Skip to main content
Log in

Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

One hundred and twenty-eight Bacillus thuringiensis isolates from fields of different ecological regions of Iran were collected to study the distribution and diversity of Dipteran-specific cry and cyt genes. The percentage of samples with Bt showed significant differences between different regions and also between different fields. The most Bt frequency was observed in the soil samples collected from Caspianic zone (7%) and soils of cotton (17%). Characterization of isolates was based on morphological characteristics of crystals, plasmid profiles and protein band patterns as well as PCR analysis using general and specific primers for 22 different cry and cyt genes encoding proteins active against mosquitoes. Thirty-eight different cry gene profiles were detected in this collection. Several of them were found to be different from all previously published profiles and none of the previous researches reported these numbers of profiles. Strains containing cry2-type genes were the most abundant and represent 57.1% of the isolates. Strains harboring cry24 and cry10 genes were also highly abundant (38.7 and 32.8%, respectively). cry11, cry4, cry17, cry19, cry21, cry29, cyt1, and cry9 genes were less abundant, found in 25.7, 14.3, 11.4, 1.4, 4.3, 1.4, and 10% of the strains, respectively. Among the cry2 gene containing isolates, 37.5% strains harbored cry2Aa, 55% cry2Ab, 2.5% cry2Ac, and 5% other or novel cry2-type genes. Among the cry4 gene containing isolates, 0% strains harbored cry4A, 60% cry4B, and 40% cry4C, cry4D or novel cry4 type genes. Finally, based on crystal morphology, protein patterns and PCR, 21 strains were selected as potentially high Dipteran-active for bioassays. Also our results showed that some of the isolates may harbor minimum a putative novel cry gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anwar Hossain M, Ahmad S, Haque S (1997) Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J Invertebr Pathol 70:221–225

    Article  Google Scholar 

  2. Baird JK (2000) Resurgent malaria at the millennium: control strategies in crisis. Drugs 59:719–743

    Article  CAS  Google Scholar 

  3. Barloy F, Lecadet MM, Delécluse A (1998) Distribution of clostridial cry-like genes among Bacillus thuringiensis and clostridium strains. Curr Microbiol 36(4):232–237

    Article  CAS  Google Scholar 

  4. Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry-group genes from field collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883–4890

    CAS  Google Scholar 

  5. Ben-Dov E, Manasherob R, Zaritsky RA, Barak Z, Margalith Y (2001) PCR analysis of cry7 genes in Bacillus thuringiensis by the five conserved blocks of toxins. Curr Microbiol 42:96–99

    CAS  Google Scholar 

  6. Bernhard K, Jarret P, Meadows M, Butt J, Ellis DJ, Roberts GM, Pauli S, Rodgers P, Burges HD (1997) Natural isolates of B. thuringiensis: worldwide distribuction, characterization, and activity against insect pests. J Invertebr Pathol 70:59–68

    Article  Google Scholar 

  7. Beron CM, Curatti L, Salerno GL (2005) New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Appl Environ Microbiol 71(2):761–765

    Article  CAS  Google Scholar 

  8. Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nuñez-Valdez M, Soberón M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    CAS  Google Scholar 

  9. Chang C, Yu YM, Dai SM, Law SK, Gill SS (1993) High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl Environ Microbiol 59:815–821

    CAS  Google Scholar 

  10. Chaufaux J, Marchal M, Gilois N, Jehanno I, Buisson C (1997) Investigation of natural strains of Bacillus thuringiensis in different biotopes throughout the world. Can J Microbiol 43:337–343

    Article  CAS  Google Scholar 

  11. Crickmore N (2002) The diverse armoury of the Bacillus thuringiensis crystal. In: Embrapa Soja (ed.) The society for invertebrate pathology. Proceedings of the 6th international conference on Bacillus thuringiensis, Londrina, Brazil, pp 147–152

  12. Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2004) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Molecul Biol Rev 62(3):807–813

    Google Scholar 

  13. Ejiofor AO, Johnson T (2002) Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. J Ind Microbiol Biotechnol 28(5):284–90

    Article  CAS  Google Scholar 

  14. Ellis RT, Stockhoff BA, Stamp L, Schnepf HE, Schwab GE, Knuth M, Russell J, Cardineau GA, Narva KE (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol 68:1137–1145

    Article  CAS  Google Scholar 

  15. Feitelson JS, Payne J, Kim L (1999) Bacillus thuringiensis: insects and beyond. Biotechnology 10:271–275

    Google Scholar 

  16. Ferrandis MD, Juárez-Pérez VM, Frutos R, Bel Y, Ferré J (1999) Distribution of cryI, cryII and cryV genes within Bacillus thuringiensis isolates from Spain. Syst Appl Microbiol 22:179–185

    CAS  Google Scholar 

  17. Forsyth G, Logan NA (2000) Isolation of Bacillus thuringiensis from Northern Victoria Land, Antarctica. Lett Appl Microbiol 30:263–266

    Article  CAS  Google Scholar 

  18. Guerchicoff A, Ugalde RA, Rubinstein CP (1997) Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 63:2716–2721

    CAS  Google Scholar 

  19. Hofte HH, Whiteley R (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    CAS  Google Scholar 

  20. Ibarra M, del Rinco C, Ordu S, Noriega D, Benintende G, Monnerat R, Regis L, de Oliveira CMF, Lanz H, Rodriguez MH, Sanchez J, Pena G, Bravo A (2003) Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl Environ Microbiol 69(7):5269–5274

