Skip to main content

Biodiversity and Biotechnological Applications of Industrially Important Fungi: Current Research and Future Prospects

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Abstract

One of the diverse groups of organisms after insects, fungi and its diversification are one of the debated topics among the mycologists because they are one important organism that plays various roles in the ecosystem. In the ecosystem, fungi exist in various environments like soil and water and in association with plants as well as animals in which they work as decomposers mainly. Earlier, fungi were under the black box and known as only pathogens but as the research was being conducted these organisms got the spotlight and began to be considered as beneficial. Nowadays, fungi are being used for industrial, agriculture, and environmental purposes like to make various products like dyes, medicines, and food; for protection and as nutrient provider; and for cleaning and removing harmful pollutants. In this chapter, the capabilities and their role in various fields have been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588

    Article  CAS  Google Scholar 

  • Aiyer PV (2005) Amylases and their applications. Afr J Biotechnol 4:1525–1529

    CAS  Google Scholar 

  • Al-Daamy A, Ahmed A, Mohammad G (2018) Antimicrobial agents production by fungi isolates from the whisperers. Sci J Med Res 2:104–107

    Google Scholar 

  • Al-Enazi NM, Awaad AS, Al-Othman MR, Al-Anazi NK, Alqasoumi SI (2018) Isolation, identification and anti-candidal activity of filamentous fungi from Saudi Arabia soil. Saudi Pharma J 26:253–257

    Article  Google Scholar 

  • Alneyadi AH, Rauf MA, Ashraf SS (2018) Oxidoreductases for the remediation of organic pollutants in water—a critical review. Crit Rev Biotechnol 38:971–988

    Article  CAS  PubMed  Google Scholar 

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158

    CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Arraes FBM, Beneventi MA, de Sa MEL, Paixao JFR, Albuquerque EVS, Marin SRR et al (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Avalos J, Limón MC (2015) Biological roles of fungal carotenoids. Curr Genet 61:309–324

    Article  CAS  PubMed  Google Scholar 

  • Baakza A, Vala A, Dave B, Dube H (2004) A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol 311:1–9

    Article  CAS  Google Scholar 

  • Balabanova L, Slepchenko L, Son O, Tekutyeva L (2018) Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front Microbiol 9:1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao J, Luo J-F, Qin X-C, Xu X-Y, Zhang X-Y, Tu Z-C et al (2014) Dihydrothiophene-condensed chromones from a marine-derived fungus Penicillium oxalicum and their structure–bioactivity relationship. Bioorg Med Chem Lett 24:2433–2436

    Article  CAS  PubMed  Google Scholar 

  • Bhainsa KC, D’Souza S (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  • Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi PH et al (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao H, Wang C, Liu H, Jia W, Sun H (2020) Enzyme activities during Benzo [a] pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci Rep 10:1–11

    CAS  Google Scholar 

  • Chandler D, Davidson G, Grant W, Greaves J, Tatchell G (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19:275–283

    Article  CAS  Google Scholar 

  • Chaurasia PK, Bharati SL, Mani A (2019) Significances of fungi in bioremediation of contaminated soil. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 281–294

    Chapter  Google Scholar 

  • Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X (2013) Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol 97:10381–10390

    Article  CAS  PubMed  Google Scholar 

  • Chinsamy M, Finnie J, Van Staden J (2011) The ethnobotany of South African medicinal orchids. S Afr J Bot 77:2–9

    Article  Google Scholar 

  • Chiron N, Michelot D (2005) Odeurs des champignons: chimie et rôle dans les interactions biotiques-une revue. Cryptogam Mycol 26:299–364

    Google Scholar 

  • Cho I, Namgung H-J, Choi H-K, Kim Y-S (2008) Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chem 106:71–76

    Article  CAS  Google Scholar 

  • Cody R, Davis N, Lin J, Shaw D (1990) Screening microorganisms for chitin hydrolysis and production of ethanol from amino sugars. Biomass 21:285–295

