Skip to main content

Microbial-Based Nanoparticles as Potential Approach of Insect Pest Management

  • Chapter
  • First Online:
Microbes for Sustainable lnsect Pest Management

Abstract

Over the past decades, chemical pesticides have been successfully used to control insect pests. However, excessive use of insecticides has led to the development of pesticide resistance in the targeted insects, as well as caused several environmental and human health hazards. Nanotechnology has emerged as one of the highly attractive alternative approaches to chemical pesticides. Various chemical, physical and biological methods are used to generate a variety of organic and inorganic nanoparticles (NPs). However, NPs generated by non-biological methods are unstable, expensive and environmentally hazardous due to the use of toxic chemicals and energy expensive methods. In the recent years, microbial synthesis of NPs has become popular and microorganisms are considered as potential sources of bioactive NPs. Bacteria such as Bacillus subtilis, Bacillus licheniformis, Pseudomonas aeruginosa, Serratia, Escerichia coli, cyanobacteria such as Plectonema boryanum, actinobacteria such as Thermomonospora, Actinobacter, yeasts such as Candida glabrata, Schizosaccharomyces pombe and fungi (Verticillium, Fusarium) are widely used for the synthesis of nanomaterials. Toxic effects of metal NPs such as Ag, Au, Al, Si, Zn, and ZnO have been proven successfully against a wide range of insects. NPs have significant impact on the insect’s antioxidant and detoxifying enzymes, protein synthesis, gene regulation thus leading to oxidative stress, disrupting development and reproduction, enzymes denaturation and cell death. NPs have been mainly tested against a wide number of arthropod pests and vectors and their usage in crop pest management is under progress. Currently, studies are being carried out to improve the quality and synthesis efficiency of microbial-based NPs and nanopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adak, T., Kumar, J., Shakil, N. A., & Walia, S. (2012). Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. Journal of Environmental Science and Health Part B, 47, 217–225.

    Article  CAS  Google Scholar 

  • Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M. I., et al. (2002). Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. Journal of the American Chemical Society, 124, 12108–12109.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2003a). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 19, 3550–3553.

    Article  CAS  Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Ramani, R., et al. (2003b). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology, 14, 824–828.

    Article  CAS  Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2005). Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. Journal of Biomedical Nanotechnology, 1, 47–53.

    Article  CAS  Google Scholar 

  • Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Rani, P. U., & Desneux, N. (2018). Nanoparticles for pest control: Current status and future perspectives. Journal of Pest Science, 91, 1–5.

    Google Scholar 

  • Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., et al. (2015). Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial, and photocatalytic properties. Langmuir, 31, 11605–11612.

    Article  CAS  PubMed  Google Scholar 

  • Bahrami, K., Nazari, P., Sepehrizadeh, Z., Zarea, B., & Shahverdi, A. R. (2012). Microbial synthesis of antimony sulfide nanoparticles and their characterization. Annals of Microbiology, 62, 1419–1425.

    Article  CAS  Google Scholar 

  • Bai, H. J., & Zhang, Z. M. (2009). Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Materials Letters, 63, 764–766.

    Article  CAS  Google Scholar 

  • Bai, H. J., Zhang, Z. M., & Gong, J. (2006). Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnology Letters, 28, 1135–1139.

    Article  CAS  PubMed  Google Scholar 

  • Bai, H. J., Zhang, Z. M., Guo, Y., & Yang, G. E. (2009). Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces B: Biointerfaces, 70, 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Bansal, V., Rautaray, D., Ahmad, A., & Sastry, M. (2004). Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. Journal of Materials Chemistry, 14, 3303–3305.

    Article  CAS  Google Scholar 

  • Bansal, V., Rautaray, D., Bharde, A., Ahire, K., Sanyal, A., et al. (2005). Fungus-mediated biosynthesis of silica and titania particles. Journal of Materials Chemistry, 15, 2583–2589.

    Article  CAS  Google Scholar 

  • Bansal, V., Poddar, P., Ahmad, A., & Sastry, M. (2006). Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. Journal of the American Chemical Society, 128, 11958–11963.

    Article  CAS  PubMed  Google Scholar 

  • Barik, T. K., Sahu, B., & Swain, V. (2008). Nanosilica-from medicine to pest control. Parasitology Research, 103, 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja, S., Balaji, S., Lagashetty, A., Rajasab, A., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164–1170.

