Skip to main content

Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology

  • Chapter
  • First Online:
Nanomaterials and Environmental Biotechnology

Abstract

Energy has a fundamental part to play in the industrial and the socio-economic development of a country. It is imperative on the part of mankind to curb the disadvantages of the industrial era that human civilization has brought in the twenty-first century. It has become a dire need to use alternative sources of energy in place of non-renewable resources such as fossil fuels which tremendously contribute to the problem of global warming. Nanotechnology is creating a lot of responsiveness these days and henceforth building lot of anticipations not only within the community of academicians but also among governments, various commercial sectors, and investors. It is the combination of chemistry and engineering which deals with the design, study, creation, manipulation, synthesis, and application of functional materials, devices, and systems using control of matter at a scale of 1 and 100 nm. Focusing on the renewable energy domain, nanotechnology has the potential to significantly reduce the input to energy production, storage, and its use and is viewed as a new candidate for clean and sustainable energy applications. It is serving to considerably improve and revolutionize the technological and industrial sectors such as homeland security, information technology, transportation, energy, medicine, environmental science, food safety, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • “Bud” Peterson G, Li C, Wang M, Chen G (2010) Micro/nanotransport phenomena in renewable energy and energy efficiency. SAGE Publications Sage UK, London, UK

    Book  Google Scholar 

  • Abbaraju RR, Dasgupta N, Virkar AV (2008) Composite nafion membranes containing nanosize TiO2∕SnO2 for proton exchange membrane fuel cells. J Electrochem Soc 155:B1307–B1313

    Google Scholar 

  • Abdin Z, Alim M, Saidur R, Islam M, Rashmi W, Mekhilef S, Wadi A (2013) Solar energy harvesting with the application of nanotechnology. Renew Sust Energ Rev 26:837–852

    Article  CAS  Google Scholar 

  • Abdin AR, El Bakery AR, Mohamed MA (2018) The role of nanotechnology in improving the efficiency of energy use with a special reference to glass treated with nanotechnology in office buildings. Ain Shams Eng J 9(4):2671–2682

    Article  Google Scholar 

  • Alkahtani RN (2018) The implications and applications of nanotechnology in dentistry: a review. Saudi Dental J 30:107–116

    Article  Google Scholar 

  • Amirabad LM, Jonoobi M, Mousavi NS, Oksman K, Kaboorani A, Yousefi H (2018) Improved antifungal activity and stability of chitosan nanofibers using cellulose nanocrystal on banknote papers. Carbohydr Polym 189:229–237

    Article  CAS  Google Scholar 

  • Ampelli C, Perathoner S, Centi G (2014) Carbon-based catalysts: opening new scenario to develop next-generation nano-engineered catalytic materials. Chin J Catal 35:783–791

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat M (2016) Remediation of wastewater using various nano-materials. Arab J Chem

    Google Scholar 

  • Aslan K, Lakowicz JR, Geddes CD (2005) Nanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering. Anal Chem 77:2007–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aviram A (1988) Molecules for memory, logic, and amplification. J Am Chem Soc 110:5687–5692

    Article  CAS  Google Scholar 

  • AZo Nano (2017) Nanotechnology in the paint industry [Online]. Available https://www.azonano.com/article.aspx?ArticleID=4710. Accessed 18 Dec 2018

  • Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han Y-K (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 26:1201

    Article  CAS  PubMed  Google Scholar 

  • Bella F, Gerbaldi C, Barolo C, GrÄtzel M (2015) Aqueous dye-sensitized solar cells. Chem Soc Rev 44:3431–3473

    Article  CAS  PubMed  Google Scholar 

  • Bleich K, Guimaraes R (2016) Renewable infrastructure investment handbook: a guide for institutional investors. World Economic Forum, Geneva

    Google Scholar 

  • Booth T, Baker M (2017) Nanotechnology: building and observing at the nanometer scale. Pharmacognosy. Elsevier, Boston

    Chapter  Google Scholar 

  • Boysen E, Muir NC (2011) Electronics projects for dummies. Wiley Publishing Inc III. River Street Hoboken, NJ

