Skip to main content

Progress on the Bacterium Bacillus thuringiensis and Its Application Within the Biological Control Program in Iran

  • Chapter
  • First Online:
Biological Control of Insect and Mite Pests in Iran

Part of the book series: Progress in Biological Control ((PIBC,volume 18))

Abstract

The efficient, environmentally safe and economic control of insect pests has always been of concern to scientists. Amongst the different insect management practices, microbial control, particularly bacteria, has gained more academic and commercial attention. Considerable interest has been directed toward Bacillus thuringiensis (Bt), as a Gram-positive, spore-forming bacterium, producing crystal proteins toxic to different insect orders. B. thuringiensis is the most widely used and well-studied entomopathogenic bacterium worldwide, as well as in Iran. A long history of studies has been performed in Iran to isolate, characterize, mass-produce local Iranian Bt strains and evaluate their field application. The findings of these studies show that Bt is predominantly isolated from diverse ecological habitats in different geographical regions of Iran. In addition, several studies have focused on fermentation, formulation optimization and field trials to develop Bt products for application in the biological control programs. Moreover, some studies have been dedicated to transfer Bt cry genes into different crops to enhance pest resistance in such plants. The purpose of the present chapter is to review recent advances in the development of biocontrol agents based on the entomopathogenic bacterium in Iran. Therefore, effort has been made to discuss the most significant Iranian researches based on the utilization of Bt in biological control, mass production of Bt-based bio-insecticides, and development of Bt crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedi Z, Saber M, Vojoudi S, Mahdavi V, Parsaeyan E (2014) Acute, sublethal, and ombination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. J Insect Sci 14:30–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Adjalle KD, Brar SK, Verma M, Tyag RD, Valero JR, Surampalli RY (2007) Ultrafiltration recovery of entomotoxicity from supernatant of Bacillus thuringiensis fermented wastewater and wastewater sludge. Process Biochem 42:1302–1311

    Article  CAS  Google Scholar 

  • Alinia F, Ghareyazie B, Rubia L, Bennett J, Cohen MB (2000) Effect of plant age, larval stage, and fertilizer treatment on resistance of a cry1Ab-trasformed aromatic rice to Lepidopterous stem borers and foliage feeders. J Econ Entomol 93:484–493

    Article  CAS  PubMed  Google Scholar 

  • Allahyari R, Aramideh S, Safaralizadeh MS, Rezapanah M, Michaud JP (2019) Synergy between parasitoids and pathogens for biological control of Helicoverpa armigera in chickpea. Entomol Exp Appl 168:1–6

    Google Scholar 

  • Alsaedi G, Ashouri A, Talaei-Hassanloui R (2017) Assessment of two Trichogramma species with Bacillus thuringiensis var. kurstaki for the control of the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) in Iran. Open J Ecol 7:112–124

    Article  Google Scholar 

  • Amiri-Besheli B (2008) Efficacy of Bacillus thuringiensis, mineral oil, insecticidal emulsion and insecticidal gel against Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Plant Prot Sci 44:68–73

    Article  CAS  Google Scholar 

  • Amizadeh M, Hejazi MJ, Niknam G, Azanlou M (2015) Compatibility and interaction between Bacillus thuringiensis and certain insecticides: perspective in management of Tuta absoluta (Lepidoptera: Gelechiidae). Biocontrol Sci Tech 25:671–684

    Article  Google Scholar 

  • Aramideh S, Safaralizadeh MH, Pourmirza AA, Rezazadeh Bari M, Keshavarzi M, Mohseniazar M (2010) Characterization and pathogenic evaluation of Bacillus thuringiensis isolates from West Azerbaijan province, Iran. Afr J Microbiol Res 12:1224–1231

    Google Scholar 

  • Azimi S, Ashouri A, Tohidfar M, Talaei-Hassanlouei R (2012) Effect of Iranian Bt cotton on Encarsia formosa, parasitoid of Bemisia tabaci. Int Res J Basic Appl Sci 3:2248–2251

