Skip to main content

Advertisement

Log in

Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Nerve agents (NAs) are extremely neurotoxic synthetic organophosphate (OP) compounds exploited as weapons of mass destruction in terrorist attacks and chemical warfare. Considering the current world scenario, there is a persistent threat of NA-exposure to military personals and civilians. Various prophylactic and post-exposure treatments (such as atropine and oximes) available currently for NA-poisoning are inadequate and unsatisfactory and suffer from severe limitations. Hence, developing safe and effective treatment(s) against NA-poisoning is a critical necessity. With regards to counteracting NA-toxicity, the OP-hydrolyzing enzymes (OPHEs), which can hydrolyze and inactivate a variety of NAs, have emerged as promising candidates for the development of prophylactic therapy against NA-poisoning. However, there are many hurdles to be crossed before these enzymes can be brought to therapeutic use in humans. In this article, we have reviewed the various advancements in the field of development of OPHEs as prophylactic against NA-poisoning. The article majorly focuses on the toxic effects of NAs, various available therapies to counteract NA poisoning, the current status of OPHEs and attempts made to improve the various properties of these enzymes. Further, we have also briefly discussed about the prospective work that is needed to be undertaken for developing these OPHEs into those suitable for use in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

DFPase:

Diisopropylfluorophosphatase

E. coli :

Escherichia coli

EMA:

European medicines agency

hAChE:

Human acetylcholinesterase

hBChE:

Human butyrylcholinesterase

MPH:

Methylparathionhydrolase

NA:

Nerve agents

OP:

Organophosphates

OPAA:

Organophosphorus acid anhydrolase

OPH:

Organophosphorus hydrolase

OPHEs:

Organophosphate hydrolyzing enzymes

PEG:

Polyethylene glycol

PON1:

Paraoxonase 1

PTE:

Phosphotriesterase

USFDA:

United States food and drug administration

References

  1. Moshiri M, Alizadeh A, Balali-Mood M (2014) Clinical management of organophosphorus nerve agents’ poisonings. In: Balali-Mood M, Abdollahi M (eds) Basic and clinical toxicology of organophosphorus compounds. Springer, London, pp 177–212

    Chapter  Google Scholar 

  2. Balali-Mood M, Saber H (2012) Recent advances in the treatment of organophosphorous poisonings. Iran J Med Sci 37:74–91

    Google Scholar 

  3. Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164

    Article  CAS  Google Scholar 

  4. Masuda N, Takatsu M, Morinari H, Ozawa T, Nozaki H, Aikawa N (1995) Sarin poisoning in Tokyo subway. Lancet 345:1446–1447

    Article  CAS  Google Scholar 

  5. Nagao M, Takatori T, Matsuda Y, Nakajima M, Iwase H, Iwadate K (1997) Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol Appl Pharmacol 144:198–203

    Article  CAS  Google Scholar 

  6. Tomassoni AJ, French RN, Walter FG (2015) Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome. Emerg Med Clin N Am 33:13–36

    Article  Google Scholar 

  7. Jeyaratnam J, Maroni M (1994) Organophosphorous compounds. Toxicology 91:15–27

    Article  CAS  Google Scholar 

  8. Bigley AN, Raushel FM (2013) Catalytic mechanisms for phosphotriesterases. Biochim Biophys Acta 1834:443–453

    Article  CAS  Google Scholar 

  9. Hoenig SL (2007) Compendium of chemical warfare agents. Springer, New York, pp 77–128

    Google Scholar 

  10. King AM, Aaron CK (2015) Organophosphate and carbamate poisoning. Emerg Med Clin N Am 33:133–151

    Article  Google Scholar 

  11. Cherny I, Greisen PJ, Ashani Y, Khare SD, Oberdorfer G, Leader H, Baker D, Tawfik DS (2013) Engineering V-Type nerve agents detoxifying enzymes using computationally focused libraries. ACS Chem Biol 8:2394–2403

    Article  CAS  Google Scholar 

  12. Benschop HP, De Jong LP (1988) Nerve agent stereoisomers: analysis, isolation and toxicology. Acc Chem Res 21:368–374

    Article  CAS  Google Scholar 

  13. Benschop HP, Konings CA, Van Genderen J, De Jong LP (1984) Isolation, anticholinesterase properties, and acute toxicity in mice of the four stereoisomers of the nerve agent soman. Toxicol Appl Pharmacol 72:61–74

    Article  CAS  Google Scholar 

  14. Reiter G, Mikler J, Hill I, Weatherby K, Thiermann H, Worek F (2008) Chromatographic resolution, characterisation and quantification of VX enantiomers in hemolysed swine blood samples. J Chromatogr B 873:86–94

    Article  CAS  Google Scholar 

  15. Tenberken O, Thiermann H, Worek F, Reiter G (2010) Chromatographic preparation and kinetic analysis of interactions between tabun enantiomers and acetylcholinesterase. Toxicol Lett 195:142–146

    Article  CAS  Google Scholar 

  16. Bigley AN, Xu C, Henderson TJ, Harvey SP, Raushel FM (2013) Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis. J Am Chem Soc 135:10426–10432

    Article  CAS  Google Scholar 

  17. Ordentlich A, Barak D, Sod-Moriah G, Kaplan D, Mizrahi D, Segall Y, Kronman C, Karton Y, Lazar A, Marcus D, Velan B (2014) Stereoselectivity toward VX is determined by interactions with residues of the acyl pocket as well as of the peripheral anionic site of AChE. Biochemistry 43:11255–11265

    Article  CAS  Google Scholar 

  18. Iyer R, Iken B (2015) Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem Eng J 94:134–144

    Article  CAS  Google Scholar 

  19. Iyer R, Iken B, Leon A (2015) Developments in alternative treatments for organophosphate poisoning. Toxicol Lett 233:200–206

