Skip to main content

Potential for Improved Formulations of Bacillus thuringiensis israelensis through Standardization and Fermentation Development

  • Chapter
Bacterial Control of Mosquitoes & Black Flies

Abstract

Before we discuss the standardization and fermentation of Bacillus thuringiensis (B. t), it is important to define certain precepts about B.t. that are generally accepted today and are germane to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus, T. A. 1956. Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata. Can J. Microbiol 2:122–131.

    Article  PubMed  CAS  Google Scholar 

  • Barjac, H. de. 1978a. A new candidate for biological control of mosquitoes: Bacillus thuringiensis var. israelensis (in French). Entomophaga 23: 309–319.

    Article  Google Scholar 

  • ——— 1978b. Toxicity of Bacillus thuringiensis var. israelensis for larvae of Aedes aegypti and Anopheles stephensi (in French). C. R Acad. Sci (Paris) 286D: 1175–1178.

    Google Scholar 

  • ——— 1978c. Une nouvelle variété de Bacillus thuringiensis très toxique pour les moustiques: B thuringiensis var. israelensis serotype 14. CR Acad Sci (Paris) 286D: 797–800.

    Google Scholar 

  • ———1983. Bioassay procedure for samples of Bacillus thuringiensis israelensis using IPS-82 standard. WHO Report TDR/VED/SWG (5) (81.3).

    Google Scholar 

  • Barjac, H. de, and Coz, J. 1979. Sensibilité comparee de six espèces différentes de moustiques a Bacillus thuringiensis var. israelensis. Bull de lOrg. Mond Sante (Paris) 57 (1): 139–141.

    Google Scholar 

  • Barjac, H. de, and Larget-Thiery, I. 1979. Proposals for the adoption of a standardized bioassay method for the evaluation of insecticidal formulations derived from serotype H. 14 of Bacillus thuringiensis. WHO/VBC/79.744.

    Google Scholar 

  • ———1984. Characteristics of IPS 82 as standard for biological assay of Bacillus thuringiensis H-14 preparations. WHO/VBC/84.892.

    Google Scholar 

  • Blokhina, T. P.; Rautenstein, Y. I.; Sakharova, Z. V.; Rabotnova, I. L; and Zavoyskaya, T. A. 1985. Biological peculiarities of Bacillus thuringiensis subsp. galleriae variants formed during continuous cultivation. Mikrobiologiya (USSR) 54 (4): 683–684.

    CAS  Google Scholar 

  • Bonnefoi, A.; Burgerjon, A.; and Grison, P. 1958. Titrage biologique des preparations de spores de Bacillus thuringiensis Berliner. C R Acad Sci (Paris) 247:1418–1420.

    CAS  Google Scholar 

  • Burgerjon, A. 1957. L’utilisation des chenilles de Pieris brassicae L. comme insecte-test de laboratoire dans un service de contrδle de preparations pathogènes insecticides. Entomophaga 2: 129–135.

    Article  Google Scholar 

  • Burgerjon, A., and Dulmage, M. 1977. Industrial and international standardization of Microbial Pesticides: I. Bacillus thuringiensis Entomophaga 22: 121–129.

    Article  Google Scholar 

  • Dulmage, H. T. 1970. Production of the spore-endotoxin complex by variants of Bacillus thuringiensis in two fermentation media. J. Invertebr. Pathol 16 (3): 385–389.

    Article  PubMed  CAS  Google Scholar 

  • ———1971. Production of δ-endotoxin by eighteen isolates of Bacillus thuringiensis, serotype 3, in 3 fermentation media. J. Invertebr. Pathol 18 (3): 353–358.

    Google Scholar 

  • ——— 1973a. Assay and standardization of microbial insecticides. Ann N.Y. Acad Sci 217: 187–199.

    Google Scholar 

  • ——— 1973b. B. thuringiensis U.S. assay standard: Report on the adoption of a primary U.S. reference standard for assay of formulations containing the δ-endotoxin of Bacillus thuringiensis Bull Entomol Soc Am 19 (4): 200–202.

    Google Scholar 

  • ——— 1979. Genetic manipulation of pathogens: Selection of different strains. In Genetics in relation to insect management, ed. M. A. Hoy and J. J. McKelvey,Jr., 116–127. Rockefeller Foundation Working Papers.

    Google Scholar 

  • ———1983. Guidelines for production of Bacillus thuringiensis H-14, ed. M. Vandekar and H. T. Dulmage. Proc. of Consultation, Geneva, Switzerland, 25–28 October 1982. UNDP/WORLD BANK/WHO Special Programme for Research and Training in Tropical Diseases.