    CAS  Google Scholar 

  • Baghaee RS, Moghaddam EM (2015) Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Prot Sci 51:46–51

    Article  Google Scholar 

  • Baumann P, Clark MA, Baumann L, Broadwell AH (1991) Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol Rev 55:425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bavykin SG, Lysov YP, Zakhariev V, Kelly JJ, Jackman J, Stahl DA, Cherni A (2004) Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol 42:3711–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bel Y, Granero F, Alberola TM, Sebastian MJM, Ferre J (1997) Distribution, frequency and diversity of Bacillus thuringiensis in olive tree environments in Spain. Syst Appl Microbiol 20:652–658

    Article  Google Scholar 

  • Berliner E (1915) Uber die schlaffsucht der mehlmottenraupe (Ephestia kuhniella, Zell.) und ihren erreger B. thuringiensis n. sp. Z. Angew Entomol 2:29–56

    Article  Google Scholar 

  • Boonmee K, Thammasittirong SN, Thammasittirong A (2019) Molecular characterization of lepidopteran-specific genes in Bacillus thuringiensis strains from Thailand. 3. Biotech 9:117–128

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valero JR, Surampalli RY (2006a) Efficient centrifugation recovery of Bacillus thuringiensis biopesticides from fermented wastewater and wastewater sludge. Water Res 40:1310–1320

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valero JR (2006b) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Peña G, Nuñez-Valdez ME, Soberón M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57:3057–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Ghosh TS, Das S (2010) Virulence of Bacillus cereus as natural facultative pathogen of Anopheles subpictus Grassi (Diptera: Culicidae) larvae in submerged rice-fields and shallow ponds. Afr J Biotechnol 9:6983–6987

    Google Scholar 

  • Dastan S, Ghareyazie B, Pishgar AH (2019) Environmental impacts of transgenic Bt rice and non-Bt rice cultivars in northern Iran. Biocatal Agric Biotechnol 20:101160

    Article  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  PubMed  CAS  Google Scholar 

  • Deilamy A, Abbasipour H (2013) Comparative bioassay of different isolates of Bacillus thuringiensis subsp. kurstaki on the third larval instars of diamondback moth, Plutella xylostella (L.) (Lep.: Plutellidae). Arch Phytopathol Plant Protect 46:1480–1487

    Article  Google Scholar 

  • Djenane Z, Nateche F, Amziane M, Gomis-Cebolla J, El-Aichar F, Khorf H, Ferré J (2017) Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins 9:139

    Article  PubMed Central  CAS  Google Scholar 

  • Dulmage HT, Correa JA, Gallegos-Morales G (1990) Potential for improved formulations of Bacillus thuringiensis var israelensis through standardization and fermentation development. In: De Barjac H, Sutherland DJ (eds) Bacterial control of mosquitoes and blackflies: biochemistry, genetics and applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Rugers University Press, New Burnswick, pp 110–133

    Chapter  Google Scholar 

  • Farkas J, Sebesta K, Horská K, Samek Z, Dolejs L, Sorm F (1976) Structure of thuringiensin, the thermostable exotoxin from Bacillus thuringiensis. Collect Czechoslov Chem Commun 42:909–929

    Article  Google Scholar 

  • Federici BA, Park HW, Sakano Y (2006) Insecticidal protein crystals of Bacillus thuringiensis. In: Shively JM (ed) Inclusions in prokaryotes, Microbiology monographs, vol 1. Springer, Berlin/Heidelberg, pp 195–123

    Chapter  Google Scholar 

  • Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543

    Article  Google Scholar 

  • Ferrandis MD, Juárez-Pérez VM, Frutos R, Bel Y, Ferré J (1999) Distribution of cryl, cryll and cryV genes within Bacillus thuringiensis isolates from Spain. Syst Appl Microbiol 22:179–185