    Article  CAS  Google Scholar 

  20. Masson P (2011) Evolution of and perspectives on therapeutic approaches to nerve agent poisoning. Toxicol Lett 206:5–13

    Article  CAS  Google Scholar 

  21. Westfall TC, Westfall DP (2011) Neurotransmission: the autonomic and somatic motor nervous systems. In: Brunton L, Chabner BA, Knollmann BC (eds) Goodman and Gilman’s: the pharmacological basis of therapeutics. Mc-Graw Hill Medical Publishing Division, New York, pp 137–181

    Google Scholar 

  22. Sidell FR, Borak J (1992) Chemical warfare agents: II. Nerve agents. Ann Emerg Med 21:865–871

    Article  CAS  Google Scholar 

  23. Tripathi KD (2013) Essentials of medical pharmacology, 7th edn. Jaypee Brothers Medical Publishers Ltd., New Delhi

    Google Scholar 

  24. Jokanović M, Kosanović M (2010) Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ Toxicol Pharmacol 29:195–201

    Article  CAS  Google Scholar 

  25. Bloch-Shilderman E, Rabinovitz I, Egoz I, Raveh L, Allon N, Grauer E, Gilat E, Weissman BA (2008) Subchronic exposure to low-doses of the nerve agent VX: physiological, behavioral, histopathological and neurochemical studies. Toxicol Appl Pharmacol 231:17–23

    Article  CAS  Google Scholar 

  26. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371:597–607

    Article  CAS  Google Scholar 

  27. Namba T, Nolte CT, Jackrel J, Grob D (1971) Poisoning due to organophosphate insecticides: acute and chronic manifestations. Am J Med 50:475–492

    Article  CAS  Google Scholar 

  28. Kadriu B, Guidotti A, Costa E, Davis JM, Auta J (2011) Acute imidazenil treatment after the onset of DFP-induced seizure is more effective and longer lasting than midazolam at preventing seizure activity and brain neuropathology. Toxicol Sci 120:136–145

    Article  CAS  Google Scholar 

  29. Koplovitz I, Stewart JR (1994) A comparison of the efficacy of HI6 and 2-PAM against soman, tabun, sarin, and VX in the rabbit. Toxicol Lett 70:269–279

    Article  CAS  Google Scholar 

  30. Jokanovic M, Prostran M (2009) Pyridinium oximes as cholinesterase reactivators Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 16:2177–2188

    Article  CAS  Google Scholar 

  31. Nurulain SM (2011) Efficacious oxime for organophosphorus poisoning: a minireview. Trop J Pharm Res 10:341–349

    Article  CAS  Google Scholar 

  32. Kassa J (2006) Therapeutic and neuroprotective efficacy of pharmacological pretreatment and antidotal treatment of acute tabun or soman poisoning with the emphasis on pretreatment drug PANPAL. Arh Hig Rada Toksikol 57:427–434

    CAS  Google Scholar 

  33. Cannard K (2006) The acute treatment of nerve agent exposure. J Neurol Sci 249:86–94

    Article  CAS  Google Scholar 

  34. Masson P, Rochu D (2009) Catalytic bioscavengers against toxic esters, an alternative approach for prophylaxis and treatments of poisonings. Acta Naturae 1:68

    Google Scholar 

  35. Nachon F, Brazzolotto X, Trovaslet M, Masson P (2013) Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 206:536–544

    Article  CAS  Google Scholar 

  36. Rang HP, Ritter JM, Flower RJ, Henderson G (2012) Rang and dale’s pharmacology, 7th edn. Elsevier Churchill Livingstone Inc., New York

    Google Scholar 

  37. O’Hagan D (2000) Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat Prod Rep 17:435–446

    Article  Google Scholar 

  38. Bajgar J, Fusek J, Kassa J, Kuca K, Jun D (2009) Chemical aspects of pharmacological prophylaxis against nerve agent poisoning. Curr Med Chem 16:2977–2986

    Article  CAS  Google Scholar 

  39. Eddleston M, Szinicz L, Eyer P, Buckley N (2002) Oximes in acute organophosphorus pesticide poisoning: a systematic review of clinical trials. QJM 95:275–283

    Article  CAS  Google Scholar 

  40. Thiermann H, Worek F, Kehe K (2013) Limitations and challenges in treatment of acute chemical warfare agent poisoning. Chem Biol Interact 206:435–443

    Article  CAS  Google Scholar 

  41. Gill KD, Flora G, Pachauri V, Flora SJ (2011) Neurotoxicity of organophosphates and carbamates. In: Satoh T, Gupta RC (eds) Anticholinesterase pesticides: metabolism, neurotoxicity, and epidemiology. Wiley, New Jersey, pp 237–265

    Chapter  Google Scholar 

  42. Albuquerque EX, Deshpande SS, Kawabuchi M, Aracava Y, Idriss M, Rickett DL, Boyne AF (1985) Multiple actions of anticholinesterase agents on chemosensitive synapses: molecular basis for prophylaxis and treatment of organophosphate poisoning. Toxicol Sci 5:182–203

    Article  Google Scholar 

  43. Albuquerque EX, Pereira EF, Aracava Y, Fawcett WP, Oliveira M, Randall WR, Hamilton TA, Kan RK, Romano JA, Adler M (2006) Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents. Proc Natl Acad Sci U S A 103:13220–13225

    Article  CAS  Google Scholar 

  44. Aracava Y, Pereira EF, Akkerman M, Adler M, Albuquerque EX (2009) Effectiveness of donepezil, rivastigmine, and (±) huperzine A in counteracting the acute toxicity of organophosphorus nerve agents: comparison with galantamine. J Pharmacol Exp Ther 331:1014–1024

