Skip to main content

Nanotechnology in Insect Pest Management

  • Chapter
  • First Online:
Molecular Approaches for Sustainable Insect Pest Management

Abstract

Nanotechnology has a wide range of applications in the stream of agriculture, medicine, pharmaceuticals, etc. In recent decades, it has become one of the most important technological interventions, especially in agriculture. The present-day agriculture is facing several bottlenecks in maintaining productivity in shrinking resources. On the other hand, crop losses from insect pests are increasing. Different chemical-based pesticides used in crop protection are directly or indirectly affecting living beings and the environment. Different ways were worked out to solve this problem, and nanotechnology is one of the most effective methods in the management of insect pests in agriculture. This technology helps in increment in crop yield along with plant protection against a variety of biotic and abiotic stresses. Different nanoparticles (NPs), such as Ag NPs, Au NPs, Mg(OH)2 NPs, magnetite NPs, and essential oil NPs, are being used for insect pest control. These nanoparticles are formulated in lipid, polymer, clay, metal, and other nanoformulations for better delivery of active ingredients. Key benefits of nanopesticides are low dose, high active ingredient loading, slow and controlled release, biodegradable, reduced losses, protection against photodegradation, etc. There is a long way to go in nanopesticide research in pest management, and different ways are looked upon for reducing off-target effects and other demerits of nanopesticides. Therefore, to sustainably protect plants from insect pests, the use of bioconjugated nanomaterial-based insecticides and pesticides could be a viable option that would be desirable in precision farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS et al (2018) Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103

    Article  CAS  PubMed  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol Appl Sci 3(3):43–55

    Google Scholar 

  • Aksakal FI, Sisman T (2020) Developmental toxicity induced by Cu(OH)2 nanopesticide in zebrafish embryos. Environ Toxicol 35(12):1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Arumugam G, Velayutham V, Shanmugavel S, Sundaram J (2016) Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci 6(3):445–450

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28(1):3–10

    Article  CAS  Google Scholar 

  • Bharani RA, Namasivayam SKR, Shankar SS (2014) Biocompatible chitosan nanoparticles incorporated pesticidal protein beauvericin (CSNp-BV) preparation for the improved pesticidal activity against major groundnut defoliator Spodoptera litura (Fab.) (Lepidoptera; Noctuidae). Int J ChemTech Res 6(12):5007–5012

    CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles-a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Boehm ALL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsulat 20:433–441

    Article  CAS  Google Scholar 

  • Brozek CK, Dincă M (2014) Cation exchange at the secondary building units of metal–organic frameworks. Chem Soc Rev 43(16):5456–5467

    Article  CAS  PubMed  Google Scholar 

  • Bulovic V, Mandell A, Perlman A (2004) Molecular Memory Device. US 20050116256, A1

    Google Scholar 

  • Buteler M, Lopez Garcia G, Stadler T (2018) Potential of nanostructured alumina for leaf cutting ants Acromyrmex lobicornis (Hymenoptera: Formicidae) management. Austral Entomol 57(3):292–296

    Article  Google Scholar 

  • Campolo O, Cherif A, Ricupero M, Siscaro G, Grissa-Lebdi K, Russo A et al (2017) Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: chemical properties and biological activity. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Cao L, Zhou Z, Niu S, Cao C, Li X, Shan Y, Huang Q (2017) Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J Agric Food Chem 66(26):6594–6603

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wang B, Feng W, Du W, Ouyang H, Chai Z, Bi X (2015) Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence. Nanotoxicology 9(3):302–312

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Yu G, He F, Zhou Q, Xiao D, Li J, Feng Y (2017) A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin. Carbohydr Polym 176:203–213

    Article  CAS  PubMed  Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano 9(12):11737–11749

    Article  CAS  PubMed  Google Scholar 

  • Fan P, Gu Z, Xu D, Xu X, Xu G (2010) Action analysis of drops of emamection-benzoate microemulsion on rice leaf. Chin J Rice Sci 24(5):503–508

    CAS  Google Scholar 

  • Fan C, Guo M, Liang Y, Dong H, Ding G, Zhang W et al (2017) Pectin-conjugated silica microcapsules as dual-responsive carriers for increasing the stability and antimicrobial efficacy of kasugamycin. Carbohydr Polym 172:322–331

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JS (2004) Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to cyromazine, abamectin, and spinosad. J Econ Entomol 97(1):112–119

    Article  CAS  PubMed  Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46(3):558–567

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen HK, Kristenson HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin-incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86:243–252

    Article  CAS  PubMed  Google Scholar 

  • Fuglie K, Gautam M, Goyal A, Maloney WF (2019) Harvesting prosperity: technology and productivity growth in agriculture. The World Bank, Washington, DC

