Skip to main content

Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology volume

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 230))

Abstract

Nanotechnology is a relatively new technology that involves manipulating matter on an atomic and molecular scale. In general, nanotechnology deals with materials, devices, and other structures having at least one dimension in a size range from 1 to 100 nm (Roco 2003; SCENIHR 2005; Moore 2006). The recent growth in this sector has promised several benefits to society by exploiting the novel properties of nanoparticles. Nanotechnology offers an array of potential applications, and is becoming a key technology for the upcoming generation. Billions of dollars have been invested in nanotechnology research and development across the world. For instance, in the USA, the National Nanotechnology Initiative has invested $3.7 billion, whereas, respectively, the European Union (EU) and Japan have respectively invested $1.2 billion and $750 million dollars in this technology (ANUI 2012). Today, nanotechnology is increasingly occupying a prominent position in human life and in human lifestyle. Moreover, the development of nanomaterials and nanodevices has opened many novel applications in science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anne-Sophie F, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522

    Google Scholar 

  • ANUI (2012) Apply nanotech to up industrial, agri output. The Daily Star (Bangladesh). http://www.thedailystar.net/newDesign/news-details.php?nid=230436

  • Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    CAS  Google Scholar 

  • Aubert T, Burel A, Esnault MA, Cordier S, Grasset F, Cabello-Hurtado F (2012) Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219–220: 111–118

    Google Scholar 

  • Auffan M, Bottero JY, Chaneac C, Rose J (2010) Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine 5(6):999–1007

    CAS  Google Scholar 

  • Babu K, Deepa M, Shankar SG, Rai S (2008) Effect of nano-silver on cell division and mitotic chromosomes: a prefatory siren. Internet J Nanotechnol 2(2):2. doi:10.5580/10eb

    Google Scholar 

  • Barrena R, Casals E, Colan J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicology of model nanoparticles. Chemosphere 75:850–857

    CAS  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    CAS  Google Scholar 

  • Bosetti M, Mass A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):e34783

    CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71

    Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    CAS  Google Scholar 

  • Capala J, Barth RF, Bendayam M, Lauzon M, Adams DM, Soloway AH, Fenstermaker RA, Carlsson J (1996) Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem 7:7–15

    CAS  Google Scholar 

  • Cheng XK, Kan AT, Tomsom MB (2004) Naphthalene adsorption and desorption from aqueous C-60 fullerene. J Chem Eng Data 49:675–683

    CAS  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71(1):270–275

    CAS  Google Scholar 

  • Corma A, Atienzar P, Garcia H, Chane-Ching JY (2004) Hierarchically mesostructured doped CeO2 with potential form solar-cell use. Nat Mater 3:394–397

    CAS  Google Scholar 

  • Database (2013) Nanowerk Nanomaterial Database [Internet]. Available from: http://www.nanowerk.com/phpscripts/n_dbsearch.php

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    CAS  Google Scholar 

  • El Nemr A, Abd-Allah AMA (2003) Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. Chemosphere 52:1711–1716

    Google Scholar 

  • Farre M, Sanchis J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3):517–527

    CAS  Google Scholar 

  • Fernandez V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36–68

    CAS  Google Scholar 

  • Foraker AB, Walczak RJ, Cohen MH (2003) Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal Caco-2 cell monolayers. Pharm Res 20:110–116

    CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    CAS  Google Scholar 

  • García A, Espinosa R, Delgado L, Casals E, González E, Puntes V, Barata C, Font X, Sánchez A (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141

    Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide TiO2 nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    CAS  Google Scholar 

  • Giorgetti L, Ruffini Castiglione M, Bernerbini M, Geri C (2011) Nanoparticles effects on growth and differentiation in cell culture of carrot—Daucus carota L.. Agrochimica LV:45–53

    Google Scholar 

  • Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K (2007) Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett 7:583–587

    CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solution by green algae Spirogyra species: kinetic and equilibrium studies. J Hazard Mater 152(1):407–414

    CAS  Google Scholar 

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    CAS  Google Scholar 

  • Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463

    CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier H, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    CAS  Google Scholar 

  • Hoshino K, Gopal A, Glaz M, Bout DV, Zhang XJ (2012) Nanoscale fluorescence imaging with quantum dot near-field electroluminescence. Appl Phys Lett 101(2–3):043118

    Google Scholar 

  • Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall LF, Schmidt MM, Wittrup KD, Bawendi MG, Ting AY (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5(5):397–399