    Article  CAS  Google Scholar 

  45. Pereira EF, Aracava Y, Alkondon M, Akkerman M, Merchenthaler I, Albuquerque EX (2010) Molecular and cellular actions of galantamine: clinical implications for treatment of organophosphorus poisoning. J Mol Neurosci 40:196–203

    Article  CAS  Google Scholar 

  46. Haigh JR, Johnston SR, Peters BM, Doctor BP, Gordon RK, Adler M, Gall KJ, Deshpande SS (2005) Inhibition of guinea pig hemi-diaphragm acetylcholinesterase activity by pyridostigmine bromide and protection against soman toxicity. Chem Biol Interact 157:381–382

    Article  CAS  Google Scholar 

  47. Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM (2007) Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: a mini review. Toxicology 233:31–39

    Article  CAS  Google Scholar 

  48. Rochu D, Chabrière E, Masson P (2007) Human paraoxonase: a promising approach for pre-treatment and therapy of organophosphorus poisoning. Toxicology 233:47–59

    Article  CAS  Google Scholar 

  49. Shih TM, Rowland TC, McDonough JH (2007) Anticonvulsants for nerve agent-induced seizures: the influence of the therapeutic dose of atropine. J Pharmacol Exp Ther 320:154–161

    Article  CAS  Google Scholar 

  50. Boyd CE, Boyd EM (1961) The acute toxicity of atropine sulfate. CMAJ 85:1241

    CAS  Google Scholar 

  51. Calesnick B, Christensen JA, Richter M (1967) Human toxicity of various oximes: 2-pyridine aldoxime methyl chloride, its methane sulfonate salt, and l, l’-trimethylenebis-(4-formylpyridinium chloride). Arch Environ Health 15:599–608

    Article  CAS  Google Scholar 

  52. Worek F, Bäcker M, Thiermann H, Szinicz L, Mast U, Klimmek R, Eyer P (1997) Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning. Hum Exp Toxicol 16:466–472

    Article  CAS  Google Scholar 

  53. Buckley NA, Eddleston M, Szinicz L (2005) Oximes for acute organophosphate pesticide poisoning. Cochrane Database Syst Rev 1:1–15

    Google Scholar 

  54. Soukup O, Tobin G, Kumar UK, Binder J, Proska J, Jun D, Fusek J, Kuca K (2010) Interaction of nerve agent antidotes with cholinergic systems. Curr Med Chem 17:1708–1718

    Article  CAS  Google Scholar 

  55. McDonough JH, McMonagle JD, Shih TM (2010) Time-dependent reduction in the anticonvulsant effectiveness of diazepam against soman-induced seizures in guinea pigs. Drug Chem Toxicol 33:279–283

    Article  CAS  Google Scholar 

  56. Marrs TC (2004) The role of diazepam in the treatment of nerve agent poisoning in a civilian population. Toxicol Rev 23:145–157

    Article  CAS  Google Scholar 

  57. Myhrer T, Aas P (2014) Choice of approaches in developing novel medical countermeasures for nerve agent poisoning. Neurotoxicology 44:27–38

    Article  CAS  Google Scholar 

  58. Tsai PC, Fox N, Bigley AN, Harvey SP, Barondeau DP, Raushel FM (2012) Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Biochemistry 51:6463–6475

    Article  CAS  Google Scholar 

  59. Elsinghorst PW, Worek F, Thiermann H, Wille T (2013) Drug development for the management of organophosphorus poisoning. Expert Opin Drug Discov 8:1467–1477

    Article  CAS  Google Scholar 

  60. Worek F, Seeger T, Goldsmith M, Ashani Y, Leader H, Sussman JS, Tawfik D, Thiermann H, Wille T (2014) Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro. Arch Toxicol 88:1257–1266

    Article  CAS  Google Scholar 

  61. Lenz DE, Clarkson ED, Schulz SM, Cerasoli DM (2010) Butyrylcholinesterase as a therapeutic drug for protection against percutaneous VX. Chem Biol Interact 187:249–252

    Article  CAS  Google Scholar 

  62. Chandrasekaran L, Belinskaya T, Saxena A (2010) In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity. Chem Biol Interact 187:349–354

    Article  CAS  Google Scholar 

  63. Doctor BP, Raveh L, Wolfe AD, Maxwell DM, Ashani Y (1991) Enzymes as pretreatment drugs for organophosphate toxicity. Neurosci Biobehav Rev 15:123–128

    Article  CAS  Google Scholar 

  64. Valiyaveettil M, Alamneh YA, Doctor BP, Nambiar MP (2005) Crossroads in the evaluation of paraoxonase 1 for protection against nerve agent and organophosphate toxicity. Toxicol Lett 210:87–94

    Article  CAS  Google Scholar 

  65. Doctor BP, Saxena A (2005) Bioscavengers for the protection of humans against organophosphate toxicity. Chem Biol Interact 157:167–171

    Article  CAS  Google Scholar 

  66. Raveh L, Grunwald J, Marcus D, Papier Y, Cohen E, Ashani Y (1993) Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity: in vitro and in vivo quantitative characterization. Biochem Pharmacol 45:2465–2474

    Article  CAS  Google Scholar 

  67. Doctor BP, Maxwell DM, Ashani Y, Saxena A, Gordon RK (2001) New approaches to medical protection against chemical warfare nerve agents. In: Satu MS, Romano JA, Romano JA, Salem H, Lukey BJ (eds) Chemical warfare agents: toxicity at low levels. CRC Press, Florida, pp 191–214

    Google Scholar 

  68. Mumford H, Docx CJ, Price M, Green AC, Tattersall JE, Armstrong SJ (2013) Human plasma-derived BuChE as a stoichiometric bioscavenger for treatment of nerve agent poisoning. Chem Biol Interact 203:160–166