    Google Scholar 

  • Brinker CJ, Ginger D (2011) Nanotechnology for sustainability: energy conversion, storage, and conservation. In: Nanotechnology research directions for societal needs in 2020. Springer, Dordrecht

    Chapter  Google Scholar 

  • Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  PubMed  Google Scholar 

  • Chen J (2015) Recent developments on silicon based solar cell technologies and their industrial applications. In: Energy efficiency improvements in smart grid components. IntechOpen, Croatia

    Google Scholar 

  • Chen X, Li C, Grätzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41:7909–7937

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li L, Sun H, Sun J, Lu B (2015) Nanomaterials for renewable energy. J Nanomater 2015:1

    Google Scholar 

  • Choi S, Singer D, Wang H (1995) Developments and applications of non-Newtonian flows. Asme Fed 66:99–105

    Google Scholar 

  • Danilov M, Melezhyk A, Kolbasov GY (2008) Carbon nanofibers as hydrogen adsorbing materials for power sources. J Power Sources 176:320–324

    Article  CAS  Google Scholar 

  • De Francisco EV, GarcÍA-Estepa RM (2018) Nanotechnology in the agrofood industry. J Food Eng 238:1–11

    Article  CAS  Google Scholar 

  • Deligiannakis Y, Sotiriou GA, Pratsinis SE (2012) Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces 4:6609–6617

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Lu X, Liu L, Zhang L, Schmidt OG (2016) Introducing rolled-up nanotechnology for advanced energy storage devices. Adv Energy Mater 6:1600797

    Article  CAS  Google Scholar 

  • Ducharme S (2009) An inside-out approach to storing electrostatic energy. ACS Nano 3:2447–2450

    Article  CAS  PubMed  Google Scholar 

  • El Saliby I, Shon H, Kandasamy J, Vigneswaran S (2008) Nanotechnology for wastewater treatment: in brief. EOLSS 7:1–15

    Google Scholar 

  • Morgan TA. Eureka (2018) Nanotechnology could help hydrogen become a truly affordable, clean, green energy source. eurekamagazine.co.uk/design-engineering-news/nanotechnology-could-help-hydrogen-become-a-truly-affordable-clean-green-energy-source/180803/

  • Feynman RP (2012) There’s plenty of room at the bottom: an invitation to enter a new field of physics. In: Handbook of nanoscience, engineering, and technology, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • G. G (2008) Public communication of science and technology; alternative energy and nanotechnology. [Online]. PCOSTproject. Available: https://communication.chass.ncsu.edu/pcost/prjects.php. Accessed

  • Ganguly S, Banerjee D, Kargupta K (2012) Nanotechnology and nanomaterials for new and sustainable energy engineering. Proceedings of the international conference nanomaterials: applications and properties. Sumy State University Publishing, 04NEA09-04NEA09

    Google Scholar 

  • Gao X, Lan Y, Pan G, Wu F, Qu J, Song D, Shen P (2001) Electrochemical hydrogen storage by carbon nanotubes decorated with metallic nickel. Electrochem Solid-State Lett 4:A173–A175

    Article  CAS  Google Scholar 

  • Gbi Research (2013) Cosmeceuticals market to 2018 – Technological advances and consumer awareness boost commercial potential for innovative and premium-priced products [Online]. Available: http://gbiresearch.com/report-store/market-reports/therapy-analysis/cosmeceuticals-market-to-2018-technological-advances-and-consumer-awareness-boost-commercial-potential-for-innovative-and-pre. Accessed 15 June 2019

  • Gestal MC, Zurita J (2015) La nanotecnología en la producción y conservación de alimentos. Revista Cubana de Alimentación y Nutrición 25:24

    Google Scholar 

  • Ghernaout D, Alghamdi A, Touahmia M, Aichouni M, Ait Messaoudene N (2018) Nanotechnology phenomena in the light of the solar energy. J Energ Environ Chem Eng 3:1–8

    Article  Google Scholar 

  • Gillett SL (2002) Nanotechnolgy: clean energy and resources for the future. Foresight, Reno, NV