    Article  CAS  Google Scholar 

  • Ferré J, Van Rie J, MacIntoch SC (2008) Insecticidal genetically modified crops and insect resistance management (IRM). In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant geneticaly modified crops within IPM programs. Springer Science, NewYork, pp 41–85

    Chapter  Google Scholar 

  • Frye RD, Scholl CG, Scholz EW, Funke BR (1973) Effect of weather on a microbial insecticide. J Invertebr Pathol 22:50–54

    Article  Google Scholar 

  • Gezelbash Z, Vatandoost H, Abai MR, Raeisi A, Rassi Y, Hanafi-bojd AA, Jabbari H, Nikpoor F (2014) Laboratory and field evalustion of two formulations of Bacillus thuringiensis M-H-14 against mosquito larvae in the Islamic Republic of Iran, 2012. East Mediterr Health J 4:229–235

    Article  Google Scholar 

  • Ghareyazie B, Alinia F, Menguito CA, Rubia LG, De Palma JM, Liwanag EA, Cohen MB, Khush GS, Bennett J (1997) Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cry1Ab gene. Mol Breed 3:401–414

    Article  CAS  Google Scholar 

  • Ghassemi-Kahrizeh A, Mohammadzadeh S, Miandoab MP (2014) The effect of Bacillus thuringiensis var. tenebrionis on Colorado Potato Beetle larvae, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) and synergistic role of henna and cinnamon in increasing its efficiency. Paper presented at the international conference on biopesticides, Antalya, Turkey, 19–25 Octuber 2014

    Google Scholar 

  • Hajialiloo S, Moravvej G, Sadeghi H (2016) Comparative study on the efficeincy of Bacillus thuuringiensisi subsp. tenebrionis and a neem based insecticide on adults and larvae of Xanthogaleruca luteola (Mull) (Col.: Chrysomelidae) in laboratory conditions. J Entomol Zool Stud 4:1122–1125

    Google Scholar 

  • Hanafi-Bojd AA, Vatandoost H, Jafari R (2006) Susceptibility status of Anopheles dthali and An. fluviatilis to commonly used larvicides in an endemic focus of malaria, southern Iran. J Vect Borne Dis 43:34–38

    CAS  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseinizadeh A, Aramideh A (2014) Effect of Bacillus thuringiensis var. kurstaki and Spinosad on beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) neonates in laboratory conditions. Paper presented at the international conference on biopesticides, Antalya, Turkey, 19–25 Octuber 2014

    Google Scholar 

  • Ishiwata S (1901) On a kind of flacherie (sotto disease). Dainihon Sanshi Keiho 114:1–5

    Google Scholar 

  • Jafari M, Valizadeh M, Malboobi MA, Ghareyazie B, Mohammadi SA, Mosavi M, Norouzi P (2007) Agrobacterium-mediated transformation of suger beet (Beta vulgaris L.) with cry1Ab gene and development of resistant sugar beet plants against lepidopteran pests. Paper presented at the 5th National Biotechnology Congress of Iran, Tehran, 24–26 November 2007

    Google Scholar 

  • Jafari M, Norouzi P, Malboobi MA, Ghareyazie B, Valizadeh M, Mohammadi SA, Mosavi M (2009a) Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene. Euphytica 165:333–344

    Article  CAS  Google Scholar 

  • Jafari M, Norouzi P, Malboobi MA, Ghareyazie B, Valizadeh M, Mohammadi SA (2009b) Transformation of cry1Ab gene to sugar beet (Beta vulgaris L.) by Agrobaterium and development of resistant plants against Spodoptera littoralis. J Sugar Beet Res 24:37–55. (In Persian)

    Google Scholar 

  • Jalali E, Maghsoudi S, Noroozian E (2020) A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet. Sci Rep 10:426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James C (2007) Global status of commercialized Biotech/GM Crops: 2007. ISAAA Brief No. 37. ISAAA, Ithaca, NY