    Article  CAS  Google Scholar 

  69. Rezk PE, Zdenka P, Sabnekar P, Kajih T, Mata DG, Wrobel C, Cerasoli DM, Chilukuri N (2015) An in vitro and in vivo evaluation of the efficacy of recombinant human liver prolidase as a catalytic bioscavenger of chemical warfare nerve agents. Drug Chem Toxicol 38:37–43

    Article  CAS  Google Scholar 

  70. Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, Bilodeau AS, Bellemare A, Côté M, Herskovits P, Touati M (2007) Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc Natl Acad Sci USA 104:13603–13608

    Article  CAS  Google Scholar 

  71. Jackson CJ, Scott C, Carville A, Mansfield K, Ollis DL, Bird SB (2010) Pharmacokinetics of OpdA, an organophosphorus hydrolase, in the African green monkey. Biochem Pharmacol 80:1075–1079

    Article  CAS  Google Scholar 

  72. Jackson CJ, Carville A, Ward J, Mansfield K, Ollis DL, Khurana T, Bird SB (2014) Use of OpdA, an organophosphorus (OP) hydrolase, prevents lethality in an African green monkey model of acute OP poisoning. Toxicology 317:1–5

    Article  CAS  Google Scholar 

  73. Worek F, Seeger T, Reiter G, Goldsmith M, Ashani Y, Leader H, Sussman JL, Aggarwal N, Thiermann H, Tawfik DS (2014) Post-exposure treatment of VX poisoned guinea pigs with the engineered phosphotriesterase mutant C23: a proof-of-concept study. Toxicol Lett 231:45–54

    Article  CAS  Google Scholar 

  74. Liu Y, Li J, Lu Y (2015) Enzyme therapeutics for systemic detoxification. Adv Drug Deliv Rev 90:24–39

    Article  CAS  Google Scholar 

  75. Stevens RC, Suzuki SM, Cole TB, Park SS, Richter RJ, Furlong CE (2008) Engineered recombinant human paraoxonase 1 (rHuPON1) purified from Escherichia coli protects against organophosphate poisoning. Proc Natl Acad Sci USA 105:12780–12784

    Article  CAS  Google Scholar 

  76. Gaidukov L, Bar D, Yacobsons S, Naftali E, Kaufman O, Tabakman R, Tawfik DS, Levy-Nissenbaum E (2009) In vivo administration of BL-3050: highly stable engineered PON1-HDL complexes. BMC Clin Pharmacol 9:1–13

    Article  CAS  Google Scholar 

  77. Mumford H, Troyer JK (2011) Post-exposure therapy with recombinant human BuChE following percutaneous VX challenge in guinea-pigs. Toxicol Lett 206:29–34

    Article  CAS  Google Scholar 

  78. Wales ME, Reeves TE (2012) Organophosphorus hydrolase as an in vivo catalytic nerve agent bioscavenger. Drug Test Anal 4:271–281

    Article  CAS  Google Scholar 

  79. Kovarik Z, Radic Z, Berman HA, Taylor P (2007) Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonate. Toxicology 233:784–789

    Article  CAS  Google Scholar 

  80. DeFrank JJ, Cheng TC (1991) Purification and properties of an organophophorus acid anhydrolase from a halophilic bacterial isolate. J Bacteriol 173:1938–1943

    Article  CAS  Google Scholar 

  81. Chen JCH, Mustyakimov M, Schoenborn BP, Langan P, Blum MM (2010) Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase). Acta Crystallogr D Biol Crystallogr 66:1131–1138

    Article  CAS  Google Scholar 

  82. Hiblot J, Gotthard G, Chabriere E, Elias M (2012) Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci Rep 2:1–8

    Article  CAS  Google Scholar 

  83. Cheng TC, Defrank JJ (2000) Hydrolysis of organophosphorus compounds by bacterial prolidases. Enzym Action 33:243–261

    Article  CAS  Google Scholar 

  84. Suthiwangcharoen N, Nagarajan R (2014) Enhancing enzyme stability by construction of polymer–enzyme conjugate micelles for decontamination of organophosphate agents. Biomacromolecules 15:1142–1152

    Article  CAS  Google Scholar 

  85. Lai K, Grimsley JK, Kuhlmann BD, Scapozza L, Harvey SP, DeFrank JJ, Kolakowski JE, Wild JR (1996) Rational enzyme design: computer modeling and site-directed mutagenesis for the modification of catalytic specificity in organo-phosphorus hydrolase. Chimia 50:430–431

    CAS  Google Scholar 

  86. Wang Y, Boeck AT, Duysen EG, van Keuren M, Saunders TL, Lockridge O (2004) Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase. Toxicol Appl Pharmacol 196:356–366

    Article  CAS  Google Scholar 

  87. Trovaslet-Leroy M, Musilova L, Renault F, Brazzolotto X, Misik J, Novotny L, Froment MT, Gillon E, Loiodice M, Verdier L, Masson P, Rochu D, Jun D, Nachon F (2011) Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol Lett 206:14–23

    Article  CAS  Google Scholar 

  88. Legler PM, Boisvert SM, Compton JR, Millard CB (2014) Development of organophosphorus hydrolase activity in a bacterial homolog of human cholinesterase. Front Chem 2:1–15

    Article  CAS  Google Scholar 

  89. Benning MM, Kuo JM, Raushel FM, Holden HM (1995) Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry 35:7973–7978

    Article  Google Scholar 

  90. Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG, Rao Z, Zhang XE (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  Google Scholar 

  91. Koepke J, Scharff EI, Lucke C, Ruterjans H, Fritzsch G (2005) Statistical analysis of crystallographic data obtained from squid ganglion DFPase at 0.85 Å resolution. Acta Crystallogr D Biol Crystallogr 59:1744–1754