    Google Scholar 

  • Ga’al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49–56

    Article  PubMed  CAS  Google Scholar 

  • Gaber M, Medhat W, Hany M, Saher N, Fang JY, Elzoghby A (2017) Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Control Release 254:75–91

    Article  CAS  PubMed  Google Scholar 

  • Gibney E (2015) Buckyballs in space solve 100-year-old riddle. Nat News. https://doi.org/10.1038/nature.2015.17987

  • Giessen TW, Silver PA (2016) Encapsulation as a strategy for the design of biological compartmentalization. J Mol Biol 428(5):916–927

    Article  CAS  PubMed  Google Scholar 

  • Glaser JA (2015) Microplastics in the environment. Clean Techn Environ Policy 17:1383–1391

    Article  Google Scholar 

  • González JOW, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control–characterization and biological properties. Chemosphere 100:130–138

    Article  CAS  Google Scholar 

  • Grzelak A, Guth M, Matuszczak A, Czyżewski B, Brelik A (2019) Approaching the environmental sustainable value in agriculture: how factor endowments foster the eco-efficiency. J Clean Prod 241:118304

    Article  Google Scholar 

  • Guan HN, Chi DF, Yu JC, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nanoimidacloprid. Pestic Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Guan HA, Chi DF, Yu J, Li H (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot 29:942–946

    Article  CAS  Google Scholar 

  • Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Somoghi R, Gabor AR et al (2017) Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release. Nanomaterials 7(12):443

    Article  PubMed Central  CAS  Google Scholar 

  • Jacques MT, Oliveira JL, Campos EV, Fraceto LF, Ávila DS (2017) Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf 139:245–253

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S et al (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    Article  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1813–1867

    Article  CAS  Google Scholar 

  • Kalliora C, Mamoulakis C, Vasilopoulos E, Stamatiades GA, Kalafati L, Barouni R et al (2018) Association of pesticide exposure with human congenital abnormalities. Toxicol Appl Pharmacol 346:58–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy S, Prema RS (2015) Methods of synthesis of nano particles and its applications. J ChemPharm Res 7:278–285

    CAS  Google Scholar 

  • Kantrao S, Ravindra MA, Akbar SMD, Jayanthi PK, Venkataraman A (2017) Effect of biosynthesized silver nanoparticles on growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae): interaction with midgut protease. J Asia Pac Entomol 20(2):583–589

    Article  Google Scholar 

  • Katagi T (2008) Surfactant effects on environmental behavior of pesticides. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 71–177

    Chapter  Google Scholar 

  • Kaziem AE, Gao Y, He S, Li J (2017) Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J Agric Food Chem 65(36):7854–7864

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Akram W, Shad SA (2014) Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L.(Diptera: Muscidae). Acta Trop 130:148–154

    Article  CAS  PubMed  Google Scholar 

  • Kubo-Irie M, Shimoda M, Sato A, Shida K, Yamaguchi T, Mohri H et al (2015) Effect of nanoparticles injected into larvae on spermatogenesis in the pupal testis of the sweet potato hornworm, Agrius convolvuli (L.). Fundam Toxicol Sci 2(1):1–8

    Article  CAS  Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J Control Release 63(1–2):97–105

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Dilbaghi N, Sidhu MC, Kim KH (2017) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Wissing SA, Muller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7:E10

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  PubMed  CAS  Google Scholar 

  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    Article  CAS  PubMed  Google Scholar 

  • Li T, Cipolla D, Rades T, Boyd BJ (2018) Drug nanocrystallisation within liposomes. J Control Release 288:96–110

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2012) Nanoenhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotechnol 2012:461–468

    Article  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Loughner RL, Warnock DF, Cloyd RA (2005) Resistance of greenhouse, laboratory, and native populations of western flower thrips to spinosad. HortScience 40(1):146–149

    Article  Google Scholar 

  • Ma W, Jing L, Valladares A, Mehta SL, Wang Z, Li PA, Bang JJ (2015) Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci 11(8):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP (2017) Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J Photochem Photobiol B Biol 174:306–314

    Article  CAS  Google Scholar 

  • Maliyekkal SM, Sreeprasad TS, Krishnan D, Kouser S, Mishra AK, Waghmare UV, Pradeep T (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9(2):273–283

    Article  CAS  PubMed  Google Scholar 

  • Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):1–16

    Article  Google Scholar 

  • Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M et al (2009) Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10(1):119–127

    Article  CAS  PubMed  Google Scholar 

  • Mattos BD, Rojas OJ, Magalhães WL (2017) Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. J Clean Prod 142:4206–4213

