Skip to main content

Apple Genetic Resources: Diversity and Conservation

  • Chapter
  • First Online:
The Apple Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1217 Accesses

Abstract

Diverse apple cultivars and wild Malus species offer necessary allelic diversity to breeding and research programs. Wild apple species are found in native landscapes of countries throughout the Northern Hemisphere; however, some of these species are at risk of being lost, particularly if trees are unable to thrive under changing climatic conditions, disease/pathogen outbreaks, and human encroachment. Apple genebanks have been established to ensure that user communities have current and future access to these genetic resources. Herein, we describe necessary components of apple genebanks, including collection maintenance forms (trees in orchards, in vitro cultures, low-temperature medium-term storage, and cryopreservation), acquisition of genebank accessions, documentation and data management, distribution of collection materials, as well as characterization and evaluation (phenotypic evaluations and genetic tools for collection management). We conclude with a summary of international apple genebank holdings and provide some examples of how collaborations among genebanks would benefit the global community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M (2014) Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh.). PLoS One 9:e110377

    Google Scholar 

  • Bianco L, Cestaro A, Linsmith G, Murranty H, Denancé C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, Van de Weg E, Davassi A, Laurens F, Velasco R, Durel C-E, Troggio M (2016) Development and validation of the Axiom Apple 480K SNP genotyping array. Plant J 86:62–74

    Article  CAS  PubMed  Google Scholar 

  • Bramel PJ, Volk G (2019) A global strategy for the conservation and use of apple genetic resources. Global Crop Diversity Trust. Bonn, Germany. https://doi.org/10.13140/RG.2.2.34072.34562

  • Broggini GAL, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke M-V, Richter K, Patocchi A, Gessler C (2014) Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnol J 12:728–733

    Article  CAS  PubMed  Google Scholar 

  • Brown S (2012) Apple. In: Byrne DH (ed) Badenes ML. Fruit breeding, Springer Publ, pp 329–367

    Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2015) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085. https://doi.org/10.1111/pbi.12454

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740–7A. New Phytol 166:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Center for Plant Conservation (2021) Cleaning, processing, drying, and storing orthodox seeds in CPC best plant conservation practices to support species survival in the wild. https://academy.saveplants.org/node/67. Accessed 13 Jan 2021

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE 7(2). https://doi.org/10.1371/journal.pone.0031745

  • Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong G-Y, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 8:249. https://doi.org/10.1038/s41467-017-00336-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans K (2013) Apple breeding in the Pacific Northwest. Acta Hortic 976:75–78

    Article  Google Scholar 

  • Evans KM, Patocchi A, Rezzonico F, Mathis F, Durel CE, Fernández- Fernández F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Gianfranceschi L, Komjanc M, Lateur M, Madduri M, Noordijk Y, van de Weg E (2011) Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed 28:535–547

    Article  Google Scholar 

  • Evans K, Guan Y, Luby J, Clark M, Schmitz C, Brown S, Orcheski B, Peace C, van de Weg E, Iezzoni A (2012) Large-scale standardized phenotyping of apple in RosBREED. Acta Hortic 945:223–238

    Google Scholar 

  • Fazio G, Aldwinckle HS, Volk GM, Richards CM, Janisiewicz W, Forsline PL (2009) Progress in evaluating Malus sieversii for disease resistance and horticultural traits. Acta Hortic 814:59–66

    Article  Google Scholar 

  • Fazio G, Chao CT, Forsline P, Richards C, Volk G (2014) Tree and root architecture of Malus sieversii seedlings for rootstock breeding. Acta Hortic 1058:585–594

    Article  Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke M-V (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377

    Article  CAS  PubMed  Google Scholar 

  • Foroni I, Baptista C, Monteiro L, Lopes MS, Mendonça D, Melo M, Carvalho C, Monjardino P, Lopes DJH, Machado A (2012) The use of microsatellites to analyze relationships and to decipher homonyms and synonyms in Azorean apples (Malus × domestica Borkh.). Plant Syst Evol 298:1297–1313

    Article  Google Scholar 

  • Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR (1998) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hort Sci 123:365–370

    Article  Google Scholar 

  • GBIF (Global Biodiversity Information Facility) (2017) Explore occurrences. https://www.gbif.org/occurrence

  • Genesys (2021) A gateway to genetic resources. https://www.genesys-pgr.org. Accessed 8 Jan 2021

  • Gianfranceschi L, Soglio V (2004) The European Project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hortic 663:327–330

    Article  Google Scholar 

  • Gross BL, Volk GM, Richards CM, Reeves PA, Henk AD, Forsline PL, Szewc-McFadden A, Fazio G, Chao CT (2013) Diversity captured in the USDA-ARS-national plant germplasm system apple core collection. J Am Soc Hort. Sci 138:375–381

