1055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisskopf MG, Knekt P, O'Reilly EJ, Lyytinen J, Reunanen A, Laden F, Altshul L, Ascherio A. Polychlorinated biphenyls in prospectively collected serum and Parkinson's disease risk. Mov Disord. 2012;27:1659–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner-Allen JW, DuMond JF, Levine RL, Bax A. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α-Synuclein. Angew Chem Int Ed Engl. 2016;55:7374–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner-Allen JW, Monti S, DuMond JF, Levine RL, Bax A. Isoindole Linkages Provide a Pathway for DOPAL-Mediated Cross-Linking of α-Synuclein. Biochemistry. 2018;57:1462–74.

    Article  CAS  PubMed  Google Scholar 

  • Weston DP, Amweg EL, Mekebri A, Ogle RS, Lydy MJ. Aquatic effects of aerial spraying for mosquito control over an urban area. Environ Sci Technol. 2006;40:5817–22.

    Article  CAS  PubMed  Google Scholar 

  • Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLoS One. 2012;7:e31522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff T, Deml E, Wanders H. Aldrin epoxidation, a highly sensitive indicator specific for cytochrome P-450-dependent mono-oxygenase activities. Drug Metab Dispos. 1979;7:301–5.

    CAS  PubMed  Google Scholar 

  • Xilouri M, Brekk OR, Stefanis L. Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies. Mov Disord. 2016;31:178–92.

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Zhang X, Huang J, Chen C, Chen Z, Liu L, Zhang G, Yang J, Zhang Z, Zhang Z, et al. Fenpropathrin, a Widely Used Pesticide, Causes Dopaminergic Degeneration. Mol Neurobiol. 2016;53:995–1008.

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Chang X, Lou D, Wu Q, Zhou Z. Chlorpyrifos exposure causes alternation in dopamine metabolism in PC12 cells. Toxicol Mech Methods. 2012;22:309–14.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Z., Li, X., Su, Q., Xu, L., Zhang, P., Kong, Z., Xu, J., and Teng, J. (2013). Effect of synthetic pyrethroid pesticide exposure during pregnancy on the growth and development of infants. Asia Pac J Public Health 25, 72s-79s.

    Google Scholar 

  • You J, Brennan A, Lydy MJ. Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. Chemosphere. 2009;75:1477–82.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dai H, Deng Y, Tian J, Zhang C, Hu Z, Bing G, Zhao L. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology. 2015;336:17–25.

    Article  CAS  PubMed  Google Scholar 

  • Zhao MW, Yang P, Zhao LL. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson's disease. Environ Toxicol. 2019;34:699–707.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Xia R, Liu Z, Shen J, Gong X, Hu Y, Chen H, Yu Y, Gao W, Wang C, et al. Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. Chemosphere. 2020;243:125336.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Doorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cagle, B.S., Crawford, R.A., Doorn, J.A. (2022). Aberrant Dopamine Homeostasis as a Focal Point in the Mechanism of Environmental Contaminant-Induced Dopaminergic Dysfunction. In: Filipov, N.M. (eds) Parkinsonism and the Environment. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-87451-3_3

Download citation

Publish with us

Policies and ethics