Skip to main content

Use of Nanomaterials in Plants to Coup with Abiotic Stress Conditions

  • Chapter
  • First Online:
Nanobiotechnology

Abstract

Nanomaterials (NMs) have an important role to play in relation to mobility, fate and toxicity of soil pollutants and thus are pivotal to abiotic stress (AS) remediation strategies. AS is caused by abiotic (non-living) factors, e.g., salinity, temperature, floods, UV-B radiation and drought. Role of NMs in supporting extensive crop yields under challenging environmental conditions has facilitated use of sustainable agricultural practices. The prominent role of NMs in reduction of nutrient loss from the soil, i.e., nano remediation strategies for reducing the infertile lands, rendered unfit for cultivation, is one of the goals for maintaining soil structure and improving its fertility. Nanopesticides, nanofertilizers and nanobiosensors influence the suppression of soil as well as crop borne diseases and, thereby enhance crop yields. Various case studies highlighting the use of nanobiosensors, nanofertilizers, nano-enabled remediation strategies for contaminated soils and nanopesticides in the agricultural sector have been dealt in this chapter. NMs play an important role in principle events of plant growth including seedling vigor, seed germination, growth, photosynthesis, flowering and root initiation. Also, these NMs play an important role in plant protection under oxidative stress. NMs increase the buildup of reactive oxygen species (ROS) in plants and replicate the functions of some of the enzymes (anti-oxidative), i.e., catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD). Therefore, it becomes necessary to decipher the cellular, biochemical and molecular mechanism of NMs in plants during AS conditions. Future research directions have been discussed to meet challenging environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya A, Pal PK (2020) Agriculture nanotechnology: translating research outcome to field applications by influencing environmental sustainability. NanoImpact 100232

    Google Scholar 

  • Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39(1):139–146

    Article  Google Scholar 

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (‘Solanum lycopersicum’ L.) seedlings under salt stress. Plant Omics 9(1):106

    CAS  Google Scholar 

  • Anandaraj K, Natarajan N (2017) Effects of nanomaterials for seed quality enhancement in onion (Allium cepa (Linn) cv. CO (On)]5. Int J Curr Microbiol App Sci 6(11):3714–3724

    Google Scholar 

  • Ashkavand P, Tabari M, Zarafshar M et al (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. For Res Pap 76(4):350–359

    Google Scholar 

  • Banti V, Giuntoli B, Gonzali S et al (2013) Low oxygen response mechanisms in green organisms. Int J Mol Sci 14(3):4734–4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Capuana M (2011) Heavy metals and woody plants-biotechnologies for phytoremediation. IForest 4(1):7–15

    Article  Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A et al (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Gong Y, Han R (2014) Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PloS One 9(10):e 110400

    Google Scholar 

  • Chen J, Liu X, Wang C et al (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182

    Article  CAS  PubMed  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708

    Article  CAS  Google Scholar 

  • Das CK, Srivastava G, Dubey A et al (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol Environ Eng 1(1):2

    Article  Google Scholar 

  • Daudi A, Cheng Z, O’Brien JA et al (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24(1):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davletova S, Rizhsky L, Liang H et al (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17(1):268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Yang J, Peng Q et al (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227:109–116

    Article  CAS  PubMed  Google Scholar 

  • Duque-Acevedo M, Belmonte-Ureña LJ, Cortés-García FJ et al (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob Ecol Conserv e00902

    Google Scholar 

  • Duque AS, de Almeida AM, da Silva AB et al (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In: Vahdati K, Leslie C (eds) Abiotic stress-plant responses and applications in agriculture. InTech, Croatia, pp 49–101

    Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F et al (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Article  Google Scholar 

  • Fischer R, Connor D (2018) Issues for cropping and agricultural science in the next 20 years. Field Crops Res 222:121–142

    Article  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomic 14(1):75–83

    Article  CAS  Google Scholar 

  • García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genom 16(1):341

    Article  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Haghighi M, Abolghasemi R, da Silva JAT (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240

    Article  CAS  Google Scholar 

  • Hasanpour H, Maali-Amir R, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ J Plant Physiol 62(6):779–787

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress-plant responses and applications in agriculture. InTech, Croatia, pp 169–205

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2014) Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In: Emerging technologies and management of crop stress tolerance, Emerging technologies and management of crop stress tolerance, vol 1. Elsevier, USA, pp 377–422

    Google Scholar 

  • Hatami M, Ghorbanpour M (2014) Defense enzyme activities and biochemical variations of Pelargonium zonale in response to nanosilver application and dark storage. Turk J Biol 38(1):130–139

    Article  CAS  Google Scholar 

  • Heidarvand L, Amiri RM, Naghavi M et al (2011) Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russ J Plant Physiol 58(1):157–163

    Article  CAS  Google Scholar 

  • Hideg É, Jansen MA, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18(2):107–115

    Article  CAS  PubMed  Google Scholar 

  • Hojjat SS, Ganjali A (2016) The effect of silver nanoparticle on lentil seed germination under drought stress. Int J Farm Allied Sci 5(3):208–212

    Google Scholar 

  • Imada K, Sakai S, Kajihara H et al (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65(4):551–560