    Article  Google Scholar 

  92. Blum MM, Mustyakimo MV, Ruterjans H, Kehe K, Schoenborn BP, Langan P, Chen JCH (2009) Rapid determination of hydrogen positions and protonation states of diisopropyl fluorophosphatase by joint neutron and X-ray diffraction refinement. Proc Natl Acad Sci USA 106:713–718

    Article  CAS  Google Scholar 

  93. Vyas NK, Nickitnko A, Rastogi VK, Shah SS, Quiocho FA (2010) Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase. Biochemistry 49:547–559

    Article  CAS  Google Scholar 

  94. Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RBG, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419

    Article  CAS  Google Scholar 

  95. Omburo GA, Kuo JM, Mullins LS, Raushel FM (1992) Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267:13278–13283

    CAS  Google Scholar 

  96. Hartleib J, Geschwindner S, Scharff EI, Ruterjans H (2004) Role of calcium ions in the structure and function of the di-isopropylfluorophosphatase from Loligo vulgaris. Biochem J 353:579–589

    Article  Google Scholar 

  97. Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715

    Article  CAS  Google Scholar 

  98. Mata DG, Rezk PE, Sabnekar P, Cerasoli DM, Chilukuri N (2014) Investigation of evolved paraoxonase-1 variants for prevention of organophosphorous pesticide compound intoxication. J Pharmacol Exp Ther 349:549–558

    Article  CAS  Google Scholar 

  99. Hodgins SM, Kasten SA, Harrison J, Otto TC, Oliver ZP, Rezk P, Reeves TE, Chilukuri N, Cerasoli DM (2013) Assessing protection against OP pesticides and nerve agents provided by wildtype HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection. Chem Biol Interact 203:177–180

    Article  CAS  Google Scholar 

  100. Richter RJ, Jarvik GP, Furlong CE (2009) Paraoxonase 1 (PON1) status and substrate hydrolysis. Toxicol Appl Pharmacol 235:1–9

    Article  CAS  Google Scholar 

  101. Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, Ben-David M, Leader H, Margalit R, Silman I (2011) Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol 7:120–125

    Article  CAS  Google Scholar 

  102. Cho CMH, Mulchandani A, Chen W (2006) Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. Protein Eng Des Sel 19:99–105

    Article  Google Scholar 

  103. Kirby SD, Norris JR, Smith JR, Bahnson BJ, Cerasoli DM (2012) Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents. Chem Biol Interact 203:181–185

    Article  CAS  Google Scholar 

  104. Reeves T, Wales M, Grimsley J, Li P, Cerasoli D, Wild J (2008) Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities. Protein Eng Des Sel 21:405–412

    Article  CAS  Google Scholar 

  105. Theriot CM, Grunden AM (2011) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43

    Article  CAS  Google Scholar 

  106. Theriot CM, Du X, Tove SR, Grunden AM (2010) Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures. Appl Microbiol Biotechnol 87:1715–1726

    Article  CAS  Google Scholar 

  107. Melzer M, Heidenreich A, Dorandeu F, Gäb J, Kehe K, Thiermann H, Letzel T, Blum MM (2012) In vitro and in vivo efficacy of PEGylated diisopropylfluorophosphatase (DFPase). Drug Test Anal 4:262–270

    Article  CAS  Google Scholar 

  108. Bigley A, Mabanglo MF, Harvey SP, Raushel FM (2015) Variants of phosphotriesterase for the enhanced detoxification of the chemical warfare agent VR. Biochemistry 54:5502–5512

    Article  CAS  Google Scholar 

  109. Farnoosh G, Latifi AM (2014) A review on engineering of organophosphorus hydrolase (OPH) enzyme. J Appl Biotechnol Rep 1:1–10

    Google Scholar 

  110. Cho CMH, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685

    Article  CAS  Google Scholar 

  111. Schofield DA, DiNovo AA (2010) Generation of a mutagenized organophosphorus hydrolase for the biodegradation of the organophosphate pesticides malathion and demeton-S. J Appl Microbiol 09:548–557

    Google Scholar 

  112. Tsai PC, Bigley A, Li Y, Ghanem E, Cadieux CL, Kasten SA, Reeves TE, Cerasoli DM, Raushel FM (2010) Selective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase. Biochemistry 49:7978–7987

    Article  CAS  Google Scholar 

  113. Li WS, Lum KT, Chen-Goodspeed M, Sogorb MA, Raushel FM (2001) Stereoselective detoxification of chiral sarin and soman analogues by phosphotriesterase. Bioorg Med Chem 9:2083–2091

    Article  CAS  Google Scholar 

  114. Hill CM, Li WS, Thoden JB, Holden HM, Raushel FM (2003) Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. J Am Chem Soc 125:8990–8991

    Article  CAS  Google Scholar 

  115. Le ATH, Chang R, Kim YH (2015) Rational design of paraoxonase 1 (PON1) for the efficient hydrolysis of organophosphates. Chem Commun 51:14536–14539

    Article  CAS  Google Scholar 

  116. Watkins LM, Mahoney HJ, McCulloch JK, Raushel FM (1997) Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J Biol Chem 272:25596–25601

    Article  CAS  Google Scholar 

  117. Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ (2014) A 5000- fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS ONE 9:1–7

    Article  CAS  Google Scholar 

  118. Merone L, Mandrich L, Porzio E, Rossi M, Müller S, Reiter G, Worek F, Manco G (2010) Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase. Bioresour Technol 101:9204–9212

    Article  CAS  Google Scholar 

  119. Amitai G, Gaidukov L, Adani R, Yishay S, Yacov G, Kushnir M, Teitlboim S, Lindenbaum M, Bel P, Khersonsky O, Tawfik DS, Meshulam H (2006) Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase. FEBS J 273:1906–1919

    Article  CAS  Google Scholar 

  120. Jeong YS, Choi JM, Kyeong HH, Choi JY, Kim EJ, Kim HS (2014) Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent. Biochem Biophys Res Commun 449:263–267