    CAS  Google Scholar 

  • Hu X, Liu J, Mayer P, Jiang G (2008) Impacts of some environmentally relevant parameters on the sorption of polycyclic hydrocarbons to aqueous suspensions of fullerene. Environ Toxicol Chem 27(9):1868–1874

    CAS  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    CAS  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    CAS  Google Scholar 

  • Khus M, Gernjak W, Ibanez PF, Rodriguez SM, Galvez JB, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energy 128:331–337

    Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    CAS  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48(1):199–208

    CAS  Google Scholar 

  • Konstantatos G, Sargent EH (2009) Solution-processed quantum dot photodetectors. Proc IEEE 97(10):1666–1683

    CAS  Google Scholar 

  • Kosynkin VD, Arzgatkina AA, Ivanov EN, Chtoutsa MG, Grabko AI, Kardapolov AV, Sysina NA (2000) The study of process production of polishing powder based on cerium dioxide. J Alloys Compd 303–304:421–425

    Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658

    CAS  Google Scholar 

  • Kukowska-Latallo JF, Raczka E, Quintana A, Chen CL, Rymaszewski M, Baker JR (2000) Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther 11:1385–1395

    CAS  Google Scholar 

  • Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contamin Toxicol 215:39–121

    Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Geno-toxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5245

    CAS  Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B, Chaillou S, Carriere M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser 304(1):012057

    Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    CAS  Google Scholar 

  • Lee SH, Richards RJ (2004) Montserrat volcanic ash induces lymph node granuloma and delayed lung inflammation. Toxicology 195:155–165

    CAS  Google Scholar 

  • Lee W, An Y, Yoon H, Kweon H (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant uptake for water insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921

    CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 3:669–675

    Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res Int 20(2):848–854

    CAS  Google Scholar 

  • Limbach LK, Bereiter R, Muller E, Krebs R, Galli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833

    CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    CAS  Google Scholar 

  • Lin D, Xing B (2008a) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    CAS  Google Scholar 

  • Lin DH, Xing B (2008b) Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ Sci Technol 42:7254–7259

    CAS  Google Scholar 

  • Lin C, Fugetsu B, Su Y, Watari F (2009a) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170:578–583

    CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009b) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    CAS  Google Scholar 

  • Livingston FE, Helvajian H (2005) Variable UV laser exposure processing of photosensitive glass–ceramics: maskless micro to meso-scale structure fabrication. Appl Phys A 81:1569–1581

    CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010a) XAS Corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    Google Scholar 

  • Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010b) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    CAS  Google Scholar 

  • Ma X, Lee JG, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of Mung (Vigna radiata) and Gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7

    Google Scholar 

  • Majumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J ChemTech Res 3(3):1494–1500

    Google Scholar 

  • Moaveni P, Karimi K, Zare Valojerdi M (2011) The nanoparticles in plants: review paper. J Nanostruct Chem 2(1):59–78

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    CAS  Google Scholar 

  • Murr LE, Esquivel EV, Bang JJ, de la Rosa G, Gardea-Torresdey JL (2004) Chemistry and nanoparticulate compositions of a 10,000 year-old ice core melt water. Water Resour 38:4282–4296

    CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi. Environ Sci Technol 17:372–386

    CAS  Google Scholar 

  • Navarro E, Piccipetra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    CAS  Google Scholar 

  • Navarro DA, Bisson MA, Agaa DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427–435

    Google Scholar 

  • Novack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Google Scholar 

  • O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomed 1(4):451–472

    Google Scholar 

  • Oleszczuk P, Pan B, Xing B (2009) Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ Sci Technol 43:9167–9173

    CAS  Google Scholar 

  • Oleszczuk P, Jósko I, Xing B (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186:436–442

    CAS  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226(1–2):39–54

    CAS  Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    CAS  Google Scholar 

  • Patlolla AK, Berry A, May L, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Publ Health 9:1649–1662

    CAS  Google Scholar 

  • Pavel A, Creanga DE (2005) Chromosomal aberrations in plants under magnetic fluid influence. J Magn Magn Mater 289:469–472

    CAS  Google Scholar 

  • Pavel A, Trifan M, Bara II, Creanga DE, Cotae C (1999) Accumulation dynamics and some cytogenetical tests at Chelidonium majus and Papaver somniferum callus under the magnetic liquid effect. J Magn Magn Mater 201(1–3):443–445

    CAS  Google Scholar 

  • Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551

    CAS  Google Scholar 

  • Perrault SD, Chan WCW (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci U S A 107:11194–11199