    Article  CAS  Google Scholar 

  • Benelli, G. (2016). Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—A brief review. Enzyme Microbial Technology, 95, 58–68.

    Article  CAS  PubMed  Google Scholar 

  • Beveridge, T., & Murray, R. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141, 876–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., et al. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria, E., Vilchis-Nestor, A. R., & Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces, 83, 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy, A. K., Chandrashekharaiah, Kandakoor, S. B., Bhattacharya, A., Dhanabala, K., et al. (2012). Bio-efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica, 6, 271–281.

    Google Scholar 

  • Dameron, C. T., Reese, R. N., Mehra, R. K., Kortan, A. R., Carroll, P. J., et al. (1989). Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 338, 596–597.

    Article  CAS  Google Scholar 

  • Debnath, N., Das, S., Seth, D., Bhattacharya, R. C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84, 99–105.

    Article  Google Scholar 

  • Debnath, N., Das, S., Patra, P., Mitra, S., & Goswami, A. (2012). Toxicological evaluation of entomotoxic silica nanoparticle. Toxicological and Environmental Chemistry, 94, 944–951.

    Article  CAS  Google Scholar 

  • Devika, R., Elumalai, S., Manikandan, E., & Eswaramoorthy, D. (2012). Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. Open Access Science Reports, 1, 557. https://doi.org/10.4172/scientificreports.557.

    Article  Google Scholar 

  • Dhaliwal, G. S., Dhawan, A. K., & Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34, 100–108.

    Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., et al. (2012). CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14, 1125. https://doi.org/10.1007/s11051-012-1125-9.

  • Duran, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3, 8. https://doi.org/10.1186/1477-3155-3-8.

  • Elango, G., Roopan, S. M., Dhamodaran, K. I., Elumalai, K., Al-Dhabi, N. A., & Arasu, M. V. (2016). Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. Journal of Photochemistry and Photobiology, B: Biology, 162, 162–167.

    Article  CAS  Google Scholar 

  • El-bendary, H. M., & El-Helaly, A. A. (2013). First record nanotechnology in agricultural: Silica nano-particles a potential new insecticide for pest control. Applied Scientific Reports, 4, 241–246.

    Google Scholar 

  • Elek, N., Hoffman, R., Raviv, U., Resh, R., Ishaaya, I., & Magdassi, S. (2010). Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloidal Surfaces A, 372, 66–72.

    Article  CAS  Google Scholar 

  • Elemike, E. E., Onwudiwe, D. C., Arijeh, O., & Nwankwo, H. U. (2017). Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters. Bulletin of Materials Science, 40, 129–137.

    Article  CAS  Google Scholar 

  • Faivre, D., & Schüler, D. (2008). Magnetotactic bacteria and magnetosomes. Chemical Reviews, 108, 4875–4898.

    Google Scholar 

  • Fouad, H., Hongjie, L., Hosni, D., Wei, J., Abbas, G., et al. (2018). Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artificial Cells, Nanomedicine and Biotechnology, 46, 558–567.

    Article  CAS  Google Scholar 

  • Fröhlich, E., Kueznik, T., Samberger, C., Roblegg, E., Wrighton, C., & Pieber, T. R. (2010). Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicology and Applied Pharmacology, 242, 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N., & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2, 243–247.

    Google Scholar 

  • Ghorbani, H. R. (2013). Biosynthesis of silver nanoparticles using Salmonella typhimurium. Journal of Nanostructure in Chemistry, 3, 29. http://www.jnanochem.com/content/3/1/29.

  • Gopinath, V., & Velusamy, P. (2013). Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, 170–174.

    Article  CAS  Google Scholar 

  • Harper, S. (2010). New approaches needed to gauge safety of nanotech-based pesticides, researchers urge. Physical Chemistry, 4, 2010–2012.

    Google Scholar 

  • He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., & Ning, G. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters, 61, 3984–3987.

    Google Scholar 

  • Heisey, P. W., & Norton, G. W. (2007). Fertilizers and other farm chemicals. In R. Evenson & P. Pingali (Eds.), Handbook of agricultural economics, (edn 1, vol 3, pp. 2741–2777). Elsevier.