    Article  CAS  Google Scholar 

  121. Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S (2013) Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J Am Chem Soc 135:11670–11677

    Article  CAS  Google Scholar 

  122. Chen-Goodspeed M, Sogorb MA, Wu F, Raushel FM (2001) Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Biochemistry 40:1332–1339

    Article  CAS  Google Scholar 

  123. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:380–394

    Article  CAS  Google Scholar 

  124. Damborsky J, Brezovsky J (2014) Computational tools for designing and engineering enzymes. Curr Opin Chem Biol 19:8–16

    Article  CAS  Google Scholar 

  125. Wilson CJ (2014) Rational protein design: developing next-generation biological therapeutics and nanobiotechnological tools. Wiley Interdiscip. Rev Nanomed Nanobiotechnol 7:1–12

    Google Scholar 

  126. Worek F, Thiermann H, Wille T (2016) Catalytic bioscavengers in nerve agent poisoning: a promising approach? Toxicol Lett 244:143–148

    Article  CAS  Google Scholar 

  127. Masson P, Josse D, Lockridge O, Viguie N, Taupin C, Buhler C (1998) Enzymes hydrolyzing organophosphates as potential catalytic scavengers against organophosphate poisoning. J Physiol Paris 92:357–362

    Article  CAS  Google Scholar 

  128. Kolakowski JE, DeFrank JJ, Harvey SP, Szafraniec LL, Beaudry WT, Lai KH, Wild JR (1997) Enzymatic hydrolysis of the chemical warfare agent VX and its neurotoxic analogues by organophosphorus hydrolase. Biocatal Biotransformation 15:297–312

    Article  CAS  Google Scholar 

  129. Cheng T-C, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140

    CAS  Google Scholar 

  130. Hill CM, Wu F, Cheng T-C, DeFrank JJ, Raushel FM (2000) Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p-nitrophenyl phosphotriesters. Bioorg Med Chem Lett 10:1285–1288

    Article  CAS  Google Scholar 

  131. Goldsmith M, Ashani Y, Simo Y, Ben-David M, Leader H, Silman I, Sussman JL, Tawfik DS (2012) Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification. Chem Biol 19:456–466

    Article  CAS  Google Scholar 

  132. Aggarwal G, Prajapati R, Tripathy RK, Bajaj P, Iyengar ARS, Sangamwar AT, Pande AH (2016) Toward understanding the catalytic mechanism of human paraoxonase 1: site-specific mutagenesis at position 192. PLoS ONE 11:1–18

    Google Scholar 

  133. Bajaj P, Tripathy RK, Aggarwal G, Pande AH (2014) Human Paraoxonase 1 as a pharmacologic agent: limitations and perspectives. Sci World J 2014:1–6

    Article  CAS  Google Scholar 

  134. Bajaj P, Aggarwal G, Tripathy RK, Pande AH (2014) Interplay between amino acid residues at positions 192 and 115 in modulating hydrolytic activities of human paraoxonase 1. Biochimie 105:202–210

    Article  CAS  Google Scholar 

  135. Bajaj P, Tripathi RK, Aggarwal G, Pande AH (2013) Characterization of human paraoxonase 1 variants suggest that His residues at 115 and 134 positions are not always needed for the lactonase/arylesterase activities of the enzyme. Prot Sci 22:1799–1807

    Article  CAS  Google Scholar 

  136. Otto TC, Kasten SA, Kovaleva E, Liu Z, Buchman G, Tolosa M, Davis D, Smith JR, Balcerzak R, Lenz DE (2010) Purification and characterization of functional human paraoxonase-1 expressed in Trichoplusia ni larvae. Chem Biol Interact 187:388–392

    Article  CAS  Google Scholar 

  137. Geyer BC, Kannan L, Cherni I, Woods RR, Soreq H, Mor TS (2010) Transgenic plants as a source for the bioscavenging enzyme, human butyrylcholinesterase. Plant Biotech J 8:873–886

    Article  CAS  Google Scholar 

  138. Mulchandani P, Mulchandani M, Kaneva I, Chen W (1999) Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens Bioelectron 14:77–85

    Article  CAS  Google Scholar 

  139. Thakur S, Reddy VM, Siddavattam D, Paul AK (2012) A fluorescence based assay with pyranine labeled hexa-histidine tagged organophosphorus hydrolase (OPH) for determination of organophosphates. Sens Actuators B Chem 163:153–158

    Article  CAS  Google Scholar 

  140. Altenbuchner J, Mattes R (2005) Escherichia coli. In: Gellisen G (ed) Production of recombinant proteins: novel microbial and eukaryotic expression systems. Wiley, Weinheim, pp 7–44

    Chapter  Google Scholar 

  141. Palomeres L, Estarda-Mondaca S, Ramirez OT (2004) Production of recombinant proteins, challenges and solutions. Methods Mol Biol 267:15–51

    Google Scholar 

  142. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  Google Scholar 

  143. Lilile H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 9:497–501

    Article  Google Scholar 

  144. Graslund S, Nordlund P, Weigelt J (2008) Protein production and purification. Nat Methods 5:135–146

    Article  Google Scholar 

  145. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17

    Google Scholar 

  146. Chandrasekaran L, Belinskaya T, Saxena A (2013) In vitro characterization of organophosphorus compound hydrolysis by native and recombinant human prolidase. Toxicol In Vitro 27:499–506

    Article  CAS  Google Scholar 

  147. Hartleib J, Rüterjans H (2001) High-yield expression, purification, and characterization of the recombinant diisopropylfluorophosphatase from Loligo vulgaris. Protein Expr Purif 21:210–219