    Article  CAS  Google Scholar 

  • Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58:582–594

    Article  CAS  PubMed  Google Scholar 

  • Copetti MV (2019) Fungi as industrial producers of food ingredients. Curr Opin Food Sci 25:52–56

    Article  Google Scholar 

  • D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Article  PubMed  Google Scholar 

  • de Oliveira Mendes G, de Freitas ALM, Pereira OL, da Silva IR, Vassilev NB, Costa MD (2014) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64:239–249

    Article  CAS  Google Scholar 

  • Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari D (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 109–139

    Chapter  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Dikilitas M, Karakas S, Simsek E, Yadav AN (2021) Microbes from cold deserts and their applications in mitigation of cold stress in plants. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, Taylor & Francis, Boca Raton, pp 126–152. https://doi.org/10.1201/9780429328633-7

  • Dufossé L (2016) Current and potential natural pigments from microorganisms (bacteria, yeasts, fungi, microalgae). In: Carle R, Schweiggert RM (eds) Handbook on natural pigments in food and beverages. Elsevier, Amsterdam, pp 337–354

    Chapter  Google Scholar 

  • Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA et al (2006) Endoglucanase-producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol 8:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  PubMed  CAS  Google Scholar 

  • Elias F, Woyessa D, Muleta D (2016) Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. Int J Microbiol 2016:1–11

    Article  CAS  Google Scholar 

  • El-Obeid AS, Kamal-Eldin A, Abdelhalim MAK, Haseeb AM (2017) Pharmacological properties of melanin and its function in health. Basic Clin Pharmacol Toxicol 120:515–522

    Article  CAS  Google Scholar 

  • Fenice M, Selbmann L, Di Giambattista R, Federici F (1998) Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res Microbiol 149:289–300

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo GGO, Lopes VR, Fendrich RC, Szilagyi-Zecchin VJ (2017) Interaction between beneficial bacteria and sugarcane. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 1–27

    Google Scholar 

  • Fraatz MA, Zorn H (2011) Fungal flavours. In: Hofrichter M (ed) Industrial applications. Springer, Berlin, pp 249–268

    Chapter  Google Scholar 

  • Fremlin LJ, Piggott AM, Lacey E, Capon RJ (2009) Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J Nat Prod 72:666–670

    Article  CAS  PubMed  Google Scholar 

  • Gessler N, Egorova A, Belozerskaya T (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99

    Article  CAS  Google Scholar 

  • Gopinath SC, Hilda A, Anbu P (2005) Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience 46:119–126

    Article  CAS  Google Scholar 

  • Gopinath SC, Anbu P, Lakshmipriya T, Hilda A (2013) Strategies to characterize fungal lipases for applications in medicine and dairy industry. BioMed Res Int 2013:1–10

    Article  CAS  Google Scholar 

  • Gorbushina AA, Heyrman J, Dornieden T, Gonzalez-Delvalle M, Krumbein WE, Laiz L et al (2004) Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martin’s church (Greene–Kreiensen, Germany). Int Biodeterior Biodegrad 53:13–24

    Article  Google Scholar 

  • Gore NS, Navale AM (2017) In vitro screening of rhizospheric Aspergillus strains for potassium solubilization from Maharashtra, India. South Asian J Exp Biol 6:228–233

    Article  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K, Haas H, Häninger G, Winkelmann G (2020) Siderophores in plant root tissue: Tagetes patula nana colonized by the arbuscular mycorrhizal fungus Gigaspora margarita. Biometals 33:137–146

    Article  CAS  PubMed  Google Scholar 

  • Herrmann A (2010) Profragrances and properfumes. In: Herrmann A (ed) The chemistry and biology of volatiles. Wiley, Hoboken, NJ, pp 333–362

    Chapter  Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

    Chapter  Google Scholar 

  • Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Xie XS, Fang XW, Ma KX, Wu SH (2015) Five new guaiane sesquiterpenes from the endophytic fungus Xylaria sp. YM 311647 of Azadirachta indica. Chem Biodivers 12:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Liu M, Huang H, Wen Y, Zhang X, Wei Y (2018) Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules 19:1858–1868

