Skip to main content

Advertisement

Log in

Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The beneficial use of silver nanoparticles (AgNPs) in agroecosystems is not fully explored with partial information available, of which most of the studies are limited to laboratory conditions and only few involve natural ecosystems. AgNPs, being the most popular metallic nanoparticles exhibiting antimicrobial property, are predominantly used for plant disease management. Owing to the ill hazards of chemically synthesized AgNPs, their biosynthesis using environment-friendly biomolecules is gaining noteworthy attention. In addition, considering the advantages of nanoformulations over biopesticides, there is no doubt that biosynthesized AgNP-based biopesticides could revolutionize the agricultural sector in the future. Though enhanced commercial use of AgNPs has generated biosafety issues in modern scenario but expecting their significant contribution towards agricultural sector, it is too early to predict the risk factor associated with their usage. To unveil the toxicity factor of AgNPs, we need to focus and understand the major interactions of AgNPs in agroecosytems. Hence, the present review highlights (i) the potential application of AgNPs in the agricultural sector particularly for plant disease management, (ii) significance of biosynthesized AgNPs using microbes and plants over their chemical synthesis, (iii) major interactions of AgNPs in agroecosystems (with soil, soil biota, and plants) with emphasis to deal with toxicity-determining factors, and (iv) identifying future research work holding promising applications of biosynthesized AgNPs in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanoparticle Res 15:1896

    Article  Google Scholar 

  • Babu K, Deepa M, Shankar S, Rai S (2008) Effect of nano-silver on cell division and mitotic chromosomes: a prefatory siren. Internet J Nanotechnol 2:2

    Google Scholar 

  • Bae S, Hwang YS, Lee YJ, Lee SK (2013) Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles. Environ Health Toxicol 28:e2013006

    Article  PubMed Central  PubMed  Google Scholar 

  • Bakshi M, Singh HB, Abhilash PC (2014) The unseen impact of nanoparticles: more or less? Curr Sci 106:350–352

    Google Scholar 

  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–1882

    Article  CAS  PubMed  Google Scholar 

  • Benoit R, Wilkinson KJ, Sauve S (2013) Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  PubMed  Google Scholar 

  • Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnsonc W, Anderson AJ (2012) Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–222

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Kim HJ, Kim JS, Kim MS, Y BD, Park HJ, Kim CY (2012) A nanosized Ag-silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis. Radiat Phys Chem 81:180–184

    Article  CAS  Google Scholar 

  • Chunjaturas W, Ferguson JA, Rattanapichai W, Sadowsky MJ, Sajjaphan K (2014) Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA. World J Microbiol Biotechnol 30:2119–2124

    Article  CAS  PubMed  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch C, Hochella MF, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8:e57189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soils Sci Soc Am J 76:891–902

    Article  CAS  Google Scholar 

  • Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463–464:120–130

    Article  PubMed  Google Scholar 

  • Coutris C, Hertel-Aas T, Lapied E, Joner EJ, Oughton DH (2012) Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 6:186–195

    Article  CAS  PubMed  Google Scholar 

  • Daniel SCGK, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscose extract for antibacterial activity against human pathogens. J Nanoparticle Res 15:1319

    Article  Google Scholar 

  • Dubey SP, Lahtinen M, Sillanpaa M (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloid Surf A 364:34–41

    Article  CAS  Google Scholar 

  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  PubMed  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nanobiotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5:8950–8957

    Article  CAS  PubMed  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc 106:170–174

    Article  CAS  PubMed  Google Scholar 

  • Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27:16–23

    Article  Google Scholar 

  • Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soils Sci 173:554–558

    Article  Google Scholar 

  • Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanoparticle Res 11:1453–1463

    Article  CAS  Google Scholar 

  • Heckmann L-H, Hovgaard M, Sutherland D, Autrup H, Besenbacher F, Scott-Fordsmand J (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20:226–233

    Article  CAS  PubMed  Google Scholar 

  • Jacobson AR, McBride MB, Baveye P, Steenhuis TS (2005) Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci Total Environ 345:191–205

    Article  CAS  PubMed  Google Scholar 

  • Johansson M, Pell M, Stenström J (1998) Kinetics of substrate induced respiration (SIR) and denitrification: applications to a soil amended with silver. Ambio 27:40–44

    Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj C, Jagan G, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012a) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri L. Wettst. plant growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012b) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011a) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011b) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kamala-Kannan S, Oh BT (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131