    Google Scholar 

  • Juárez-Pérez VM, Ferrandis MD, Frutos R (1997) PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl Environ Microbiol 63:2997–3002

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurat-Fuentes JL, Jackson TA (2012) Bacterial entomopathogens. In: Vega FE, Harry KK (eds) Insect pathology, 2nd edn. Academic Press, pp 265–349

    Google Scholar 

  • Kalantari M, Marzban R, Imani S, Askari H (2014) Effects of Bacillus thuringiensis isolates and single nuclear polyhedrosis virus in combination and alone on Helicoverpa armigera. Arch Phytopathol Plant Protect 47:42–50

    Article  Google Scholar 

  • Karimi J, Dara SK, Arthurs S (2019) Microbial insecticides in Iran: history, current status, challenges and perspective. J Invertebr Pathol 165:67–73

    Article  PubMed  Google Scholar 

  • Keshavarzi M (2008) Isolation, identification and differentiation of local B. thuringiensis strains. J Agric Sci Technol 10:493–499

    Google Scholar 

  • Keshavarzi M, Salimi H, Mirzanamadi F (2005) Biochemical and physical requirements of Bacillus thuringiensisi subsp. kurstaki for high biomass yield production. J Agric Sci Technol 7:41–47

    Google Scholar 

  • Khojand S, Keshavarzi M, Zargari K, Abdolahi H, Rouzbeh F (2013) Presence of multiple cry genes in Bacillus thuringiensis isolated from dead cotton bollworm Heliothis armigera. J Agric Sci Technol 15:1285–1292

    CAS  Google Scholar 

  • Khorramnejad A, Talaei-Hassanloui R, Hosseininaveh V, Bel Y, Escriche B (2018) Characterization of new Bacillus thuringiensis strains from Iran, based on cytocidal and insecticidal activity, proteomic analysis and gene content. BioControl 63:807–818

    Article  CAS  Google Scholar 

  • Khorramnejad A, Domínguez-Arrizabalaga M, Caballero P, Escriche B, Bel Y (2020) Study of the Bacillus thuringiensis Cry1Ia protein oligomerization promoted by midgut brush border membrane vesicles of Lepidopteran and Coleopteran insects, or cultured insect cells. Toxins 12:133

    Article  CAS  PubMed Central  Google Scholar 

  • Kiani G, Nematzadeh GA, Ghareyazie B, Sattari M (2009a) Comparing the agronomic and grain quality characteristics of transgenic rice lines expressing cry1Abvs. Non-transgenic controls. Asian J Plant Sci 8:64–68

    Article  Google Scholar 

  • Kiani G, Nematzadeh GA, Ghareyazie B, Sattari M (2009b) Genetic analysis of cry1Ab gene in segregating populations of rice. Afr J Biotechnol 8:3703–3707

    CAS  Google Scholar 

  • Kiani G, Nematzadeh GA, Ghareyazie B, Sattari M (2012) Pyramiding of cry1Ab and fgr genes in two Iranian rice cultivars Neda and Nemat. J Agric Sci Technol 14:1087–1092

    CAS  Google Scholar 

  • Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felsot AS, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unsworth J, Wauchope RD, Wong SS (2007) Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci 63:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Lambert B, Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis: facts and mysteries about a successful biopesticide. Bioscience 42:112–122

    Article  Google Scholar 

  • Lecadet MM, Frachn E, Casmao V, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Article  CAS  PubMed  Google Scholar 

  • Letourneau DK, Robinson GS, Hagen JA (2003) Bt crops: predicting effects of escaped transgenes on the fitness of wild plants and their herbivores. Environ Biosaf Res 2:219–246