    Google Scholar 

  • Holdren, J. P. (2011). The national nanotechnology initiative strategic plan report at subcommittee on nanoscale science, engineering and technology. Committee on Technology, National Science and Technology Council. Arlington, VA: NSCT.

    Google Scholar 

  • Holmes, J. D., Smith, P. R., Evans-Gowing, R., Richardson, D. J., Russell, D. A., & Sodeau, J. R. (1995). Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Archives of Microbiology, 163, 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Jaidev, L. R., & Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 81, 430–433.

    Article  CAS  PubMed  Google Scholar 

  • Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J., & Panwar, J. (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 3, 635–641.

    Article  CAS  PubMed  Google Scholar 

  • Jain, N., Bhargava, A., Tarafdar, J. C., Singh, S. K., & Panwar, J. (2013). A biomimetic approach towards synthesis of zinc oxide nanoparticles. Applied Microbiology and Biotechnology, 97, 859–869.

    Article  CAS  PubMed  Google Scholar 

  • Jha, A. K., & Prasad, K. (2009). A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochemical Engineering Journal, 43, 303–306.

    Article  CAS  Google Scholar 

  • Jha, A. K., Prasad, K., & Kulkarni, A. R. (2009). Synthesis of TiO2 nanoparticles using microorganisms. Colloids and Surfaces B: Biointerfaces, 71, 226–229.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, X., Miclăuş, T., Wang, L., Foldbjerg, R., Sutherland, D. S., et al. (2015). Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: Implication for cytotoxicity. Nanotoxicology, 9, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. A., & Ahmad, A. (2013). Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Materials Research Bulletin, 48, 4134–4138.

    Article  CAS  Google Scholar 

  • Kim, Y., Lee, Y., & Roh, Y. (2015). Microbial synthesis of iron sulfide (FeS) and iron carbonate (FeCO3) nanoparticles. Journal of Nanoscience and Nanotechnology, 15, 5794–5797.

    Article  CAS  PubMed  Google Scholar 

  • Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, USA, 96, 13611–13614.

    Article  CAS  Google Scholar 

  • Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., et al. (2007). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. Journal of Biotechnology, 128, 648–653.

    Article  CAS  PubMed  Google Scholar 

  • Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 78, 583–588.

    Article  CAS  PubMed  Google Scholar 

  • Krumov, N., Oder, S., Perner-Nochta, I., Angelov, A., & Posten, C. (2007). Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. Journal of Biotechnology, 132, 481–486.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84, 151–157.

    Article  CAS  Google Scholar 

  • Kumar, C. G., Mamidyala, S. K., Das, B., Sridhar, B., Devi, G. S., & Karuna, M. S. (2010). Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. Journal of Microbiology and Biotechnology, 20, 1061–1068. 

    Google Scholar 

  • Kushwaha, A., Singh, V. K., Bhartariya, J., Singh, P., & Yasmeen, K. (2015). Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: Characterization of the particles and study of antibacterial activity. European Journal of Experimental Biology, 5, 65–70.

    Google Scholar 

  • Lang, C., Schüler, D., & Faivre, D. (2007). Synthesis of magnetite nanoparticles for bio-and nanotechnology: Genetic engineering and biomimetics of bacterial magnetosomes. Macromolecular Bioscience, 7, 144–151.

    Google Scholar 

  • Lee, S. W., Mao, C., Flynn, C. E., & Belcher, A. M. (2002). Ordering of quantum dots using genetically engineered viruses. Science, 296, 892–895.

    Article  CAS  PubMed  Google Scholar 

  • Lengke, M. F., Fleet, M. E., & Southam, G. (2006a). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold (III)-chloride complexes. Langmuir, 22, 2780–2787.

    Article  CAS  PubMed  Google Scholar 

  • Lengke, M. F., Ravel, B., Fleet, M. E., Wanger, G., Gordon, R. A., & Southam, G. (2006b). Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environmental Science and Technology, 40, 6304–6309.