    Article  CAS  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Cheng Y, Bobcombe Y, Jones KL, Liu J, Wiesner MR (2011) Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ Sci Technol 45:5209–5215

    Article  CAS  PubMed  Google Scholar 

  • Liu J, He S, Zhang Z, Cao J, Lv P, He S, Cheng G, Joyce DC (2009) Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol Technol 54:59–62

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Mala R, Arunachalam P, Sivsankari M (2012) Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. J Cell Tissue Res 12:3249–3254

    CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  PubMed  Google Scholar 

  • Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Mazumdar H, Ahmed G (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Tech Res 3:1494–1500

    CAS  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  PubMed Central  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Wu Y, Cao B (2014) Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol 98:8457–8468

    Article  CAS  PubMed  Google Scholar 

  • Moussa SH, Tayel AA, Alsohim AS, Abdallah RR (2013) Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J Food Sci 78(10):M1589–M1594

    CAS  PubMed  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  PubMed  Google Scholar 

  • NAAS (2013) Nanotechnology in agriculture: scope and current relevance. Policy paper no. 63. National Academy of Agricultural Sciences, New Delhi, p 20

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Oromieh AG (2011) Evaluating solubility, aggregation and sorption of nanosilver particles and silver ions in soils. Master’s Thesis in Environmental Science, Swedish University of Agricultural Sciences, Department of Soil and Environment, Sweden

  • Park HJ, Kim SH, Kim SJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patlolla AK, Berry A, May LB, Tchounwou PB (2012) Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. Int J Environ Res Public Health 9:1649–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014). Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. The Scientific World Journal 2014: Article ID 829894, 9 pages

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ion on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197

    Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley, Weinheim, pp 126–135

    Google Scholar 

  • Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001

    Article  Google Scholar 

  • Shahrokh S, Hosseinkhani B, Emtiazi G (2014) The impact of nano-silver on bacterial aerobic nitrate reductase. J Bioproc Biotechnol 4:162. doi:10.4172/2155-9821.1000162

    Google Scholar 

  • Shahrokh S, Emtiazi G (2009) Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. Eur J Biol Sci 1:28–31

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Shin Y-J, Kwak JI, An Y-J (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529

    Article  CAS  PubMed  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soils Sci Soc Am J 75:365–377

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Thio BJR, Montes MO, Mahmoud MA, Lee DW, Zhou D, Keller AA (2012) Mobility of capped silver nanoparticles under environmentally relevant conditions. Environ Sci Technol 46:6985–6991

    Article  CAS  PubMed  Google Scholar 

  • Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270:189–194

    Article  PubMed  Google Scholar 

  • Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  PubMed  Google Scholar 

  • VandeVoort AR, Arai Y (2012) Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol 8:358–364

    Article  CAS  Google Scholar 

  • VandeVoort AR, Arai Y, Sparks DL (2012) Environmental chemistry of silver in soils: current and historic persective. In: Advances in agronomy, vol 114. Elsevier Academic Press Inc., San Diego, pp 59–90

  • Vannini C, Domingoa G, Onellib E, Mattiac FD, Bruni I, Marsonia M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8(7):e68752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velmurugan P, Lee SM, Iydroose M, Lee KJ, Oh BT (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97:361–368

    Article  CAS  PubMed  Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013a) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanoparticle Res 15:1417

    Article  Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ (2013b) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449

    Article  CAS  PubMed  Google Scholar 

  • Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46:12687–12696

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Quensen J, Mathieu J, Wang Q, Wang J, Lia M, Tiedje JM, Alvarez PJJ (2014) Pyrosequencing reveals higher impact of silver nanoparticles than Ag+ on the microbial community structure of activated sludge. Water Res 48:317–325

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang J, Xiu Z, Alvarez PJJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32:1488–1494

    CAS  PubMed  Google Scholar 

  • Yasur J, Rani P (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648

    Article  CAS  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):e47674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Liang Z, Hu Z (2014) Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system. Water Res 50:350–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SM is thankful to University Grants Commission (UGC), New Delhi, India, for the grant of Dr. D. S. Kothari Postdoctoral Fellowship [No. F.4-2/2006(BSR)/13-616/2012(BSR)]. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Singh, H.B. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99, 1097–1107 (2015). https://doi.org/10.1007/s00253-014-6296-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6296-0

Keywords

Navigation