Skip to main content
Log in

N-Acetylcysteine Prevents the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The catecholaldehyde hypothesis for the pathogenesis of Parkinson’s disease proposes that the deaminated dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is toxic to nigrostriatal dopaminergic neurons. Inhibiting monoamine oxidase (MAO) should therefore slow the disease progression; however, MAO inhibition increases spontaneous oxidation of dopamine, as indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels, and the oxidation products may also be toxic. This study examined whether N-acetylcysteine (NAC), a precursor of the anti-oxidant glutathione, attenuates the increase in Cys-DA production during MAO inhibition. Rat pheochromocytoma PC12 cells were incubated with NAC, the MAO-B inhibitor selegiline, or both. Selegiline decreased DOPAL and increased Cys-DA levels (p < 0.0001 each). Co-incubation of NAC at pharmacologically relevant concentrations (1–10 µM) with selegiline (1 µM) attenuated or prevented the Cys-DA response to selegiline, without interfering with the selegiline-induced decrease in DOPAL production or inhibiting tyrosine hydroxylation. NAC therefore mitigates the increase in spontaneous oxidation of dopamine during MAO inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALDH:

Aldehyde dehydrogenase

DA:

Dopamine

DHPG:

3,4-Dihydroxyphenylglycol

DOPAC:

3,4-Dihydroxyphenylacetic acid

DOPAL:

3,4-Dihydroxyphenylacetaldehyde

DOPET:

3,4-Dihydroxyphenylethanol

NE:

Norepinephrine

PD:

Parkinson disease

VMAT:

Vesicular monoamine transporter

References

  1. Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS (2003) 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 989:205–213

    Article  CAS  PubMed  Google Scholar 

  2. Lamensdorf I, Eisenhofer G, Harvey-White J, Nechustan A, Kirk K, Kopin IJ (2000) 3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells. Brain Res 868:191–201

    Article  CAS  PubMed  Google Scholar 

  3. Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, Lampe P, Kumar VB, Franko M, Williams EA, Zahm DS (2004) Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases. Neurotoxicology 25:101–115

    Article  CAS  PubMed  Google Scholar 

  4. Goldstein DS, Kopin IJ, Sharabi Y (2014) Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 144:268–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Panneton WM, Kumar VB, Gan Q, Burke WJ, Galvin JE (2010) The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS ONE 5:e15251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burke WJ (2003) 3,4-dihydroxyphenylacetaldehyde: a potential target for neuroprotective therapy in Parkinson’s disease. Curr Drug Targets CNS Neurol Disord 2:143–148

    Article  CAS  PubMed  Google Scholar 

  7. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    Article  CAS  PubMed  Google Scholar 

  8. Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, Patro BS, Chakrabarti S (2011) Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1812:663–673

    Article  CAS  PubMed  Google Scholar 

  9. Cavalieri EL, Li KM, Balu N, Saeed M, Devanesan P, Higginbotham S, Zhao J, Gross ML, Rogan EG (2002) Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 23:1071–1077

    Article  CAS  PubMed  Google Scholar 

  10. De Marco F, Perluigi M, Marcante ML, Coccia R, Foppoli C, Blarzino C, Rosei MA (2002) Cytotoxicity of dopamine-derived tetrahydroisoquinolines on melanoma cells. Biochem Pharmacol 64:1503–1512

    Article  PubMed  Google Scholar 

  11. Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–15605

    Article  CAS  PubMed  Google Scholar 

  12. Linsenbardt AJ, Wilken GH, Westfall TC, Macarthur H (2009) Cytotoxicity of dopaminochrome in the mesencephalic cell line, MN9D, is dependent upon oxidative stress. Neurotoxicology 30:1030–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fornstedt B, Carlsson A (1991) Effects of inhibition of monoamine oxidase on the levels of 5-S-cysteinyl adducts of catechols in dopaminergic regions of the brain of the guinea pig. Neuropharmacology 30:463–468