    Article  CAS  PubMed  Google Scholar 

  • Lengke, M. F., Fleet, M. E., & Southam, G. (2007). Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir, 23, 8982–8987.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. Z., Xu, S. A., Wen, L. X., Liu, F., Liu, A. Q., et al. (2006). Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. Journal of Controlled Release, 111, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Wen, L. X., Li, Z. Z., Yu, W., Sun, H. Y., & Chen, J. F. (2006). Porous hollow silica nanoparticles as controlled delivery system form water-soluble pesticide. Materials Research Bulletin, 41, 2268–2275.

    Article  CAS  Google Scholar 

  • Liu, Y., Tong, Z., & Prud’homme, R. K. (2008). Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Management Science, 64, 808–812.

    Google Scholar 

  • Loha, K. M., Shakil, N. A., Kumar, J., Singh, M. K., Adak, T., & Jain, S. (2011). Release kinetics of β-cyfluthrin from its encapsulated formulations in water. Journal of Environmental Science and Health Part B, 46, 201–206.

    Article  CAS  Google Scholar 

  • Mala, R., Arunachalam, P., & Sivasankari, M. (2012). Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. Journal of Cell and Tissue Research, 12, 3249–3254.

    Google Scholar 

  • Mann, S. (1996). Biominerilization and biomimetic materials chemistry. In S. Mann (Ed.), Biomimetic materials chemistry (pp. 1–40). New York: Wiley.

    Google Scholar 

  • Manti, A., Boi, P., Falcioni, T., Canonico, B., Ventura, A., et al. (2008). Bacterial cell monitoring in wastewater treatment plants by flow cytometry. Water Environmental Research, 80, 346–354.

    Article  CAS  Google Scholar 

  • Mao, C., Flynn, C. E., Hayhurst, A., Sweeney, R., Qi, J., et al. (2003). Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences, USA,100, 6946–6951.

    Google Scholar 

  • Mao, C., Solis, D. J., Reiss, B. D., Kottmann, S. T., Sweeney, R. Y., et al. (2004). Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 303, 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu, S., Rahuman, A. A., Kirthi, A. V., Santhoshkumar, T., Jayaseelan, C., & Rajakumar, G. (2013). Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitology Research, 112, 4105–4112.

    Article  PubMed  Google Scholar 

  • Mishra, S., & Singh, H. B. (2015). Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 99, 1097–1107.

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam, K. M. (2010). An introduction to microbial metal nanoparticle preparation method. The Journal of Young Investigators, 19, 1–6.

    Google Scholar 

  • Mourato, A., Gadanho, M., Lino, A. R., & Tenreiro, R. (2011). Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorganic Chemistry and Applications, 546074https://doi.org/10.1155/2011/546074.

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., et al. (2001). Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie International Edition in English, 40, 3585–3588.

    Google Scholar 

  • Mukherjee, P., Roy, M., Mandal, B., Dey, G., Mukherjee, P., et al. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19, 075103. https://doi.org/10.1088/0957-4484/19/7/075103.

  • Muller, R. H., & Junghanns, J. U. A. H. (2006). Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In V. P. Torchilin (Ed.), Nanoparticles as drug carriers (pp. 307–328). London: Imperial College Press.

    Chapter  Google Scholar 

  • Nair, P. M. G., & Choi, J. (2011). Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquatic Toxicology, 101, 550–560.

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64, 1447–1483.

    Article  CAS  PubMed  Google Scholar 

  • Pankaj, Shakil, N. A., Kumar, J., Singh, M. K., & Singh, K. (2012). Bioefficacy evaluation of controlled release formulations based on amphiphilicnano-polymer of carbofuran against Meloidogyne incognita infecting tomato. Journal of Environmental Science and Health Part B, 47, 520–528.

    Article  CAS  Google Scholar 

  • Parikh, R. Y., Singh, S., Prasad, B., Patole, M. S., Sastry, M., & Shouche, Y. S. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: Towards understanding biochemical synthesis mechanism. Chembiochem, 9, 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  • Patil, C. D., Borase, H. P., Suryawanshi, R. K., & Patil, S. V. (2016). Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme and Microbial Technology, 92, 18–25.

    Article  CAS  PubMed  Google Scholar 

  • Pavani, K. V., Kumar, N. S., & Sangameswaran, B. B. (2012). Synthesis of lead nanoparticles by Aspergillus species. Polish Journal of Microbiology, 61, 61–63.