    Article  Google Scholar 

  • Levinson BL, Kaysan KJ, Chiu SS, Currier TC, Gonzalez JM (1990) Identification of beta-exotoxin production, plasmids encoding beta-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography. J Bacteriol 172:3172–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YT, Sui MJ, Ji DD, Wu IH, Chou CC, Chen CC (1993) Protection from ultraviolet irradiation by melanin of mosquitocidal activity of Bacillus thuringiensis var. israelensis. J Invertebr Pathol 62:131–136

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ruan L, Peng D, Li L, Sun M, Yu Z (2014) Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insets. Toxins 6:2229–2238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magholli Z, Marzban R, Abbasipour H, Shikhi A, Karimi J (2013) Interaction effects of Bacillus thuringiensis subsp. kurstaki and single nuclear polyhedrosis virus on Plutella xylostella. J Plant Dis Protect 120:173–178

    Article  Google Scholar 

  • Maghsoudi S, Jalali E (2017) Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Sci Rep 7:11019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin PAW, Haransky EB, Travers RS, Reichelderfer CF (1985) Rapid biochemical testing of large numbers of Bacillus thuringiensis isolates using agar dots. BioTechniques 3:386–392

    Google Scholar 

  • Marzban R (2012a) Investigation on the suitable isolate and medium for production of Bacillus thuringiensis. J Biopest 5:144–147

    Google Scholar 

  • Marzban R (2012b) Midgut pH profile and energy differences in lipid, protein and glycogen metabolism of Bacillus thuringiensis Cry1Ac toxin and cypovirus-infected Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J Entomol Res Soc 14:45–53

    Google Scholar 

  • Marzban R, He Q, Liu X, Zhang Q (2009) Effects of Bacillus thuringiensis toxin Cry1Ac and cytoplasmic polyhedrosis virus of Helicoverpa armigera (Hübner) (HaCPV) on cotton bollworm (Lepidoptera: Noctuidae). J Invertebr Pathol 101:71–76

    Article  CAS  PubMed  Google Scholar 

  • Marzban R, Saberi F, Shirazi MMA (2014) Separation of Bacillus thuringiensis from fermentation broth using microfiltration: optimization approach. Res J Biotechnol 9:33–37

    Google Scholar 

  • Marzban R, Saberi F, Shirazi MMA (2016) Microfiltration and ultrafiltration of Bacillus thuringiensis fermentation broth: membrane performance and sporecrystal recovery approaches. Braz J Chem Eng 33:783–791

    Article  CAS  Google Scholar 

  • McClintock J, Schaffer CR, Sjoblad RD (1995) A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides. J Pest Sci 45:95–105

    Article  CAS  Google Scholar 

  • McGuire MR, Behle RW, Goebel HN, Fry TC (2000) Calibration of a sunlight simulator for determining solar stability of Bacillus thuringiensis and Anagrapha falcifera nuclear polyhedrovirus. Biol Control 29:1070–1074

    Google Scholar 

  • Meadows MP (1993) Bacillus thuringiensis in the environment: ecology and risk assessment. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley & Sons Ltd, West Sussex, pp 193–220

    Google Scholar 

  • Moazami N (1997) Large scale production of slow release formation of Bacillus thuringiensis M-H-4 in Qeshm Island. Proceeding of Second Technical Meeting and The First Regional Conference on Combating Malaria IROST, UNDP/UNESCO, 4–8 December 1995

    Google Scholar 

  • Moazami N (2004) The role of Bacillus thuringiensis H-14 in malaria control. Paper presented at the 4th intercountry meeting of national malaria programme manages. Isfahan, Iran, 22–25 May 2004

    Google Scholar 

  • Moazami N (2005) Controlling malaria, the vampire of the technological age. A World Sci 3:16–19

    Google Scholar 

  • Moazamian E, Bahador N, Rasouli M, Azarpira N (2016) Diversity, identification and biotyping of Bacillus thuringiensis strains from soil samples in Iran. Nat Environ Pollut Technol 15:947–950