    Article  CAS  Google Scholar 

  • Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–153

    Article  CAS  Google Scholar 

  • Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X et al (2017) Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res 180(2):327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer WL, Gurman P, Stelinski LL, Elman NM (2015) Functional nano-dispensers (FNDs) for delivery of insecticides against phytopathogen vectors. Green Chem 17(8):4173–4177

    Article  CAS  Google Scholar 

  • Mommaerts V, Jodko K, Thomassen LC, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6(5):554–561

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair PMG, Park SY, Lee SW, Choi J (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101(1):31–37

    Article  PubMed  CAS  Google Scholar 

  • Nakasato DY, Pereira AE, Oliveira JL, Oliveira HC, Fraceto LF (2017) Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum. Ecotoxicol Environ Saf 142:369–374

    Article  CAS  PubMed  Google Scholar 

  • Narayanan D, Nair S, Menon D (2015) A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery. Int J Biol Macromol 74:575–584

    Article  CAS  PubMed  Google Scholar 

  • Nehra M, Dilbaghi N, Singhal NK, Hassan AA, Kim KH, Kumar S (2019) Metal organic frameworks MIL-100 (Fe) as an efficient adsorptive material for phosphate management. Environ Res 169:229–236

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Hwang IC, Park JW, Park HJ (2012a) Photoprotection for deltamethrin using chitosan coated beeswax solid lipid nanoparticles. Pest Manag Sci 68(7):1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Hwang IC, Park JW, Park HJ (2012b) Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. J Microencapsul 29(6):596–604

    Article  CAS  PubMed  Google Scholar 

  • Niculae G, Lacatusu I, Badea N, Stan R, Vasile BS, Meghea A (2014) Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations. Photochem Photobiol Sci 13(4):703–716

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Xu Z, Li L, Shao E, Chen S, Huang T, Wu S (2017) Adsorption of insecticidal crystal protein Cry11Aa onto nano-Mg(OH)2: effects on bioactivity and anti-ultraviolet ability. J Agric Food Chem 65(43):9428–9434

    Article  CAS  PubMed  Google Scholar 

  • Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25

    Article  CAS  Google Scholar 

  • Peteu SF (2010) Micro- to nano-biosensors and actuators integrated for responsive delivery of countermeasures. In: CAS 2010 Proceedings (International semiconductor conference), vol 1. IEEE, New York, pp 179–190

    Chapter  Google Scholar 

  • Pokropivny V, Lohmus R, Hussainova I, Pokropivny A, Vlassov S (2007) Introduction to nanomaterials and nanotechnology. Tartu University Press, Ukraine, pp 45–100

    Google Scholar 

  • Pompa PP, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G, Cingolani R (2011) In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4(4):405–413

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:963961

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):316–330

    Article  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Raj A, Shah P, Agrawal N (2017) Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 7(1):15617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ran Y, Liang Z, Gao C (2017) Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60(5):490–505

    Article  CAS  PubMed  Google Scholar 

  • Rani PU, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 87(1):191–200

    Article  Google Scholar 

  • Rehan A, Freed S (2014) Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Crop Prot 56:10–15

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3

    Article  Google Scholar 

  • Salma U, Chen N, Richter DL, Filson PB, Dawson-Andoh B, Matuana L, Heiden P (2010) Amphiphilic core/shell nanoparticles to reduce biocide leaching from treated wood. 1. Leaching and biological efficacy. Macromol Mater Eng 295:442–450

    CAS  Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838

    Article  CAS  PubMed  Google Scholar 

  • Scott NR (2007) Nanotechnology opportunities in agriculture and food systems. In: Biological & Environmental Engineering, Cornell University NSF Nanoscale Science & Engineering Grantees Conference December, vol 5

    Google Scholar 

  • Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9(1):17–18

    Article  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahzad K, Manzoor F (2019) Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol 44:1–11

    Article  PubMed  CAS  Google Scholar 

  • Shakil NA, Singh MK, Pandey A, Kumar J, Parmar V, Singh M, Pandey RP, Watterson AC (2010) Development of poly(ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J Macromol Sci A Pure Appl Chem 47:241–247

    Article  CAS  Google Scholar 

  • Show S (2018) Cost of cultivation and profitability of agriculture in West Bengal: a study with special reference to backward region of West Bengal. Econ Aff 63(4):1067–1075

    Google Scholar 

  • Silva S, Ribeiro TP, Santos C, Pinto D, Silva AM (2020) TiO2 nanoparticles induced sugar impairments and metabolic pathway shift towards amino acid metabolism in wheat. J Hazard Mater 399:122982

    Article  CAS  PubMed  Google Scholar 

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JM, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6(1):1–10