    Article  CAS  PubMed  Google Scholar 

  • Pavani, T., Rao, K. V., Chakra, C. S., & Prabhu, Y. T. (2015). Microbial synthesis of ZnO nanoparticles by yeast: Sacchromyces cerevisiae. Journal of NanoScience, NanoEngineering and Applications, 5, 1–5.

    CAS  Google Scholar 

  • Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Lu, G. Q. M. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3, 2801–2818.

    Article  CAS  PubMed  Google Scholar 

  • Pum, D., & Sleytr, U. B. (1999). The application of bacterial S-layers in molecular nanotechnology. Trends in Biotechnology, 17, 8–12.

    Article  CAS  Google Scholar 

  • Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94, 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., & Galdiero, M. (2014). Broadspectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Applied Microbiology and Biotechnology, 98, 1951–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddin, T. L., Govender, Y., Gericke, M., & Whiteley, C. (2009). Two different hydrogenase enzymes from sulphate reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme and Microbial Technology, 45, 267–273.

    Google Scholar 

  • Roh, Y., Lauf, R. J., McMillan, A. D., Zhang, C., Rawn, C. J., et al. (2001). Microbial synthesis and the characterization of metal substituted magnetites. Solid State Community, 118, 529–534.

    Article  CAS  Google Scholar 

  • Rouhani, M., Samih, M. A., & Kalantari, S. (2012). Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean Journal of Agricultural Research, 72, 590–594.

    Article  Google Scholar 

  • Rouhani, M., Samih, M. A., & Kalantari, S. (2013). Insecticidal effect of silica and silver nanoparticles on the cowpea seedbeetle, Callosobruchus maculatus F. (Col.: Bruchidae). Journal of Entomological Research, 4, 297–305.

    Google Scholar 

  • Routray, S., Dey, D., Baral, S., Das, A. P., & Patil, V. (2016). Potential of nanotechnology in insect pest control. Progressive Research, 11, 903–906.

    Google Scholar 

  • Salunke, B. K., Sawant, S. S., Lee, S. I., & Kim, B. S. (2015). Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 99, 5419–5427.

    Article  CAS  PubMed  Google Scholar 

  • Salunke, B. K., Sawant, S. S., Lee, S. I., & Kim, B. S. (2016). Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: Current scenario and future possibilities. World Journal of Microbiology and Biotechnology, 32, 1–16.

    Article  CAS  Google Scholar 

  • Salunkhe, R. B., Patil, S. V., Patil, C. D., & Salunke, B. K. (2011). Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 109, 823–831.

    Article  PubMed  Google Scholar 

  • Salvadori, M. R., Ando, R. A., Oller do Nascimento, C. A., & Corrêa, B. (2014). Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 9, e87968. https://doi.org/10.1371/journal.pone.0087968

    Google Scholar 

  • Sarkar, D. J., Kumar, J., Shakil, N. A., & Walia, S. (2012). Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. Journal of Environmental Science and Health, Part A, 47, 1701–1712.

    Google Scholar 

  • Sasson, Y., Levy-Ruso, G., Toledano, O., & Ishaaya, I. (2007). Nanosuspensions: Emerging novel agrochemical formulations. In I. Ishaaya, R. Nauen, & A. R. Horowitz (Eds.), Insecticides design using advanced technologies (pp. 1–32). Berlin: Springer.

    Google Scholar 

  • Sayed, A. M. M., Kim, S., & Behle, R. W. (2017). Characterisation of silver nanoparticles synthesised by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Science and Technology, 27, 1308–1326.

    Article  Google Scholar 

  • Scrinis, G., & Lyons, K. (2007). The emerging nano-corporate paradigm: Nanotechnology and the transformation of nature, food and agri-food systems. International Journal of Sociology of Agriculture and Food, 15, 22–44.

    Google Scholar 

  • Selvakannan, P. R., Swami, A., & Srisathiyanarayanan, D., Shirude, P. S., Pasricha, R., et al. (2004). Synthesis of aqueous Au core Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air water interface. Langmuir, 20, 7825–7836.

    Google Scholar 

  • Senapati, S., Mandal, D., Ahmad, A., Khan, M., Sastry, M., & Kumar, R. (2004). Fungus mediated synthesis of silver nanoparticles: A novel biological approach. Indian Journal of Physics, 78, 101–105.