    Article  Google Scholar 

  • Gross B, Henk A, Richards C, Fazio G, Volk G (2014) Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am J Bot 101(10):1770–1779

    Article  PubMed  Google Scholar 

  • Harshman JM, Evans KM, Allen H, Potts R, Flamenco J, Aldwinckle HS, Wisniewski ME, Norelli JL (2017) Fire Blight Resistance in Wild Accessions of Malus Sieversii. 101:1738–1745

    Google Scholar 

  • Höfer M (2015) Cryopreservation of winter-dormant apple buds: establishment of a duplicate collection of Malus germplasm. Plant Cell Tiss Org Cult 121:647–656

    Article  CAS  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Howard NP, van de Weg E, Bedford DS, Peace CP, Vanderzande S, Clark MD, Teh SL, Cai L, Luby JJ (2017) Elucidation of the ‘Honeycrisp’ pedigree through haplotype analysis with a multi-family integrated SNP linkage map and a large apple (Malus × domestica) pedigree-connected SNP data set. Hortic Res 4:17003. https://doi.org/10.1038/hortres.2017.3

  • Jenderek MJ, Reed BM (2017) Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. Vitro Cell Dev Biol-Plant 53:299–308

    Article  CAS  Google Scholar 

  • Kellerhals M, Szalatnay D, Hunziker K, Duffy B, Nybom H, Ahmadi-Afzadi M, Höfer M, Richter K, Lateur M (2012) European pome fruit genetic resources evaluated for disease resistance. Trees 26:179–189

    Article  Google Scholar 

  • Kumar S, Volz RK, Alspach PA, Bus VGM (2010) Development of a recurrent apple breeding programme in New Zealand: a synthesis of results, and a proposed revised breeding strategy. Euphytica 173:207–222

    Article  Google Scholar 

  • Kumar S, Bink MCAM, Volz RK, Bus VGM, Chagné D (2012) Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 8:1–14

    Article  Google Scholar 

  • Kumar S, Garrick DJ, Bink MCAM, Whitworth C, Chagné D, Volz RK (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushnarenko S, Salnikov E, Nurtazin M, Mukhitdinova Z, Rakhimbaev I, Reed BM (2010) Characterization and cryopreservation of Malus sieversii seeds. Asian Aust J Plant Sci Biotechnol 4:5–9

    Google Scholar 

  • Lassois L, Denancé C, Ravon E, Guyader A, Guisnel R, Hibrand-Saint-Oyant L, Poncet C, Lasserre-Zuber P, Feugey L, Durel C-E (2016) Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Rep 34:827–844

    Article  CAS  Google Scholar 

  • Leforestier D, Ravon E, Muranty H, Cornille A, Lemaire C, Giraud T, Durel C-E, Branca A (2015) Genomic basis of the differences between cider and dessert apple varieties. Evol Appl 8:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang W, Dondini L, De Franceschi P, Paris R, Sansavini S, Tartarini S (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Rep 33:458–473. https://doi.org/10.1007/s11105-014-0754-9

    Article  CAS  Google Scholar 

  • Lo EYY, Donoghue MJ (2012) Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Mol Phylgenet Evol 63:230–243

    Article  Google Scholar 

  • Marini RP, Fazio G (2018) Apple rootstocks: History, physiology, management, and breeding. Hortic Rev 45:197–312

    Google Scholar 

  • Michalak M, Plitta-Michalak BP, Chmielarz P (2015) Desiccation tolerance and cryopreservation of wild apple (Malus sylvestris) seeds. Seed Sci Technol 43:480–491

    Article  Google Scholar 

  • Moriya S, Iwanami H, Okada K, Yamamoto T, Abe K (2011) A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers. Euphytica 177:135–150

    Article  Google Scholar 

  • Nikiforova SV, Cavalieri D, Velasco R, Goremykin V (2013) Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Mol Breed Evol 30:1750–1760

    Google Scholar 

  • Norelli JL, Wisniewski M, Fazio G, Burchard E, Gutierrez B, Levin E, Droby S (2017) Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii. PLoS ONE 12(3). https://doi.org/10.1371/journal.pone.0172949

  • Peace C, Norelli J (2009) Genomics approaches to crop improvement in the Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 19–53

    Chapter  Google Scholar 

  • Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel C-E, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné ZX, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vandersande S (2019) Apple whole genome sequences: recent advances and new prospects. Hortic Res 6:59. https://doi.org/10.1038/s41438-019-0141-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards CM, Volk GM, Reeves PA, Reilley AA, Henk AD (2009) Selection of stratified core sets representing wild apple (Malus sieversii). J Am Soc Hort Sci 134:228–235