    Google Scholar 

  • Goddard WA III, Brenner D, Lyshevski SE, Iafrate GJ (2012) Handbook of nanoscience, engineering, and technology. CRC press. Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Goh WJ, Makam VS, Hu J, Kang L, Zheng M, Yoong SL, Udalagama CN, Pastorin G (2012) Iron oxide filled magnetic carbon nanotube–enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process. Langmuir 28:16864–16873

    Article  CAS  PubMed  Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W (2009) Solar cell efficiency tables (version 33). Prog Photovolt Res Appl 17:85–94

    Article  CAS  Google Scholar 

  • Guardian T (2014) Nanotechnology. Small world: nanotech. The nanotechnology in your clothes. theguardian.com/science/small-world/2014/feb/14/nanotechnology-clothes-nanoparticles

  • Guerra F, Attia M, Whitehead D, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23:1760

    Article  PubMed Central  CAS  Google Scholar 

  • Hashim AA (2011) Advances in nanocomposite technology. BoD–Books on Demand. Intech. Janeza Trdine, Croatia

    Google Scholar 

  • Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88:2685–2690

    Article  CAS  Google Scholar 

  • Hussain A, Arif SM, Aslam M (2017) Emerging renewable and sustainable energy technologies: state of the art. Renew Sust Energ Rev 71:12–28

    Article  Google Scholar 

  • Hussein AK (2015) Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sust Energ Rev 42:460–476

    Article  CAS  Google Scholar 

  • Hussein AK (2016) Applications of nanotechnology to improve the performance of solar collectors–recent advances and overview. Renew Sust Energ Rev 62:767–792

    Article  Google Scholar 

  • Hussein AKJR, Reviews SE (2015) Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sust Energ Rev 42:460–476

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA) (2007) Renewables in global energy supply. An IEA fact sheet. IEA Publication 9, rue de la Federation. Paris, France

    Google Scholar 

  • Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrog Energy 33:5975–5980

    Article  CAS  Google Scholar 

  • Jassby D, Cath TY, Buisson H (2018) The role of nanotechnology in industrial water treatment. Nat Nanotechnol 13:670

    Article  CAS  PubMed  Google Scholar 

  • Kadırgan F (2006) Electrochemical nano-coating processes in solar energy systems. Int J Photoenerg 2006:1–5

    Article  CAS  Google Scholar 

  • Kalashnikova I, Das S, Seal S (2015) Nanomaterials for wound healing: scope and advancement. Nanomedicine 10:2593–2612

    Article  CAS  PubMed  Google Scholar 

  • Kalogirou SA (2005) Seawater desalination using renewable energy sources. Prog Energy Combust Sci 31:242–281

    Article  CAS  Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860

    Article  CAS  Google Scholar 

  • Kandil MM (2016) The role of nanotechnology in electronic properties of materials. Technical Report

    Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem

    Google Scholar 

  • Khezri K, Saeedi M, Dizaj SM (2018) Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed Pharmacother 106:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  PubMed  Google Scholar 

  • King T, Osmond-McLeod MJ, Duffy LL (2018) Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci Technol 72:62–73

    Article  CAS  Google Scholar 

  • Krishna VD, Wu K, Su D, Cheeran MC, Wang J-P, Perez A (2018) Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54

    Article  CAS  PubMed  Google Scholar 

  • Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801

    Article  CAS  PubMed  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermat 2014:843687

    Article  CAS  Google Scholar 

  • Lu Y, Biswas MC, Guo Z, Jeon J-W, Wujcik EK (2018) Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens Bioelectron 123:167–177

    Article  PubMed  CAS  Google Scholar 

  • Luther W, Eickenbusch H, Kaiser OS, Brand L (2015) Application of nanotechnologies in the energy sector. Hessen Trade & Invest GmbH. Wiesbaden, Germany

    Google Scholar 

  • Mathew J, Joy J, George SC (2018) Potential applications of nanotechnology in transportation: a review. J King Saud Univ Sci 31(4):586–594

    Article  Google Scholar 

  • Matteo C, Candido P, Vera R, Francesca V (2012) Current and future nanotech applications in the oil industry. Am J Appl Sci 9(6):784–793