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Imran M, Arshad M, Khalid A, Kanwal S, Crowley DE (2014) Perspectives of rhizosphere microflora for improving Zn bioavailability and acquisition by higher plants. Int J Agric Biol 16:653–662

    CAS  Google Scholar 

  • Inderiati S, Franco CM (2008) Isolation and identification of endophytic actinomycetes and their antifungal activity. J Biotechnol Res Trop Reg 1:1–6

    Google Scholar 

  • Ingle KP, Padole DA (2017) Phosphate solubilizing microbes: An overview. Int J Curr Microbiol Appl Sci 6:844–852

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    Article  CAS  Google Scholar 

  • Jadulco R, Edrada RA, Ebel R, Berg A, Schaumann K, Wray V et al (2004) New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. J Nat Prod 67:78–81

    Article  CAS  PubMed  Google Scholar 

  • Joshi P, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan P, Kanimozhi K, Senthilkumar G, Panneerselvam A, Ashok G (2014) Optimization of enzyme production in Trichoderma viride using carbon and nitrogen source. Int J Curr Microbiol Appl Sci 3:88–95

    Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerzaon I, Pouchus YF, Monteau F, Le Bizec B, Nourrisson MR, Biard JF et al (2009) Structural investigation and elucidation of new communesins from a marine-derived Penicillium expansum Link by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 23:3928–3938

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–siderophore: a review. Microbiol Res 212:103–111

    Article  PubMed  CAS  Google Scholar 

  • Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W et al (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057

    Article  CAS  PubMed  Google Scholar 

  • Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al. (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 31:43–75 https://doi.org/10.1016/S1002-0160(20)60057-1

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:1–10

    Article  CAS  Google Scholar 

  • Kumar S, Aharwal RP, Shukla H, Rajak R, Sandhu SS (2014) Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharm Pharm Sci 3:1179–1197

    Google Scholar 

  • Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65:1391–1399

    Article  CAS  Google Scholar 

  • Kumar A, Prajapati S, Nandan S, Neogi TG (2019a) Industrially important pigments from different groups of fungi. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Springer International Publishing, Cham, pp 285–301

    Chapter  Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019b) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170. https://doi.org/10.1007/978-981-15-0690-1_8

    Chapter  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019c) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 31:101883 https://doi.org/10.1016/j.bcab.2020.101883

    Google Scholar 

  • Lagashetti AC, Dufossé L, Singh SK, Singh PN (2019) Fungal pigments and their prospects in different industries. Microorganisms 7:604

    Article  CAS  PubMed Central  Google Scholar 

  • Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311:152–159

    Article  CAS  PubMed  Google Scholar 

  • Lee WW, Shin TY, Bae SM, Woo SD (2015) Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using multiple tools. J Asia-Pacific Entomol 18:607–615

    Article  Google Scholar 

  • Li Z, Bai T, Dai L, Wang F, Tao J, Meng S et al (2016) A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 6:1–8

    CAS  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78:241–247

    Article  CAS  PubMed  Google Scholar 

  • Maciel MJM, Ribeiro HCT (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electron J Biotechnol 13:14–15

    Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA 3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    Article  CAS  Google Scholar 

  • Mahamuni S, Wani P, Patil A (2012) Isolation of phosphate solubilizing fungi from rhizosphere of sugarcane & sugar beet using TCP & RP solubilization. Asian J Biochem Pharm Res 2:237–244

    CAS  Google Scholar 

  • Malherbe D, Du Toit M, Otero RC, Van Rensburg P, Pretorius I (2003) Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl Microbiol Biotechnol 61:502–511

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand B Soil Plant Sci 66:399–405

    CAS  Google Scholar 

  • Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16

    Article  CAS  PubMed  Google Scholar 

  • Marinho AM, Rodrigues-Filho E, Moitinho MDLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283

    Article  Google Scholar 

  • Matallah-Boutiba A, Ruiz N, Sallenave-Namont C, Grovel O, Amiard J-C, Pouchus YF et al (2012) Screening for toxigenic marine-derived fungi in Algerian mussels and their immediate environment. Aquaculture 342:75–79