    CAS  Google Scholar 

  • Moazamian E, Bahador N, Azarpira N, Rasouli M (2018) Anti-cancer parasporin toxins of new Bacillus thuringiensis against human colon (HCT-116) and blood (CCRF-CEM) cancer cell lines. Curr Microbiol 75:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Moosavi MR, Zare R (2016) Present status and the future prospects of microbial biopesticides in Iran. In: Singh HB, Sarma B, Keswani C (eds) Agriculturally important microorganisms. Springer, Singapore, pp 293–305

    Chapter  Google Scholar 

  • Mousavi A, Malboobi MA, Esmailzadeh NS (2007) Development of agricultural biotechnology and biosafety regulations used to assess the safety of genetically modified crops in Iran. J AOAC Int 90:1513–1516

    Article  CAS  PubMed  Google Scholar 

  • Moxtarnejad E, Safaralizade MH, Aramideh S (2014) The protective material effect in combination with Bacillus thuringiensis var. kurstaki (Btk) against UV for control Pieris brassicae L. (Lep.: Pieridae). Arch Phytopathol Plant Protect 47:2414–2420

    Article  Google Scholar 

  • Naseri Rad S, Shirazi MMA, Kargari A, Marzban R (2016) Application of membrane separation technology in downstream processing of Bacillus thuringiensis biopesticide: a review. J Membr Sci Res 2:66–77

    Google Scholar 

  • Nazarian A, Jahangiri R, Salehi Jouzani G, Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M, Alamisaeid K (2009) Coleopteran-specific and putative novel cry genes in Iranian native baciilus thuringiensis collection. J Invertebr Pathol 102:101–109

    Article  CAS  PubMed  Google Scholar 

  • Nazarpour L, Yarahmadi F, Rajabpour A, Saber M (2014) Effects of some bio-insectcides against Tuta absoluta Meyrick in tomato fields. Paper presented at the international conference on biopesticides Antalya, Turkey, 19–25 October 2014

    Google Scholar 

  • Norouzi P, Jafari M, Malboobi MA, Ghareyazie B, Rajabi A (2011) Inheritance of transgene and resistance to a Lepidopteran pest, Spodoptera littoralis, in treansgenic sugar beet plants harboring a synthetic cry1Ab gene. Trangenic Plant J 5:62–66

    Google Scholar 

  • Nouri-Ghnbalani G, Borzoui E, Abdolmaleki A, Abedi Z, Kamita SG (2016) Individual and combined effects of Bacillus thuringiensis and Azadirakhtin on Plodia interpunctella Hübner (Lepidoptera: Pyralidae). J Insect Sci 16:1–8

    CAS  Google Scholar 

  • Ohba M, Mizuki E, Uemori A (2009) Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res 29:427–433

    CAS  PubMed  Google Scholar 

  • Pinos D, Hernández-Martínez P (2019) Modo de acción de las proteínas insecticidas de Bacillus thuringiensis. In: Tena A, Bielza P, Ferré J (eds) Boletín de la Sociedad Española de Entomología Aplicada. SEEA, Madrid, pp 26–30

    Google Scholar 

  • Ramezani Moghaddam M, Moghaddam EM, Ravari SB, Rouhani H (2014) The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol Sci Tech 24:279–290

    Article  Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6:352–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehi Jouzani G (2012) Risk assessment of GM crops; challenges in regulations and science. Biosafety 1:e113. https://doi.org/10.4172/2167-0331.1000e113

    Article  Google Scholar 

  • Salehi Jouzani G, Komakhin RA, Piruzian ES (2005) Comparative study of the expression of the native, modified, and hybrid cry3a genes of Bacillus thuringiensis in prokaryotic and eukaryotic cells. Russ J Genet 41:116–121

    Article  CAS  Google Scholar 

  • Salehi Jouzani G, Goldenkova IV, Piruzian ES (2008a) Expression of hybrid cry3aM-licBM2 genes in transgenic potatoes (Solanum tuberosum). Plant Cell Tissue Organ Cult 92:321–325