    Article  CAS  Google Scholar 

  148. Lupi A, Della Torre S, Campari E, Tenni R, Cetta G, Rossi A, Forlino A (2006) Human recombinant prolidase from eukaryotic and prokaryotic sources. Expression, purification, characterization and long-term stability studies. FEBS J 273:5466–5478

    Article  CAS  Google Scholar 

  149. Bajaj P, Tripathy RK, Aggarwal G, Pande AH (2015) Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli. Protein Exp Purif 115:95–101

    Article  CAS  Google Scholar 

  150. Walsh G (2014) Pharmaceutical benchmarks. Nat Biotechnol 32:992–1000

    Article  CAS  Google Scholar 

  151. Clark EDB (1998) Refolding of recombinant proteins. Curr Opin Biotechnol 9:157–163

    Article  Google Scholar 

  152. Mukhopadhyay A (1997) Inclusion bodies and purification of proteins in biologically active forms. Adv Biochem Eng Biotechnol 56:62–108

    Google Scholar 

  153. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14:1–10

    Article  CAS  Google Scholar 

  154. Ferrer-Miralles N, Saccardo P, Corchero J, Xu Z, García-Fruitós E (2015) General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol 1258:1–24

    Article  CAS  Google Scholar 

  155. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310

    Article  CAS  Google Scholar 

  156. Guise AD, West SM, Chaudhari JB (1996) Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol Biotechnol 6:55–64

    Article  Google Scholar 

  157. Garcıa-Fruitos E, Vazquez E, Dıez-Gil C (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30:65–70

    Article  CAS  Google Scholar 

  158. Mayer M, Buchner J (2004) Refolding of inclusion body proteins. Methods Mol Med 94:239–254

    CAS  Google Scholar 

  159. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  Google Scholar 

  160. Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 3:1–12

    Article  CAS  Google Scholar 

  161. Gudkov DA, Efremenko EN (2007) Refolding of hexahistidine-tagged organophophorous hydrolase from inclusion bodies. Moscow Univ Chem Bull 62:320–324

    Article  Google Scholar 

  162. Tawfik DS, Aharoni A, Gaydukov L, Sussman JL, Silman I (2011) PON polypeptides, polynucleotides encoding same and compositions and methods utilizing same. US Patent Application Publication No.: US2011/0171197 A1

  163. Rastogi V, Cheng T, DeFrank JJ (2002) One-step purification process for organophosphorus hydrolase enzyme. US Patent No.: US 6,469,145 B1

  164. Dechavanne V, Barrillat N, Borlat F (2011) A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Protein Expr Purif 75:192–203

    Article  CAS  Google Scholar 

  165. Evron T, Geyer BC, Cherni I, Muralidharan M, Kilbourne J, Fletcher SP, Soreq H, Mor TS (2007) Plant-derived human acetylcholinesterase-R provides protection from lethal organophosphate poisoning and its chronic aftermath. FASEB J 11:2961–2969

    Article  Google Scholar 

  166. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  Google Scholar 

  167. Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  CAS  Google Scholar 

  168. Novikov BN, Grimsley JK, Kern RJ, Wild JR, Wales ME (2010) Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol. J Control Release 146:318–325

    Article  CAS  Google Scholar 

  169. Petrikovics I, Wales M, Budai M, Yu JC, Szilasi M (2012) Nano-intercalated organophosphorus-hydrolyzing enzymes in organophosphorus antagonism. AAPS PharmSciTech 13:112–127

    Article  CAS  Google Scholar 

  170. Gaidukov L, Tawfik DS (2005) High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry 44:11843–11854

    Article  CAS  Google Scholar 

  171. Ashani Y, Rothschild N, Segall Y, Levanon D, Raveh L (1991) Prophylaxis against organophosphate poisoning by an enzyme hydrolysing organophosphorus compounds in mice. Life Sci 49:367–374

    Article  CAS  Google Scholar 

  172. Hey T, Knoller H, Vorstheim P (2012) Half-life extension through HESylation®. In: Kontermann R (ed) Therapeutic proteins, strategies to modulate their plasma half-lives. Wiley, Weinheim, pp 117–140

    Chapter  Google Scholar 

  173. Strohl WR (2015) Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29:1–25

    Article  CAS  Google Scholar 

  174. Jun D, Musilová L, Link M, Loiodice M, Nachon F, Rochu D, Renault F, Masson P (2010) Preparation and characterization of methoxy polyethylene glycol-conjugated phosphotriesterase as a potential catalytic bioscavenger against organophosphate poisoning. Chem Biol Interact 187:380–383

    Article  CAS  Google Scholar 

  175. Chen B, Shah SS, Shin Y, Lei C, Liu J (2012) In vitro release of organophosphorus acid anhydrolase from functionalized mesoporous silica against nerve agents. Anal Biochem 421:477–481

    Article  CAS  Google Scholar 

  176. Parikh H, Bajaj P, Tripathy RK, Pande AH (2015) Improving properties of recombinant SsoPox by site-specific PEGylation. Protein Pept Lett 22:1098–1103

    Article  CAS  Google Scholar 

  177. Kernchen RJ (2011) Enzyme stabilization in nanostructured materials for use in organophosphorus Nerve Agent detoxification and prophylaxis. In: Mikhalovsky S, Khajibaev A (eds) Biodefence: advanced materials and methods for health protection. Springer, Berlin, pp 135–145

    Chapter  Google Scholar 

  178. Rosenberg YJ, Saxena A, Sunb W, Jianga X, Chilukuri N, Luo C, Doctor BP, Lee KD (2010) Demonstration of in vivo stability and lack of immunogenicity of a polyethyleneglycol-conjugated recombinant CHO-derived butyrylcholinesterase bioscavenger using a homologous macaque model. Chem Biol Interact 187:279–286