    Article  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, Functional annotation and future challenges, vol 2. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

    Chapter  Google Scholar 

  • Muthusamy S, Udhayabaskar S, Udayakumar GP, Kirthikaa G, Sivarajasekar N (2020) Properties and applications of natural pigments produced from different biological sources—a concise review. In: Sivasubramanian V, Pugazhendhi A, Moorthy I (eds) Sustainable development in energy and environment, Springer proceedings in energy. Springer, Singapore, pp 105–119

    Chapter  Google Scholar 

  • Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5:463–471

    Article  Google Scholar 

  • Nagendran K, Karthikeyan G, Peeran MF, Raveendran M, Prabakar K, Raguchander T (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World Appl Sci J 28:2229–2241

    Google Scholar 

  • Nagpure A, Choudhary B, Gupta RK (2014) Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol 34:215–232

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Raguchander T, Samiyappan R (2001) Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol Biochem 33:603–612

    Article  CAS  Google Scholar 

  • Narsing Rao MP, Xiao M, Li W-J (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ 28:42–49

    Article  PubMed  Google Scholar 

  • Nong X-H, Wang Y-F, Zhang X-Y, Zhou M-P, Xu X-Y, Qi S-H (2014) Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus. Mar Drugs 12:6113–6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  PubMed Central  CAS  Google Scholar 

  • Olszewski N, T-p S, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Østergaard LH, Olsen HS (2011) Industrial applications of fungal enzymes. In: Hofrichter M (ed) Industrial applications. Springer, Berlin, pp 269–290

    Chapter  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJ (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Patil AG, Kounaina K, Aishwarya S, Harshitha N, Satapathy P, Hudeda SP et al. (2021) Myco-Nanotechnology for Sustainable Agriculture: Challenges and Opportunities. In: Yadav AN (ed) Recent Trends in Mycological Research: Volume 1: Agricultural and Medical Perspective. Springer International Publishing, Cham, pp 457–479. https://doi.org/10.1007/978-3-030-60659-6_20

  • Pérez-Montaño F, Alías-Villegas C, Bellogín R, Del Cerro P, Espuny M, Jiménez-Guerrero I et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Płonka P, Grabacka M (2006) Melanin synthesis in microorganisms: biotechnological and medical aspects. Acta Biochim Pol 53:429–443

    Article  PubMed  Google Scholar 

  • Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Pospíšilová H, Jiskrova E, Vojta P, Mrizova K, Kokáš F, Čudejková MM et al (2016) Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol 33:692–705

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Dubrovskaya EV, Makarov OE, Nikitina VE, Turkovskaya OV (2011) Production of ligninolytic enzymes by white-rot fungi during bioremediation of oil-contaminated soil. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, pp 363–377. https://doi.org/10.1007/978-3-642-14225-3_20

    Chapter  Google Scholar 

  • Prasad S, Yadav AN, Singh A (2020) Impact of climate change on sustainable biofuel production. In: Yadav AN, Rastegari AA, Yadav N, Gaur R (eds) Biofuels production—sustainability and advances in microbial bioresources. Springer International Publishing, Cham, pp 79–97. https://doi.org/10.1007/978-3-030-53933-7_5

    Chapter  Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al (2021) Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

    Chapter  Google Scholar 

  • Priya MS, Divyashree K, Goswami C, Prabha ML, Babu AS (2013) Bioremediation of textile dyes by white rot fungi isolated from western ghats area. Int J Eng Adv Technol 2:913–918

    Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60. https://doi.org/10.1016/B978-0-12-820526-6.00004-X

    Chapter  Google Scholar 

  • Rajini SB, Nandhini M, Udayashankar AC, Niranjana SR, Lund OS, Prakash HS (2020) Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol 69:642–654

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S et al (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45:1055–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao Q, Guo W, Chen X (2015) Identification and characterization of an antifungal protein, AFAFPR9, produced by marine-derived Aspergillus fumigatus R9. J Microbiol Biotechnol 25:620–628