    Article  CAS  Google Scholar 

  • Salehi Jouzani G, Pourjan Abad A, Seifinejad A, Marzban R, Kariman K, Maleki B (2008b) Distribution and diversity of dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol 35:83–94

    Article  CAS  Google Scholar 

  • Salehi Jouzani G, Seifinejad A, Saeedizadeh A, Nazarian A, Yousefloo M, Soheilivand S, Mousivand M, Jahangiri R, Yazdani M, Maali Amiri R, Akbar S (2008c) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Can J Microbiol 54:812–822

    Article  CAS  PubMed  Google Scholar 

  • Salehi Jouzani GH, Moradali MF, Morsali H, et al. (2011) Isolation and identification of native Bacillus thuringiensis isolates and production of biological pesticide based on effective strains, Final report of the megaproject NO: 1-013-140000-05-8512-00000, Agricultural Research, Education and Extension Organization (AREEO)

    Google Scholar 

  • Salehi Jouzani G, Abbasalizadeh A, Moradali MF, Morsali H (2015a) Development of a cost effective bioprocess for production of an Iranian anti-coleopteran Bacillus thuringiensis strain. J Agric Sci Technol 17:1183–1196

    Google Scholar 

  • Salehi Jouzani G, Moradali MF, Abbasalizadeh A (2015b) Optimization of economic medium and fermentation process of a lepidopteran active native Bacillus thuringiensis strain to enhance spore/crystal production. J Agric Biotechnol 7:93–113. (In Persian)

    Google Scholar 

  • Salehi Jouzani G, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101:2691–2711

    Article  CAS  Google Scholar 

  • Sarfraz M, Keddie AB, Dosdall LM (2005) Biological control of the diamondback moth, Plutella xylostella: a review. Biocon Sci Technol 15:763–789

    Article  Google Scholar 

  • Sarrafzadeh MH (2012) Nutritional requirements of Bacillus thuringiensis during different phases of growth, sporulation and germination evaluated by Plackett-Burman method. Iran J Chem Chem Eng 31:131–136

    CAS  Google Scholar 

  • Sarrafzadeh MH, Navarro JM (2006) The effect of oxygen on the sporulation, δ-endotoxin synthesis and toxicity of Bacillus thuringiensis H14. World J Microbiol Biotechnol 22:305–310

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedaratian A, Fathipour Y, Talaei-Hassanloui R, Jurat-Fuentes JL (2013) Fitness costs of sublethal exposures to Bacillus thuringiensis in Helicoverpa armigera: a carryover study on offspring. J Appl Entomol 137:540–549

    Article  Google Scholar 

  • Sedaratian A, Fathipour Y, Talaei-Hassanloui R (2014) Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. BioControl 59:89–98

    Article  Google Scholar 

  • Seifinejad A, Salehi Jouzani G, Hosseinzadeh A, Abdmishani C (2008) Characterization of Lepidopter-active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biol Control 44:216–226

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Sushil SN, Kundu S, Bhatt JC, Gupta HS (2007) Characterization and phylogenetic analysis of an entomopathogenic Bacillus cereus strain WGPSB-2 (MTCC 7182) isolated from white grub, Anomala dimidiata (Coleoptera: Scarabaeidae). Biocontrol Sci Tech 17:525–534

    Article  Google Scholar 

  • Senfi F, Safaralizadeh MH, Safavi SA, Aramideh S (2012) Isolation and characterization of native Bacillus thuringiensis strains from apple orchards at Urmia, Iran and their toxicity to lepidopteran pests, Ephestia kuehniella Zeller and Pieris brassicae L. Egypt J Biol Pest Co 22:33–37

    Google Scholar 

  • Shahi M, Hanafi-Bojd AA, Vatandoost H, Soleimani Ahmadi M (2013) Susceptibility status of Anopheles stephensi Liston the main malaria vector, to deltamethrin and Bacillus thuringiensis in the endemic malarious area of Hormozgan province, southern Iran. J Kerman Univ Med Sci 20:87–95