    Article  CAS  Google Scholar 

  • McWilliams A (2010) Nanotechnology: a realistic market assessment. BCC Res, Wellesley, Mass, USA

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, RamÍrez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  PubMed  Google Scholar 

  • Nagar MDS, Agrwal G (2013) Nanofluid and its application. Int J Pharm Res Sci 1:297–327

    Google Scholar 

  • Nano Werk (2013) Nanotechnology in sports equipment: the game changer [Online]. Available: https://www.nanowerk.com/spotlight/spotid=30661.php. Accessed

  • NanoConnectScandinavia (2018) Nanotechnology for energy applications brochure

    Google Scholar 

  • National Cancer Institite (2017) Cancer and nanotechnology [Online]. Available: https://www.cancer.gov/sites/nano/cancer-nanotechnology. Accessed

  • National Nanotechnology Initiative (2012) Benefits and applications [Online]. Available: https://www.nano.gov/you/nanotechnology-benefits. Accessed

  • Nikitin A, Li X, Zhang Z, Ogasawara H, Dai H, Nilsson A (2008) Hydrogen storage in carbon nanotubes through the formation of stable C− H bonds. Nano Lett 8:162–167

    Article  CAS  PubMed  Google Scholar 

  • Nizami A-S, Rehan M (2018) Towards nanotechnology-based biofuel industry. Biofuel Res J 5:798–799

    Article  CAS  Google Scholar 

  • Oke AE, Aigbavboa CO, Semenya K (2017) Energy savings and sustainable construction: examining the advantages of nanotechnology. Energy Procedia 142:3839–3843

    Article  Google Scholar 

  • Pandey G (2018) Nanotechnology for achieving green-economy through sustainable energy. Thought 11:942–950

    CAS  Google Scholar 

  • Pandimurugan R, Thambidurai S (2017) UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics. Int J Biol Macromol 105:788–795

    Article  CAS  PubMed  Google Scholar 

  • Panwar N, Kaushik S, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15:1513–1524

    Article  Google Scholar 

  • Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164

    Article  CAS  Google Scholar 

  • Poinern GEJ (2014) A laboratory course in nanoscience and nanotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Pulizzi F, Sun W (2018) Treating water with nano. Nature Publishing Group. UK

    Article  CAS  PubMed  Google Scholar 

  • Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104:13574–13577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46:834–843

    Article  PubMed  CAS  Google Scholar 

  • Quandt A, Özdoğan C (2010) Feynman, biominerals and graphene–basic aspects of nanoscience. Commun Nonlinear Sci Numer Simul 15:1575–1582

    Article  Google Scholar 

  • Raghav SB, Dinesh V (2016) Recent developments on nanotechnology in solar energy. Int J Eng Comp Sci 5(2):15829–15834

    Google Scholar 

  • Ralph Seitz BPM, Thielmann A, Sauer A, Meister M, Pero M, Kleine O, Rohde C, Bierwisch A, De Vries M, Kayser V (2013) Nanotechnology in the sectors of solar energy and energy storage. International Electrotechnical Commission (IEC), Geneva, Switzerland

    Google Scholar 

  • Ramsden J (2018) Applied nanotechnology: the conversion of research results to products. William Andrew, Cambridge, MA

    Google Scholar 

  • Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10:501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahaym U, Norton MG (2008) Advances in the application of nanotechnology in enabling a ‘hydrogen economy’. J Mater Sci 43:5395–5429

    Article  CAS  Google Scholar 

  • Sajith V, Sobhan C, Peterson G (2010) Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv Mech Eng 2:581407

    Article  CAS  Google Scholar 

  • Santos CS, Gabriel B, Blanchy M, Menes O, GarcÍA D, Blanco M, Arconada N, Neto V (2015) Industrial applications of nanoparticles–a prospective overview. Mater Today 2:456–465

    Google Scholar 

  • Satyanarayana K, Mariano A, Vargas J (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311

    Article  Google Scholar 

  • Schueler A (2011) Nanocomposite coatings for solar energy conversion: large opportunities for small structures. Lecture series at ETHZ, Zurich

    Google Scholar 

  • Serrano E, Rus G, Garcia-Martinez J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13:2373–2384