    Article  CAS  Google Scholar 

  • Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, Garcerá MD (2016) Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ 565:882–888

    Article  CAS  PubMed  Google Scholar 

  • Song SL, Liu XH, Jiang JH, Qian YH, Zhang N, Wu QH (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf A Physicochem Eng Aspects 350:57–62

    Article  CAS  Google Scholar 

  • Sparks TC, Dripps JE, Watson GB, Paroonagian D (2012) Resistance and cross-resistance to the spinosyns–a review and analysis. Pestic Biochem Physiol 102(1):1–10

    Article  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Article  CAS  PubMed  Google Scholar 

  • Stadler T, Lopez Garcia GP, Gitto JG, Buteler M (2017) Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectol 70(1):17–25

    Google Scholar 

  • Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35(1):1–159

    Article  CAS  Google Scholar 

  • Thornhill S, Vargyas E, Fitzgerald T, Chisholm N (2016) Household food security and biofuel feedstock production in rural Mozambique and Tanzania. Food Secur 8(5):953–971

    Article  Google Scholar 

  • Tian JH, Hu JS, Li FC, Ni M, Li YY, Wang BB, Li B (2016) Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biol Open 5(6):764–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US Environmental Protection Agency (2007) Nanotechnology White Paper. Report EPA 100/B-07/001. Washington, DC, USA. http://www.epa.gov/osainter/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf. Accessed 9 June 2014

  • Wu VM, Uskoković V (2017) Population effects of calcium phosphate nanoparticles in Drosophila melanogaster: the effects of phase composition, crystallinity, and the pathway of formation. ACS Biomater Sci Eng 3(10):2348–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Bai B, Wang H, Suo Y (2017) A near-infrared and temperature-responsive pesticide release platform through core–shell polydopamine@ PNIPAm nanocomposites. ACS Appl Mater Interfaces 9(7):6424–6432

    Article  CAS  PubMed  Google Scholar 

  • Xue B, Li FC, Tian JH, Li JX, Cheng XY, Hu JH et al (2018) Titanium nanoparticles influence the Akt/Tor signal pathway in the silkworm, Bombyx mori, silk gland. Arch Insect Biochem Physiol 99(1):e21470

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Hou H, Ren T, Xu Y, Wang Q, Xu W (2013) Utilization of environmental waste cyanobacteria as a pesticide carrier: studies on controlled release and photostability of avermectin. Colloids Surf B Biointerfaces 102:341–347

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Trickett CA, Alahmadi SB, Alshammari AS, Yaghi OM (2017) Calcium L-lactate frameworks as naturally degradable carriers for pesticides. J Am Chem Soc 139(24):8118–8121

    Article  CAS  PubMed  Google Scholar 

  • Young HP, Bailey WD, Roe RM (2003) Spinosad selection of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), and characterization of resistance. Crop Prot 22(2):265–273

    Article  Google Scholar 

  • Zeng H, Li XF, Zhang GY, Dong JF (2008) Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. J Dispers Sci Technol 29:358–361

    Article  CAS  Google Scholar 

  • Zhang HF, Wang D, Butler R, Campbell NL, Long J, Tan BE, Duncalf DJ, Foster AJ, Hopkinson A, Taylor D, Angus D, Cooper AI, Rannard SP (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3:506–511

    Article  CAS  PubMed  Google Scholar 

  • Zhao JZ, Collins HL, Li YX, Mau RFL, Thompson GD, Hertlein M et al (2006) Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. J Econ Entomol 99(1):176–181

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA (2016) Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environ Sci Technol 50(17):9697–9707

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Huang Y, Adeleye AS, Keller AA (2017) Metabolomics reveals Cu(OH)2 nanopesticide-activated anti-oxidative pathways and decreased beneficial antioxidants in spinach leaves. Environ Sci Technol 51(17):10184–10194

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Falkeborg M, Zheng Y, Yang T, Xu X (2013) Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids Surf A Physicochem Eng Asp 430:76–84

    Article  CAS  Google Scholar 

  • Zheng Y, You S, Ji C, Yin M, Yang W, Shen J (2016) Development of an amino acid-functionalized fluorescent nanocarrier to deliver a toxin to kill insect pests. Adv Mater 28(7):1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Ziaee M, Moharramipour S, Mohsenifar A (2014) MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J Pest Sci 87(4):691–699

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, UP, India, and ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, UP, India, for all the support rendered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Sahu, P.K., Tiwari, R.K. (2021). Nanotechnology in Insect Pest Management. In: Omkar (eds) Molecular Approaches for Sustainable Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3591-5_12

Download citation

Publish with us

Policies and ethics