    Google Scholar 

  • Shojaaddini M, Moharramipour S, Khodabandeh M, Talebi AA (2010) Development of a cost effective medium for production of Bacillus thuringiensis bioinsecticide using food barley. J Plant Prot Res 50:9–14

    Article  CAS  Google Scholar 

  • Shojaaddini M, López MJ, Moharramipour S, Khodabandeh M, Talebi AA, Vilanova C, Latorre A, Porcar M (2012) A Bacillus thuringiensis strain producing epizootics on Plodia interpunctella: a case study. J Stored Prod Res 48:52–60

    Article  Google Scholar 

  • Smagghe G, Goodman CL, Stanley D (2009) Insect cell culture and applications to research and management. In Vitro Cell Dev Biol-Anim 45:93–105

    Article  PubMed  Google Scholar 

  • Soberón M, Portugal LC, Garcia-Gómez BI, Sánchez J, Onofre J, Gómez I, Pacheco S, Bravo A (2018) Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Insect Biochem Mol Biol 93:66–78

    Article  PubMed  CAS  Google Scholar 

  • Strongman DB, Eveleigh ES, van Frankenhuyzen K, Royama T (1997) The occurrence of two types of entomopathogenic bacilli in natural populations of the spruce budworm, Choristoneura fumiferana. Can J For Res 27:1922–1927

    Article  Google Scholar 

  • Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83:1671–1676

    Article  Google Scholar 

  • Talaei-Hassanloui R, Bakhshaei R, Hosseininaveh V, Khorramnejad A (2014) Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. kurstaki. Front Physiol 4:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorne CB (1993) Bacillus anthracis. In: Sonenshein AL, Hoch JA, Losick R (ed) Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, DC p 113–124

    Google Scholar 

  • Tohidfar M, Salehi Jouzani G (2008) Genetic engineering of crop plants for enhanced resistance to insects and diseases in Iran. Transgenic Plant J 2:151–156

    Google Scholar 

  • Tohidfar M, Ghareyazie B, Mohammadi M (2005) Agrobacterium-mediated transformation of cotton using a chitinase gene. Plant Cell Tiss Org Cult 83:83–96

    Article  CAS  Google Scholar 

  • Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S, Golabchian R (2008) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran J Biotechnol 6:164–173

    CAS  Google Scholar 

  • Uribe D, Martinez W, Cerón J (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82:119–127

    Article  CAS  PubMed  Google Scholar 

  • Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12

    Google Scholar 

  • van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  PubMed  CAS  Google Scholar 

  • Zare N, Valizadeh M, Malboobi M, Tohifar M (2008) Regeneration of Iranian alfalfa by somatic embryo and sheep apex. In: Proceeding of the 2nd National Congress of Cellular and Molecular Biology, Kermanshah, Iran, 29–30 January 2008

    Google Scholar 

  • Zareie R, Shayesteh N, Pourmirza AA (2003) Starch-encapsulating of Bacillus thuringiensis Berliner containning different additives and evaluation of their efficiency. Iranian J Agric Sci 34:854–862. (In Persian)

    Google Scholar 

Download references

Acknowledgement

We are deeply grateful to Dr. Mark Goettel for his valuable comments and improvement of the text. Ayda Khorramnejad acknowledges Dr. Yolanda Bel, Dr. Baltasar Escriche and Dr. Patricia Hernández-Martínez for their supports and thoughtful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayda Khorramnejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khorramnejad, A., Karimi, J., Jouzani, G.S. (2021). Progress on the Bacterium Bacillus thuringiensis and Its Application Within the Biological Control Program in Iran. In: Karimi, J., Madadi, H. (eds) Biological Control of Insect and Mite Pests in Iran. Progress in Biological Control, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-63990-7_10

Download citation

Publish with us

Policies and ethics