    Article  CAS  Google Scholar 

  179. Ilyushin DG, Smirnova IV, Belogurov AA, Dyachenkod IA, Zharmukhamedovad TI, Novozhilovae TI, Bychikhine EA, Serebryakova MV, Kharybinf OL, Murashevd AN, Anikienkoe KA, Nikolaevf EN, Ponomarenko NA, Genkini DD, Blackburn MJ, Masson P, Gabibo AG (2013) Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-acting bioscavenger for nerve agents in vivo. Proc Nat Acad Sci USA 110:1243–1248

    Article  CAS  Google Scholar 

  180. Schmidt SR (2013) Fusion proteins for half-life extension. In: Schmidt SR (ed) Fusion protein technologies for biopharmaceuticals: applications and challenges. Wiley, New Jersey, pp 93–106

    Chapter  Google Scholar 

  181. Noy-Porat T, Cohen O, Ehrlich S, Epstein E, Alcalay R, Mazor O (2014) Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): a novel potential organophosphate bioscavenger with extended plasma half-life. Bioconjug Chem 26:1753–1758

    Article  CAS  Google Scholar 

  182. Bajaj P, Pande AH (2014) Stabilization studies on bacterially produced human paraoxonase 1 for improving its shelf life. Appl Biochem Biotechnol 172:3798–3809

    Article  CAS  Google Scholar 

  183. Iyengar SAR, Tripathy RK, Bajaj P, Pande AH (2015) Improving storage stability of recombinant organophosphorus hydrolase. Protein Expr Purif 111:28–35

    Article  CAS  Google Scholar 

  184. Kim M, Gkikas M, Aaron Huang A, Kang JW, Suthiwangcharoen M, Nagarajan R, Olsen BD (2014) Enhanced activity and stability of organophosphorus hydrolase via interaction with an amphiphilic polymer. Chem Commun 50:5345–5348

    Article  CAS  Google Scholar 

  185. Milani MM, Lotfi AS, Mohsenifar A, Mikaili P, Kamelipour N, Dehghan J (2015) Enhancing organophosphorus hydrolase stability by immobilization on chitosan beads containing glutaraldehyde. Res J Environ Toxicol 9:34–44

    Article  Google Scholar 

  186. Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    Article  CAS  Google Scholar 

  187. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Article  CAS  Google Scholar 

  188. Jorgensen L, Hostrup S, Moeller EH, Grohganz H (2009) Recent trends in stabilising peptides and proteins in pharmaceutical formulation considerations in the choice of excipients. Expert Opin Drug Deliv 6:1219–1230

    Article  CAS  Google Scholar 

  189. Cheng T, DeFrank JJ, Harvey SP, Rastogi VK (2010) Non-corrosive, non-caustic, non-flammable, catalyst-based decontaminant formulation. U.S. Patent No.: US 7,723,558 B1

  190. Aebersold P (2012) FDA Experience with medical countermeasures under the animal rule. Adv Prev Med 2012:1–11

    Article  Google Scholar 

  191. Pereira EF, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX (2015) Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 350:313–321

    Article  CAS  Google Scholar 

  192. Cochran R, Kalisiak J, Kucukkılınc T, Radic Z, Garcia E, Zhang L, Ho K, Amitai G, Kovarik Z, Fokin VV, Sharpless KB, Taylor P (2011) Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging. J Biol Chem 286:29718–29724

    Article  CAS  Google Scholar 

  193. Chambers JE, Chambers HW, Meek EC, Funck KE, Bhavaraju M, Gwaltney SR, Pringle RB (2015) Novel nucleophiles enhance the human serum paraoxonase 1 (PON1)-mediated detoxication of organophosphates. Toxicol Sci 143:46–53

    Article  CAS  Google Scholar 

  194. Meek EC, Chambers HW, Pringle RB, Chambers JE (2015) The effect of PON1 enhancers on reducing acetylcholinesterase inhibition following organophosphate anticholinesterase exposure in rats. Toxicology 336:79–83

    Article  CAS  Google Scholar 

  195. Hemmert AC, Otto TC, Chica RA, Weird M, Edwards JS, Lewis SL, Edwards CC, Tsurkan L, Cadieux CL, Kasten SA, Cashman JR, Mayo SL, Potter PM, Cerasoli DM, Redinbo MR (2011) Nerve agent hydrolysis activity designed into a human drug metabolism enzyme. PLoS ONE 6:1–9

    Article  CAS  Google Scholar 

  196. Del Vecchio P, Elias M, Merone L, Graziano G, Dupuy J, Mandrich L, Carullo P, Fournier B, Rochu D, Rossi M, Masson P, Chabriere E, Manco G (2009) Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 13:461–470

    Article  CAS  Google Scholar 

  197. Blum MM, Lohr F, Richardt A, Ruterjans H, Chen JC (2006) Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implications for the phosphotriesterase mechanism. J Am Chem Soc 128:12750–12757

    Article  CAS  Google Scholar 

  198. Vanhooke JL, Benning MM, Raushel FM, Holden HM (1996) Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemistry 35:6020–6025

    Article  CAS  Google Scholar 

  199. Chakraborti S, Bahnson BJ (2010) Crystal structure of human senescence marker protein 30: insights linking structural, enzymatic, and physiological functions. Biochemistry 49:3436–3444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research Grant (SB/SO/BB-0105/2013) to A.H.P. from the Department of Science and Technology, New Delhi, Government of India, and from NIPER, S.A.S. Nagar. The authors also thank Prof. K.P.R. Kartha, Department of Medicinal Chemistry, and Dr. G. B. Jena, Department of Pharmacology and Toxicology, NIPER-SAS Nagar, for their valuable assistance in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay H. Pande.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyengar, A.R.S., Pande, A.H. Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead. Protein J 35, 424–439 (2016). https://doi.org/10.1007/s10930-016-9686-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9686-6

Keywords

Navigation