    Article  CAS  PubMed  Google Scholar 

  14. Montine TJ, Picklo MJ, Amarnath V, Whetsell WO Jr, Graham DG (1997) Neurotoxicity of endogenous cysteinylcatechols. Exp Neurol 148:26–33

    Article  CAS  PubMed  Google Scholar 

  15. Spencer JP, Whiteman M, Jenner P, Halliwell B (2002) 5-S-cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. J Neurochem 81:122–129

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein DS, Jinsmaa Y, Sullivan P, Holmes C, Kopin IJ, Sharabi Y (2016) Comparison of monoamine oxidase inhibitors in decreasing production of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells. J Pharmacol Exp Ther 356:484–493

    Article  Google Scholar 

  17. Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13:636–644

    Article  CAS  PubMed  Google Scholar 

  18. Goldstein DS, Jinsmaa Y, Sullivan P, Kopin IJ, Sharabi Y (2016) 3,4-Dihydroxyphenylethanol (hydroxytyrosol) mitigates the increase in spontaneous oxidation of dopamine during monoamine oxidase inhibition in PC12 cells. Neurochem Res 41:2173–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laschinski G, Kittner B, Brautigam M (1986) Direct inhibition of tyrosine hydroxylase from PC-12 cells by catechol derivatives. Naunyn Schmiedebergs Arch Pharmacol 332:346–350

    Article  CAS  PubMed  Google Scholar 

  20. de la Torre R (2008) Bioavailability of olive oil phenolic compounds in humans. Inflammopharmacology 16:245–247

    Article  PubMed  Google Scholar 

  21. de Bock M, Thorstensen EB, Derraik JG, Henderson HV, Hofman PL, Cutfield WS (2013) Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res 57:2079–2085

    Article  CAS  PubMed  Google Scholar 

  22. Greene SC, Noonan PK, Sanabria C, Peacock WF (2016) Effervescent N-acetylcysteine tablets versus oral solution N-acetylcysteine in fasting healthy adults: an open-label, randomized, single-dose, crossover, relative bioavailability study. Curr Ther Res Clin Exp 83:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Katz M, Won SJ, Park Y, Orr A, Jones DP, Swanson RA, Glass GA (2015) Cerebrospinal fluid concentrations of N-acetylcysteine after oral administration in Parkinson’s disease. Parkinsonism Relat Disord 21:500–503

    Article  PubMed  Google Scholar 

  24. Holmay MJ, Terpstra M, Coles LD, Mishra U, Ahlskog M, Oz G, Cloyd JC, Tuite PJ (2013) N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin Neuropharmacol 36:103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rahimmi A, Khosrobakhsh F, Izadpanah E, Moloudi MR, Hassanzadeh K (2015) N-acetylcysteine prevents rotenone-induced Parkinson’s disease in rat: An investigation into the interaction of parkin and Drp1 proteins. Brain Res Bull 113:34–40

    Article  CAS  PubMed  Google Scholar 

  26. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    Article  CAS  PubMed  Google Scholar 

  27. Sharma A, Kaur P, Kumar V, Gill KD (2007) Attenuation of 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine induced nigrostriatal toxicity in mice by N-acetyl cysteine. Cell Mol Biol (Noisy-le-grand) 53:48–55

    CAS  Google Scholar 

  28. Chen CM, Yin MC, Hsu CC, Liu TC (2007) Antioxidative and anti-inflammatory effects of four cysteine-containing agents in striatum of MPTP-treated mice. Nutrition 23:589–597

    Article  PubMed  Google Scholar 

  29. Perry TL, Yong VW, Clavier RM, Jones K, Wright JM, Foulks JG, Wall RA (1985) Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. Neurosci Lett 60:109–114

    Article  CAS  PubMed  Google Scholar 

  30. Park SW, Kim SH, Park KH, Kim SD, Kim JY, Baek SY, Chung BS, Kang CD (2004) Preventive effect of antioxidants in MPTP-induced mouse model of Parkinson’s disease. Neurosci Lett 363:243–246