    Article  CAS  Google Scholar 

  • Ioannou A, Gohari G, Papaphilippou P et al (2020) Advanced nanomaterials in agriculture under a changing climate: the way to the future? Environ Exp Bot 104048

    Google Scholar 

  • Iqbal M, Raja NI, Hussain M et al (2019) Effect of silver nanoparticles on growth of wheat under heat stress. Iran J Sci Technol A Sci 43(2):387–395

    Article  Google Scholar 

  • Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65(12):2963–2979

    Article  CAS  PubMed  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT et al (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo 41(1):201–207

    Article  CAS  Google Scholar 

  • Jalil SU, Ansari MI (2019) Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms. In: Khan M, Iqbal R, Reddy PS, Ferrante A, Khan NA (eds) Plant signaling Molecules, plant signaling molecules. Elsevier, Woodhead Publishing, United Kingdom, pp 549–561

    Chapter  Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14(6):532–540

    Article  CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S et al (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):49–55

    Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N et al (2011) 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49(2):168–177

    Article  CAS  PubMed  Google Scholar 

  • Kaveh R, Li Y-S, Ranjbar S et al (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47(18):10637–10644

    Article  CAS  PubMed  Google Scholar 

  • Kazemipour S, Hashemabadi D, Kaviani B (2013) Effect of silver nanoparticles on the vase life and quality of cut chrysanthemum (Chrysanthemum morifolium L.) flower. Eur J Exp Bot 3(6):298–302

    CAS  Google Scholar 

  • Khan M, Khan NA, Masood A et al (2016) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK et al (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F et al (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 27(4):210–218

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108(3):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Kiapour H, Moaveni P, Habibi D (2015) Evaluation of the application of gibbrellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.). Int J Agro Agric Res 6:138–150

    Google Scholar 

  • Kim J-H, Oh Y, Yoon H et al (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomater 5(2):436–467

    Article  CAS  Google Scholar 

  • Komatsu S, Hiraga S, Yanagawa Y (2012) Proteomics techniques for the development of flood tolerant crops. J Proteome Res 11(1):68–78

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Laware S, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol App Sci 3(7):749–760

    CAS  Google Scholar 

  • Lei Z, Mingyu S, Xiao W et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Qi M, Li T (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:817

    Article  CAS  Google Scholar 

  • Malandrakis AA, Kavroulakis N, Chrysikopoulos CV (2019) Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ 670:292–299

    Article  CAS  PubMed  Google Scholar 

  • Marmiroli M, Imperiale D, Pagano L et al (2015) The proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots, and its correlation with the transcriptomic response. Front Plant Sci 6:1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Ballesta MC, Zapata L, Chalbi N et al (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14(1):42

    Article  CAS  Google Scholar 

  • Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23(2):1732–1741

    Article  CAS  Google Scholar 

  • Martínez-Fernández D, Vítková M, Bernal MP et al (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226(4):101

    Article  CAS  Google Scholar 

  • Massad TJ, Dyer LA, Vega G (2012) Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS ONE 7(10):e47554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta C, Srivastava R, Arora S et al (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):254

    PubMed  PubMed Central  Google Scholar 

  • Miao Y, Xu J, Shen Y et al (2014) Nanoparticle as signaling protein mimic: robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals. ACS Nano 8(6):6131–6144

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Mingyu S, Xiao W, Chao L et al (2007) Promotion of energy transfer and oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biol Trace Elem Res 119(2):183–192

    Article  PubMed  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S et al (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Mantri N (2014) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61(6):768–775

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59651–59681

    Google Scholar 

  • Mustafa G, Sakata K, Hossain Z et al (2015a) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 122:100–118

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Sakata K, Komatsu S (2015b) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 128:280–297

    Article  CAS  PubMed  Google Scholar 

  • Najafi Disfani M, Mikhak A, Kassaee MZ et al (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agron Soil Sci 63(6):817–826

    Article  CAS  Google Scholar 

  • Oh M-M, Trick HN, Rajashekar C (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166(2):180–191

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Gaitis F (2011) The use of nano-technology in shelf life extension of green vegetables. J Innov Econ Manag 2:163–171

    Article  Google Scholar 

  • Pasala RK, Khan MIR, Minhas PS et al (2016) Can plant bio-regulators minimize crop productivity losses caused by drought, heat and salinity stress? An integrated review. J Appl Bot Food Qual 89:113–125

    Google Scholar 

  • Pei Z, Ming D, Liu D et al (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29(1):106–115

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L et al (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    Article  CAS  PubMed  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Article  Google Scholar 

  • Pérez-Labrada F, Hernández-Hernández H, López-Pérez MC et al (2020) Nanoparticles in plants: morphophysiological, biochemical, and molecular responses. In: Tripathi DK, Singh P, Chauhan V, Kumar D, Sharma S, Prasad SM, Dubey NK, Ramawat N (eds) Plant life under changing environment. Elsevier, India, pp 289–322

    Chapter  Google Scholar 

  • Prasad P, Pisipati S, Momčilović I et al (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197(6):430–441

    Article  CAS  Google Scholar 

  • Qados AMA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. J Exp Agric Int 509–524

    Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328

    Article  CAS  PubMed  Google Scholar 

  • Raina N, Sharma P, Slathia PS et al (2020) Efficiency enhancement of renewable energy systems using nanotechnology. In: Bhushan I, Singh V, Tripathi D (eds) Nanomaterials and environmental biotechnology. Springer, Cham, pp 271–297

    Chapter  Google Scholar 

  • Regier N, Cosio C, Von Moos N et al (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61

    Article  CAS  PubMed  Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6(1):517–522

    Google Scholar 

  • Rizwan M, Ali S, Rehman MZ et al (2019) Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol Plant 41(3):35

    Article  CAS  Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H et al (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Bhattacharya J (2012) Removal of Cu (II), Zn (II) and Pb (II) from water using microwave-assisted synthesized maghemite nanotubes. Chem Eng J 211:493–500

    Article  CAS  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes/Wpływ nanocząstek krzemionki na tolerancję zasolenia we wczesnym rozwoju niektórych genotypów soczewicy. Annales UMCS, Biologia 69(2):39–55

    Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Univ Timisoara. Ser Biol 16(2):73

    Google Scholar 

  • Seghatoleslami M, Feizi H, Mousavi G et al (2015) Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions. Pol J Chem Technol 17(1):110–114

    Article  CAS  Google Scholar 

  • Shabnam N, Pardha-Saradhi P, Sharmila P (2014) Phenolics impart Au3+-stress tolerance to cowpea by generating nanoparticles. PLoS ONE 9(1):e85242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shang Y, Hasan M, Ahammed GJ et al (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Sheet I, Kabbani A, Holail H (2014) Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia 50(5):130–138

    Article  CAS  Google Scholar 

  • Shenashen M, Derbalah A, Hamza A et al (2017) Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Manag Sci 73(6):1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Sicard C, Perullini M, Spedalieri C et al (2011) CeO2 nanoparticles for the protection of photosynthetic organisms immobilized in silica gels. Chem Mater 23(6):1374–1378

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M et al (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Lee B-K (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96

    Article  CAS  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    Article  CAS  PubMed  Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A et al (2018) SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Sci Total Environ 622:517–525

    Article  PubMed  CAS  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47

    Article  CAS  Google Scholar 

  • Syu Y-y, Hung J-H, Chen J-C et al (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Tian J, Li S et al (2015) Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Sci Total Environ 532154–161

    Google Scholar 

  • Tanveer M, Shahzad B, Ashraf U (2020) Nanoparticle application and abiotic-stress tolerance in plants. In: Durgesh KT, Vijay PS, Devendra KC, Shivesh S, Sheo MP, Nawal KD, Naleeni R (eds) Plant life under changing environment. Elsevier, pp 627–641

    Google Scholar 

  • Tirani MM, Haghjou MM, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct Plant Biol 46(4):360–375

    Article  CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 9(2):172–180

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM et al (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Tripathi A, Singh S et al (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7

    Article  Google Scholar 

  • UN (2017) United Nations department of economics and social affairs, Population Division

    Google Scholar 

  • Usman M, Farooq M, Wakeel A et al (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotech 33:206–219

    Article  PubMed  CAS  Google Scholar 

  • Vannini C, Domingo G, Onelli E et al (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8(7):e68752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanti GL, Nargund VB, Vanarchi R et al (2019) Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl Organomet Chem 33(1):e4630

    Article  CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N et al (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In Nanomaterials in plants, algae, and microorganisms. Elsevier, pp 473–500

    Google Scholar 

  • Wang S, Wang F, Gao S et al (2016a) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227(7):228

    Article  CAS  Google Scholar 

  • Wang X, Yang X, Chen S et al (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lin Y, Xu Y et al (2019) Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ Pollut Bioavail 31(1):80–84

    Article  CAS  Google Scholar 

  • Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  PubMed  Google Scholar 

  • World Bank, 2017. Global Economic Monitor (commodities)

    Google Scholar 

  • Worms IA, Boltzman J, Garcia M et al (2012) Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang J, Duan X et al (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14(1):208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. In: Whitacre D (ed) Reviews of Environmental Contamination and Toxicology volume, Reviews of Environmental Contamination and Toxicology, vol 230. Springer, Cham, pp 83–110

    Chapter  Google Scholar 

  • Yolcu S, Ozdemir F, Güler A et al (2016) Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    Article  CAS  PubMed  Google Scholar 

  • Zaimenko NV, Didyk NP, Dzyuba OI et al (2014) Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite. Ecol Balk 6(1):1–10

    Google Scholar 

  • Zareii DF, Arash R, Amir H (2014) Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.) Int J Adv Biol Biomed Res 2(4):1150–1159

    Google Scholar 

  • Ze Y, Liu C, Wang L et al (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143(2):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, N. et al. (2021). Use of Nanomaterials in Plants to Coup with Abiotic Stress Conditions. In: Al-Khayri, J.M., Ansari, M.I., Singh, A.K. (eds) Nanobiotechnology . Springer, Cham. https://doi.org/10.1007/978-3-030-73606-4_23

Download citation

Publish with us

Policies and ethics