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of basterophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  22. Lecadet MM, Dedonder R (1971) Biogenesis of the crystalline inclusion of Bacillus thuringiensis during sporulation. Eur J Biochem 23:282–294

    Article  CAS  Google Scholar 

  23. Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    CAS  Google Scholar 

  24. Margalit J, Becker N, Back C, Zaritsky A (1995) Bacillus thuringiensis subsp. israelensis as a biological control agent of mosquitoes and black flies. In: Feng TY, Chak KF, Smith RA, Yamamoto T, Margalit J, Chilcott C, Rose RI (eds) Bacillus thuringiensis biotechnology and environmental benefits, Vol 1. Hua Shiang Yuan Publishing Co, Taipei, pp 521–556

    Google Scholar 

  25. Marrone PG, MacIntosh SC (1993) Resistance to Bacillus thuringiensis and resistance management. In: Entwistle PF, Cory JS, Bailey MJ, Higgs SR (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 221–235

    Google Scholar 

  26. Martin PA, Travers RS (1989) World wide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    Google Scholar 

  27. Monnerat RG, Souza Dias DG, da Silva SF, Martins ES, Berry C, Falcão R, Mendes Gomes ACM, Praça LB, Soares CMS (2005) Screening of Bacillus thuringiensis strains effective against mosquitoes. Pesq Agropec Bras, Brasília 40(2):103–106

    Google Scholar 

  28. Nester EW, Thomashow LS, Metz M, Gordon M (2002) 100 years of Bacillus thuringiensis: a critical scientific assessment. American Society for Microbiology, Washington http://www.asmusa.org

  29. Porcar M, Juarez-Perez V (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26:419–432

    Article  CAS  Google Scholar 

  30. Regis L, da Silva SB, Melo-Santos MAV (2000) The use of bacterial larvicides in mosquito and black fly control programs in Brazil. Mem Inst Oswaldo Cruz 95:207–210

    Article  Google Scholar 

  31. Regis L, Silva-Filha MHC, Charles JF (2001) Bacterial larvicides of Dipteran disease vectors. Trends Parasitol 17:377–380

    Article  CAS  Google Scholar 

  32. Revina PL, Kostina LI, Dronina MA, Zalunin IA, Chestukhina GG, Yudina TG, Konukhova AV, Izumrudova AV (2005) Novel antibacterial proteins from entomocidal crystals of Bacillus thuringiensis ssp. Can J Microbol 51:141–14

    Article  CAS  Google Scholar 

  33. Salehi Jouzani GR, Komakhin RA, Piruzian ES (2005) Comparative study of the expression of the native, modified, and hybrid cry3a genes of Bacillus thuringiensis in prokaryotic and eukaryotic cells. Russ J Genet 41(2):116–121

    Article  CAS  Google Scholar 

  34. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  Google Scholar 

  35. Shin BS, Park SH, Choi SK, Koo BT, Lee ST, Kim JL (1995) Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp. entomocidus. Appl Envir Microbiol 61:2402–2407

    CAS  Google Scholar 

  36. Thomas WE, Ellar D (1983) Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal dendotoxin. FEBS Lett 154:362–368

    Article  CAS  Google Scholar 

  37. Uribe D, Martinez W, Ceron J (2003) Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82:119–127

    Article  CAS  Google Scholar 

  38. Van Frankenhuyzen K (1993) The challenge of Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ, Higgs SR (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 1–35

    Google Scholar 

  39. Wang JA, Boets J, Van Rie G (2003) Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. J Invertebr Pathol 82:63–71

    Article  CAS  Google Scholar 

  40. Wang JH, Wu WH, Chen YH, Ren GX (2000) The ecology distribution of Bacillus thuringiensis and cry gene diversity in China. In: Proceeding of 5th international conference on Bacillus thuringiensis. Society for Invertebrate Pathology, Guanajuato pp 98–100

  41. Widner WR, Whiteley HR (1989) Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J Bacteriol 171:965–974

    CAS  Google Scholar 

  42. Wu D, Johnson JJ, Federeci BA (1994) Synergism of mosquitocidal toxicity between CytA and CryIV proteins using inclusions produced from cloned genes of Bacillus thuringiensis subsp. israelensis. Mol Microbiol 13:965–972

    Article  CAS  Google Scholar 

  43. Yu YM, Ohba M, Gill SS (1991) Characterization of mosquitocidal activity of Bacillus thuringiensis subsp. fukuokaensis crystal proteins. Appl Environ Microbiol 57:1075–1081

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Khayam Nekoui, Dr. Behzad Gharayazie, Dr. M. Keshavarzi, Dr. M. A. Hejazi and Dr. M. Kermani for their support, technical assistance and critical review of the manuscript. This work was supported by a grant from the Agricultural Research and Education Organization of Iran (AREO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Salehi Jouzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salehi Jouzani, G., Pourjan Abad, A., Seifinejad, A. et al. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol 35, 83–94 (2008). https://doi.org/10.1007/s10295-007-0269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0269-6

Keywords

Navigation