    CAS  Google Scholar 

  • Pulickel MA, Zhou OZ (2001) Applications of carbon nanotubes. Top Appl Phys 80:391–425

    Google Scholar 

  • Racuciu M, Creanga DE (2007) Cytogenetic changes induced by aqueous ferrofluids in agricultural plants. J Magn Magn Mater 311(1):288–291

    CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    CAS  Google Scholar 

  • Remedios C, Rosario F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 2012:1–8

    Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    CAS  Google Scholar 

  • Rietmeijer FJM, Mackinnon IDR (1997) Bismuth oxide nanoparticles in the stratosphere. J Geophys Res E 102:6621–6627

    CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    CAS  Google Scholar 

  • Roy R, Zanini D, Meunier SJ, Romanowska A (1993) Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J Chem Soc Chem Commun 1869–1872

    Google Scholar 

  • Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Report by the Royal Society and the Royal Academy of Engineering. http://www.nanotec.org.uk/finalReport.htm

  • Rubasinghe G, Elzey S, Baltrusaitis J, Jayaweera PM, Grassian VH (2010) Reactions on atmospheric dust particles: surface photochemistry and size-dependent nanoscale redox chemistry. J Phys Chem Lett 1:1729–1737

    Google Scholar 

  • Ruffini Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165

    Google Scholar 

  • Ruffini Castiglione M, Geri C, Giorgetti L, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L..J Nanopart Res 13:2443–2449

    CAS  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360

    CAS  Google Scholar 

  • SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2005) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies (SCENIHR report 002/05) (European Commission: Scientific Committee on Emerging and Newly Identified Health Risks). http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs

  • Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42(7):2253–2260

    CAS  Google Scholar 

  • Shahmoradi B, Ibrahim IA, Sakamoto N, Ananda S, Somashekar R, Guru Row TN, Byrappa K (2010) Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles. J Environ Sci Health A 45:1248–1255

    CAS  Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1–8

    Google Scholar 

  • Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112

    CAS  Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):99–106

    CAS  Google Scholar 

  • Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13, 10.1186/1476-069X-11-S1-S13

    Google Scholar 

  • Somasundaran P, Fang X, Ponnurangam S, Li B (2010) Nanoparticles: characteristics, mechanisms and modulation of biotoxicity. KONA Powder Part J 28:38–49

    CAS  Google Scholar 

  • Srividya K, Mohanty K (2009) Biosorption of hexavalent chromium from aqueous solutions by Catla catla scale: equilibrium and kinetics studies. Chem Eng J 155:666–673

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  Google Scholar 

  • Tan XM, Fugetsu B (2007) Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288

    CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    CAS  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    CAS  Google Scholar 

  • Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC (1999) The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett 40:1743–1746

    CAS  Google Scholar 

  • Unfried K, Albrecht C, Klotz LO, Mikecz A, Grether-Beck S, Schin RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71

    CAS  Google Scholar 

  • USEPA (2007) Nanotechnology white paper. Document Number EPA 100/B-07001. http://www.epa.gov/osa

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric pollution. Environ Sci Technol 44:1036–1042

    CAS  Google Scholar 

  • Verma HC, Upadhyay C, Tripathi A, Tripathi RP, Bhandari N (2002) Thermal decomposition pattern and particle size estimation of iron minerals associated with the cretaceous-tertiary boundary at Gubbio. Meteorit Planet Sci 37:901–909

    CAS  Google Scholar 

  • Vochita G, Creanga D, Focanici-Ciurlica EL (2012) Magnetic nanoparticle genetic impact on root tip cells of sunflower seedlings. Water Air Soil Pollut 223:2541–2549

    CAS  Google Scholar 

  • Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820

    CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441

    CAS  Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monit 9:1306–1316

    CAS  Google Scholar 

  • Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metal ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3(4):126

    CAS  Google Scholar 

  • Yang L, Watts J (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    CAS  Google Scholar 

  • Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1861

    CAS  Google Scholar 

  • Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147

    CAS  Google Scholar 

  • Yu-Nam Y, Lead R (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414

    Google Scholar 

  • Zhao XU, Liz W, Chen Y, Ahi LY, Zhu YF (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101–106

    CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind K. Mungray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yadav, T., Mungray, A.A., Mungray, A.K. (2014). Fabricated Nanoparticles: Current Status and Potential Phytotoxic Threats. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology volume. Reviews of Environmental Contamination and Toxicology, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-04411-8_4

Download citation

Publish with us

Policies and ethics