    Google Scholar 

  • Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., et al. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939–943.

    Article  CAS  Google Scholar 

  • Shankar, S. S., Ahmad, A., Pasricha, R., & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13, 1822–1826.

    Article  CAS  Google Scholar 

  • Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Biological synthesis of triangular gold nanoprism. Natural Materials, 3, 482–488.

    Article  CAS  Google Scholar 

  • Singh, S., Vidyarthi, A. S., Nigam, V. K., & Dev, A. (2014). Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis. Artificial Cells Nanomedicine and Biotechnology, 42, 6–12.

    Article  CAS  PubMed  Google Scholar 

  • Sleytr, U. B., Messner, P., Pum, D., & Sára, M. (1999). Crystalline bacterial cell surface layers (S layers): From supramolecular cell structure to biomimetics and nanotechnology. Angewandte Chemie International Edition in English, 38, 1034–1054.

    Google Scholar 

  • Soni, N., & Prakash, S. (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitology Research, 110, 175–184.

    Article  PubMed  Google Scholar 

  • Stadler, T., Buteler, M., & Weaver, D. K. (2010). Novel use of nanostructured alumina as an insecticide. Pest Management Science, 66, 577–579.

    Google Scholar 

  • Suman, V., Prasad, R., Jain, V. K., & Varma, A. (2010). Role of nanomaterials in symbiotic fungus growth enhancement. Current Science, 99, 1189–1191.

    Google Scholar 

  • Sundaravadivelan, C., & Padmanabhan, M. N. (2014). Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environmental Science and Pollution Research, 21, 4624–4633.

    Article  CAS  PubMed  Google Scholar 

  • Syed, A., & Ahmad, A. (2012). Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 97, 27–31.

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar, J.C., & Raliya, R. (2011). The Nanotechnology. Scientific Publisher (India), 215 pp.

    Google Scholar 

  • Tarafdar, J. C. & Rathore, I. (2016). Microbial synthesis of nanoparticles for use in agriculture ecosystem. In D. J. Bagyaraj & Jamaluddin (Eds.) Microbes for plant stress management, (pp.105–118). Delhi: New India Publishing Agency.

    Google Scholar 

  • Vani, C., & Brindhaa, U. (2013). Silica nanoparticles as nanocides against Corcyra cephalonica (S.), the stored grain pest. International Journal of Pharma and Bio Sciences, 4, 1108–1118.

    CAS  Google Scholar 

  • Wang, T., Yang, L., Zhang, B., & Liu, J. (2010). Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids and Surfaces B: Biointerfaces, 80, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Welch, R. M., & Graham, R. D. (1999). A new paradigm for world agriculture: Meeting human needs, productive, sustainable, and nutritious. Field Crops Research, 60, 1–10.

    Article  Google Scholar 

  • Windt, W. D., Aelterman, P., & Verstraete, W. (2005). Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environmental Microbiology, 7, 314–325.

    Article  PubMed  Google Scholar 

  • Yang, F. L., Li, X. G., Zhu, F., & Lei, C. L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry, 57, 10156–10162.

    Article  CAS  PubMed  Google Scholar 

  • Yasur, J., & Usha Rani, P. (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere, 124, 92–102.

    Article  CAS  PubMed  Google Scholar 

  • Yong, P., Rowson, N. A., Farr, J. P. G., Harris, I. R., & Macaskie, L. E. (2002). Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnology and Bioengineering, 80, 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Zahir, A. A., Bagavan, A., Kamaraj, C., Elango, G., & Rahuman, A. A. (2012). Efficacy of plant- mediated synthesized silver nanoparticles against Sitophilus oryzae. Journal of Biopesticides, 288, 95–102.

    Google Scholar 

  • Zhang, H. F., Wang, D., Butler, R., Campbell, N. L., Long, J., et al. (2008). Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nature Nanotechnology, 3, 506–511.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nivetha, N. et al. (2021). Microbial-Based Nanoparticles as Potential Approach of Insect Pest Management. In: Khan, M.A., Ahmad, W. (eds) Microbes for Sustainable lnsect Pest Management. Sustainability in Plant and Crop Protection, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-67231-7_7

Download citation

Publish with us

Policies and ethics