    Article  CAS  Google Scholar 

  • Sharma K, Sharma V, Sharma S (2018) Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res Lett 13:381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simonazzi A, Cid AG, Villegas M, Romero AI, Palma SD, BermÚdez JM (2018) Nanotechnology applications in drug controlled release. In: Drug targeting and stimuli sensitive drug delivery systems. Elsevier. William Andrew Publishing, New York, United States

    Chapter  Google Scholar 

  • Sun S-P, Zeng X, Lemley AT (2013) Nano-magnetite catalyzed heterogeneous Fenton-like degradation of emerging contaminants carbamazepine and ibuprofen in aqueous suspensions and montmorillonite clay slurries at neutral pH. J Mol Catal A Chem 371:94–103

    Article  CAS  Google Scholar 

  • Suthar RG, Gao B (2017) Nanotechnology for drinking water purification. In: Water purification. Elsevier. Academic Press, San Diego, United States

    Chapter  Google Scholar 

  • Tan A, Chawla R, Natasha G, Mahdibeiraghdar S, Jeyaraj R, Rajadas J, Hamblin MR, Seifalian AM (2016) Nanotechnology and regenerative therapeutics in plastic surgery: the next frontier. J Plast Reconstr Aesthet Surg 69:1–13

    Article  PubMed  Google Scholar 

  • Taylor RA, Phelan PE, Otanicar TP, Walker CA, Nguyen M, Trimble S, Prasher R (2011) Applicability of nanofluids in high flux solar collectors. J Renew Sustain Ener 3:023104

    Article  CAS  Google Scholar 

  • Teng T-J, Arip MNM, Sudesh K, Nemoikina A, Jalaludin Z, Ng E-P, Lee H-L (2018) Conventional technology and nanotechnology in wood preservation: a review. Bioresources 13:9220–9252

    Article  Google Scholar 

  • Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803

    Article  CAS  Google Scholar 

  • Understandingnano.Com (2013) Computer memory improvements with nanotechnology,computer memory: applications under development [Online]. Available: http://www.understandingnano.com/nanotechnology-computer-memory.html. Accessed

  • Wong KV, Perilla N, Paddon A (2014) Nanoscience and nanotechnology in solar cells. J Energy Resour Technol 136:014001

    Article  Google Scholar 

  • Ye Y, Ahn C, Witham C, Fultz B, Liu J, Rinzler A, Colbert D, Smith K, Smalley R (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309

    Article  CAS  Google Scholar 

  • Yu K, Chen J (2009) Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res Lett 4:1

    Article  CAS  Google Scholar 

  • Yu X, Yang H (2017) Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem 217:303–310

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Ang HC, Yang H, Zheng C, Zhang Y (2017) Low temperature cleanup combined with magnetic nanoparticle extraction to determine pyrethroids residue in vegetables oils. Food Control 74:112–120

    Article  CAS  Google Scholar 

  • Yunus IS, Harwin, Kurniawan A, Adityawarman D, Indarto A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1:136–148

    Article  CAS  Google Scholar 

  • Zekić E, VukoviĆ Ž, HalkijeviĆ I (2018) Application of nanotechnology in wastewater treatment. Građevinar: časopis Hrvatskog saveza građevinskih inženjera 70:315–323

    Google Scholar 

  • Zhang W, Ravi S, Silva P (2011) Application of carbon nanotubes in polymer electrolyte based fuel cells. Rev Adv Mater Sci 29:1–14

    Google Scholar 

  • Zhou S, Yang X, Lin Y, Xie J, Wang D (2011) A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 6:919–924

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Sadu R, Wei S, Chen DH, Haldolaarachchige N, Luo Z, Gomes J, Young DP, Guo Z (2012) Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J Solid State Sci Technol 1:M1–M5

    Article  CAS  Google Scholar 

  • Züttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L (2002) Hydrogen storage in carbon nanostructures. Int J Hydrog Energy 27:203–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, N., Sharma, P., Slathia, P.S., Bhagat, D., Pathak, A.K. (2020). Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology. In: Bhushan, I., Singh, V., Tripathi, D. (eds) Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_15

Download citation

Publish with us

Policies and ethics