    Article  CAS  PubMed  Google Scholar 

  • Rasiah I, Sutton K, Low F, Lin H-M, Gerrard J (2005) Crosslinking of wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants. Food Chem 89:325–332

    Article  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Reyes-Estebanez M, Herrera-Parra E, Cristóbal-Alejo J, Heredia-Abarca G, Canto-Canché B, Medina-Baizabal I et al (2011) Antimicrobial and nematicidal screening of anamorphic fungi isolated from plant debris of tropical areas in Mexico. Afr J Microbiol Res 5:1083–1089

    Google Scholar 

  • Ruanpanun P, Tangchitsomkid N, Hyde KD, Lumyong S (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 26:1569–1578

    Article  CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    Article  CAS  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Article  Google Scholar 

  • Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S et al (2020) Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24:447–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  • Saxena R, Gupta R, Saxena S, Gulati R (2001) Role of fungal enzymes in food processing. In: Khachatourians GG, Arora DK (eds) Applied mycology and biotechnology, vol 1. Elsevier, Amsterdam, pp 353–386

    Google Scholar 

  • Saxena AK, Padaria JC, Gurjar GT, Yadav AN, Lone SA, Tripathi M et al (2020) Insecticidal formulation of novel strain of Bacillus thuringiensis AK 47. Indian Patent 340541

    Google Scholar 

  • Schmülling T (2002) New insights into the functions of cytokinins in plant development. J Plant Growth Regul 21:40–49

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Seyis I, Aksoz N (2004) Production of lactase by Trichoderma sp. Food Technol Biotechnol 42:121–124

    CAS  Google Scholar 

  • Sharma N, Rathore M, Sharma M (2013) Microbial pectinase: sources, characterization and applications. Rev Environ Sci Biotechnol 12:45–60

    Article  CAS  Google Scholar 

  • Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK et al (2018) Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ Sci Pollut Res 25:16355–16375

    Article  CAS  Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

    Chapter  Google Scholar 

  • Shazia I, Uzma SG, Talat A (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biol Sci 2:66–73

    Google Scholar 

  • Sikandar S, Saqib AY, Afzal I (2020) Fungal secondary metabolites and bioactive compounds for plant defense. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Functional annotation for crop protection, vol 2. Springer International Publishing, Cham, pp 149–179Agriculturally important fungi for sustainable agriculture

    Google Scholar 

  • Silva ACD, Suassuna JF, Melo ASD, Costa RR, Andrade WLD, Silva DCD (2017) Salicylic acid as attenuator of drought stress on germination and initial development of sesame. Rev Bras Eng Agr Amb 21:156–162

    Article  Google Scholar 

  • Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520

    Article  CAS  PubMed  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R et al (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020a) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Singh RK, Tripathi R, Ranjan A, Srivastava AK (2020b) Fungi as potential candidates for bioremediation. In: Singh P, Kumar A, Borthakur A (eds) Abatement of environmental pollutants. Elsevier, Amsterdam, pp 177–191

    Chapter  Google Scholar 

  • Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 1–52. https://doi.org/10.1007/978-3-030-38453-1_1

    Chapter  Google Scholar 

  • Supaphon P, Keawpiboon C, Preedanon S, Phongpaichit S, Rukachaisirikul V (2018) Isolation and antimicrobial activities of fungi derived from Nymphaea lotus and Nymphaea stellata. Mycoscience 59:415–423

    Article  Google Scholar 

  • Sutjaritvorakul T, Gadd GM, Suntornvongsagul K, Whalley AJ, Roengsumran S, Sihanonth P (2013) Solubilization and transformation of insoluble zinc compounds by fungi isolated from a zinc mine. Environ Asia 6:42–46

    Google Scholar 

  • Suwannarach N, Kumla J, Watanabe B, Matsui K, Lumyong S (2019) Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS One 14:e0222187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suyal DC, Soni R, Yadav AN, Goel R (2021) Cold Adapted Microorganisms: Survival Mechanisms and Applications. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, Taylor & Francis, Boca Raton, 177–192