    Article  CAS  PubMed  Google Scholar 

  31. Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C, Frye R (2015) Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev 55:294–321

    Article  CAS  PubMed  Google Scholar 

  32. Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Cai J, Wei X, Bazzan AJ, Zhong L, Bowen B, Intenzo CM, Iacovitti L, Newberg AB (2016) N-acetyl cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. PLoS ONE 11:e0157602

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldstein DS, Sullivan P, Holmes C, Mash DC, Kopin IJ, Sharabi Y (2017) Determinants of denervation-independent depletion of putamen dopamine in Parkinson’s disease and multiple system atrophy. Parkinsonism Relat Disord 35:88–91

    Article  PubMed  Google Scholar 

  34. Goldstein DS, Holmes C, Sullivan P, Jinsmaa Y, Kopin IJ, Sharabi Y (2016) Elevated cerebrospinal fluid ratios of cysteinyl-dopamine/3,4-dihydroxyphenylacetic acid in parkinsonian synucleinopathies. Parkinsonism Relat Disord 31:79–86

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fowler JS, Logan J, Volkow ND, Shumay E, McCall-Perez F, Jayne M, Wang GJ, Alexoff DL, Apelskog-Torres K, Hubbard B, Carter P, King P, Fahn S, Gilmor M, Telang F, Shea C, Xu Y, Muench L (2015) Evidence that formulations of the selective MAO-B inhibitor, selegiline, which bypass first-pass metabolism, also inhibit MAO-A in the human brain. Neuropsychopharmacology 40:650–657

    Article  CAS  PubMed  Google Scholar 

  36. Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Kopin IJ, Sharabi Y (2015) Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson’s disease. J Neurochem 133:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garrido M, Tereshchenko Y, Zhevtsova Z, Taschenberger G, Bahr M, Kugler S (2011) Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol 121:475–485

    Article  CAS  PubMed  Google Scholar 

  38. Reyes RC, Cittolin-Santos GF, Kim JE, Won SJ, Brennan-Minnella AM, Katz M, Glass GA, Swanson RA (2016) Neuronal glutathione content and antioxidant capacity can be normalized in situ by N-acetyl cysteine concentrations attained in human cerebrospinal fluid. Neurotherapeutics 13:217–225

    Article  CAS  PubMed  Google Scholar 

  39. Mazzulli JR, Burbulla LF, Krainc D, Ischiropoulos H (2016) Detection of free and protein-bound ortho-quinones by near-infrared fluorescence. Anal Chem 88:2399–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Follmer C, Coelho-Cerqueira E, Yatabe-Franco DY, Araujo GD, Pinheiro AS, Domont GB, Eliezer D (2015) Oligomerization and membrane-binding properties of covalent adducts formed by the interaction of alpha-synuclein with the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). J Biol Chem 290:27660–27679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Plotegher N, Berti G, Ferrari E, Tessari I, Zanetti M, Lunelli L, Greggio E, Bisaglia M, Veronesi M, Girotto S, Dalla Serra M, Perego C, Casella L, Bubacco L (2017) DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Sci Rep 7:40699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research reported here was supported by the intramural research program of the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Contributions

DSG conception and design, data analysis, data interpretation, drafting the article, final approval. YJ data acquisition, data analysis, conception and design, drafting the article, revising the article. PS data acquisition, data analysis. YS conception and design, data analysis, drafting the article, revising the article critically for important intellectual content.

Corresponding author

Correspondence to David S. Goldstein.

Ethics declarations

Conflict of interest

None of the authors has a conflict of interest to report. Dr. Goldstein is Chair of the Education Committee and sits on the Board of Directors of the American Autonomic Society, under approved Outside Activities. For these services he receives no payment in cash or kind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, D.S., Jinsmaa, Y., Sullivan, P. et al. N-Acetylcysteine Prevents the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Neurochem Res 42, 3289–3295 (2017). https://doi.org/10.1007/s11064-017-2371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2371-0

Keywords

Navigation