    Article  Google Scholar 

  • Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genome 11:8. https://doi.org/10.1007/s11295-015-0834-5

    Article  Google Scholar 

  • Schnitzler A, Arnold C, Cornille A, Bachmann O, Schnitzler C (2014) Wild European apple (Malus sylvestris (L.) Mill.) population dynamics: Insight from genetics and ecology in the Rhine valley. Priorities for a future conservation programme. PLoS One 9(5):e96596. https://doi.org/10.1371/journal.pone.0096596

  • Towill LE, Forsline PL, Walters C, Waddell JW, Laufmann J (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: Results from 1915 accessions. CryoLetters 25:323–334

    PubMed  Google Scholar 

  • Troggio M, Gleave A, Salvi S, Chagné D, Cestaro A, Kumar S, Crowhurst RN, Gardiner SE (2012) Apple, from genome to breeding. Tree Genet Genomes 8:509–529

    Article  Google Scholar 

  • U.S. Department of Agriculture (2021) Germplasm Resources Information Network (GRIN-Global). 8 Jan 2021. https://npgsweb.ars-grin.gov/gringlobal/search.aspx?

  • Urrestarazu J, Denancé C, Ravon E, Guyader A, Guisnel R, Feugey L, Poncet C, Lateur M, Houben P, Ordidge M, Fernandez-Fernandez F, Evans KM, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Miranda C, Gassmann J, Kellerhals M, Suprun I, Pikunova AV, Krasova NG, Torutaeva E, Dondini L, Tartarini S, Laurens F, Durel C-E (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol 16:130. https://doi.org/10.1186/212870-016-0818-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hintum T, Knűpffer H (2010) Current taxonomic composition of European genebank material documented in EURISCO. Plant Genet Resour 8(2):182–188

    Article  CAS  Google Scholar 

  • Van Treuren R, Kemp H, Ernsting G, Jongejans B, Houtman H, Visser L (2010) Microsatellite genotyping of apple (Malus x domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57:853–865

    Article  CAS  Google Scholar 

  • Vanderzande S., Howard NP, Cai L, Da Silva Linge C, Antanaviciute L, Bink MCAM, Kruisselbrink JW, Bassil N, Gasic K, Iezzoni A, Van de Weg E, Peace C (2019) High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PLoS One 14(6):e0210928. https://doi.org/10.1371/journal.pone.0210928

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Ri AD, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury G, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner R, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:883–889

    Article  CAS  Google Scholar 

  • Volk GM, Bramel P (2017) A strategy to conserve worldwide apple genetic resources: survey results. Acta Hortic 1172:99–105

    Article  Google Scholar 

  • Volk GM, Richards CM, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively-propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hort Sci 130:203–210

    Article  Google Scholar 

  • Volk GM, Richards CM, Henk A, Reilley AA, Reeves PA, Forsline PL, Aldwinkle HS (2009) Capturing the diversity of wild Malus orientalis from Georgia, Armenia, Russia and Turkey. J Am Soc Hort Sci 134:453–459

    Article  Google Scholar 

  • Volk GM, Henk AD, Baldo A, Fazio G, Chao CT, Richards CM (2015) Chloroplast heterogeneity and historical admixture within the genus Malus. Am J Bot 102(7):1198–1208

    Article  PubMed  Google Scholar 

  • Volk GM, Jenderek M, Chao CT (2017) Prioritization of Malus accessions for collection cryopreservation at the USDA-ARS National Center for Genetic Resources Preservation. Acta Hortic 1172:267–272

    Article  Google Scholar 

  • Walters C, Wheeler L, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiology 48(3):229–244

    Article  PubMed  Google Scholar 

  • Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15(1):1–20

    Article  CAS  Google Scholar 

  • Wang K, Liu F, Cao Y (2005) Descriptors and data standard for apple (Malus spp. Mill). China Agriculture Press, , Beijing, China

    Google Scholar 

  • Wang M-R, Chen L, Teixeira da Silva JA, Volk GM, Wang Q-C (2018) Cryobiotechnology of apple (Malus spp.): Development, progress and future prospects. Plant Cell Rep 37:689–709

    Article  CAS  PubMed  Google Scholar 

  • Watkins R, Smith RA (1982) Apple descriptors. IBPGR Secretariat, Rome, p 49

    Google Scholar 

  • Webster CA, Jones OP (1989) Micropropagation of the apple rootstock M.9: Effect of sustained subculture on apparent rejuvenation in vitro. J Hort Sci 64(4):421–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle M. Volk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volk, G.M., Bramel, P. (2021). Apple Genetic Resources: Diversity and Conservation. In: Korban, S.S. (eds) The Apple Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74682-7_3

Download citation

Publish with us

Policies and ethics