    Google Scholar 

  • Szebesczyk A, Olshvang E, Shanzer A, Carver PL, Gumienna-Kontecka E (2016) Harnessing the power of fungal siderophores for the imaging and treatment of human diseases. Coord Chem Rev 327:84–109

    Article  CAS  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture. In: Yadav AN (ed) Recent Trends in Mycological Research: Volume 1: Agricultural and Medical Perspective. Springer International Publishing, Cham, pp 269-291. doi:10.1007/978-3-030-60659-6_12

    Google Scholar 

  • Turick CE, Knox AS, Leverette CL, Kritzas YG (2008) In situ uranium stabilization by microbial metabolites. J Environ Radioact 99:890–899

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U et al (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25:33103–33118

    Article  CAS  Google Scholar 

  • Van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 243–254

    Chapter  Google Scholar 

  • Venil CK, Velmurugan P, Dufossé L, Devi PR, Ravi AV (2020) Fungal pigments: potential coloring compounds for wide ranging applications in textile dyeing. J Fungi 6:68

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution, Microbes for sustainable crop production, vol 1. Springer, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Chapter  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Khan MA, Saxena AK (2018) Microbes in termite management: potential role and strategies. In: Khan M, Ahmad W (eds) Termites and sustainable management. Springer, Cham, pp 197–217

    Chapter  Google Scholar 

  • Weinstein RN, Palm ME, Johnstone K, Wynn-Williams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia 89:706–711

    Article  Google Scholar 

  • Welch S, Barker W, Banfield J (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419

    Article  CAS  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U et al (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Turner A (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185

    Article  CAS  Google Scholar 

  • Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938

    Article  CAS  PubMed  Google Scholar 

  • Wu ZJ, Ouyang MA, Tan QW (2009) New asperxanthone and asperbiphenyl from the marine fungus Aspergillus sp. Pest Manag Sci 65:60–65

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10:127–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia XK, Huang HR, She ZG, Cai JW, Lan L, Zhang JY et al (2007) Structural and biological properties of vermistatin and two new vermistatin derivatives isolated from the marine-mangrove endophytic fungus Guignardia sp. No. 4382. Helv Chim Acta 90:1925–1931

    Article  CAS  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2012) Diversity of culturable psychrotrophic bacteria from Leh Ladakh and bioprospecting for cold-active extracellular enzymes. In: Proceedings of national seminar on “Biotechnological interventions for the benefit of mankind”, pp 32–33

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016b) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushi R, Saxena AK (2016c) Microbiome of Indian Himalayan regions: molecular diversity, phylogenetic profiling and biotechnological applications. In: Proceedings of 86th annual session of NASI & the symposium on “Science, technology and entrepreneurship for human welfare in the Himalayan region”, p 58

    Google Scholar 

  • Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017a) Current applications and future prospects of eco-friendly microbes. EU Voice 3:1–3

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017b) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4

    Article  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019a) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Gupta VK, Yadav N (2020c) Microbial biotechnology approaches to monuments of cultural heritage. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.91ed

  • Yadav AN, Singh J, Singh C, Yadav N (2021a) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Yadav AN, Kaur T, Devi R, Kour D, Yadav N (2021b) Biodiversity and Biotechnological Applications of Extremophilic Microbiomes: Current Research and Future Challenges. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, Taylor & Francis, Boca Raton, pp 278–290. https://doi.org/10.1201/9780429328633-16

  • Yu K, Ren B, Wei J, Chen C, Sun J, Song F et al (2010) Verrucisidinol and verrucosidinol acetate, two pyrone-type polyketides isolated from a marine derived fungus, Penicillium aurantiogriseum. Mar Drugs 8:2744–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Kim S-K (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C et al (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci 104:4606–4611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Xiao J, Sun Q-Q, Qin J-C, Pescitelli G, Gao J-M (2014) Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J Agric Food Chem 62:10962–10969

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A.N. et al. (2021). Biodiversity and Biotechnological Applications of Industrially Important Fungi: Current Research and Future Prospects. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-67561-5_17

Download citation

Publish with us

Policies and ethics