    Google Scholar 

  • Dulmage, H. T., and Barjac, H. de. 1973. HD-187: A new isolate of Bacillus thuringiensis that produces high yields of δ-endotoxin. J. Invertebr. Pathol 22 (2): 273–277.

    Article  CAS  Google Scholar 

  • Dulmage, H. T.; Boening, O. P.; Rehnborg, C. S.; and Hansen, G. D. 1971. A proposed standardized bioassay for formulations of Bacillus thuringiensis based on the international unit. J. Invertebr. Pathol 18(2): 240–245.

    Article  PubMed  CAS  Google Scholar 

  • Dulmage, H. T., and Cooperators. 1981. Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. In Microbial control of pests and plant diseases, 19701980, ed. H. D. Burges, 191–220. London: Academic Press.

    Google Scholar 

  • Dulmage, H. T.; Correa, J. A.; and Martinez, A. J. 1970. Coprecipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis J. Invertebr. Pathol 15 (1): 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Dulmage, H. T.; McLaughlin, R E.; Lacey, L. A.; Couch, T. L; Alls, R T.; and Rose, R I. 1985. HD-968-S-1983: A proposed U.S. standard for bioassays of preparations of Bacillus thuringiensis subsp. israelensis-H-l4. Bull Entomol Soc Am 31 (2): 31–34.

    Google Scholar 

  • Dulmage, H. T.; Martinez, A. J.; and Pena, T. 1976. Bioassay of Bacillus thuringiensis (Berliner) δ-endotoxin using the tobacco budworm. U.S. Dept. Agric. Tech. Bull no. 1528.

    Google Scholar 

  • Foda, M. S.; Salama, H. S.; and Selim, M. 1985. Factors affecting the growth physiology of Bacillus thuringiensis. Appl Microbiol Biotechnol 22: 50–52.

    Article  CAS  Google Scholar 

  • Freiman, V. B., and Chupin, A. A. 1973. Aspects of continuous cultivation of spore-forming microbes from the group Bacillus thuringiensis. Biotechnol Bioeng. 4: 259–265.

    Google Scholar 

  • Garcia-Patrone, M. 1985. Bacitracin increases size of parasporal crystals and spores in Bacillus thuringiensis. Mol Cell Biochem 68:131–137.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, I.; Sneh, B.; Battat, E.; and Klein, D. 1980. Optimization of a medium for a high yield production of spore-crystal preparation of Bacillus thuringiensis effective against the Egyptian cotton leaf worm, Spodoptera littoralis Boisd Biotechn Lett 2 (10): 419–426.

    Article  CAS  Google Scholar 

  • Jafri, R H.; Aslamkhan, M.; Nasreen, S.; and Asif, M. 1982. Variation among geographic strains of Anopheles stephensi, Aedes aegypti, and Aedes albopictus larvae in their susceptibility to Bacillus thuringiensis H-14 endotoxin. Biologia 28 ( 1 ): 101–116.

    Google Scholar 

  • Krywienczyk, J.; Dulmage, H. T.; and Fast, P. G. 1978. Occurrence of two serologically distinct groups within Bacillus thuringiensis serotype 3ab var. kurstaki. J. Invertebr. Pathol 31: 372–375.

    Article  PubMed  CAS  Google Scholar 

  • Krywienczyk, J.; Dulmage, H. T.; Hall, I. M.; Beegle, C. C; Arakawa, K. Y.; and Fast, P. G. 1981. Occurrence of kurstaki k-1 crystal activity in Bacillus thuringiensis serotype 1 J. Invertebr. PathoL 37:62–65.

    Article  Google Scholar 

  • McLaughlin, R. E.; Dulmage, H. T.; Alls, R., Couch, T. L; Dame, D. A.; Hall, I. M.; Rose, R. I.; and Versoi, P. L 1984. U.S. standard bioassay for the potency assessment of Bacillus thuringiensis serotype H-14 against mosquito larvae. Bull Entomol Soc Am 30: 26–29.

    Google Scholar 

  • Mechalas, B. J., and Anderson, N. B. 1964. Bioassay of Bacillus thuringiensis Berliner-based microbial insecticides: II Standardization. J. Insect Pathol 6 (2): 218–224.

    CAS  Google Scholar 

  • Mechalas, B. J., and Dunn, P. H. 1964. Bioassay of Bacillus thuringiensis Berliner-based microbial insecticides: I. Bioassay procedures. J Insect Pathol 6: 214–217.

    CAS  Google Scholar 

  • Moraes, I O.; Santana, M. H. A.; and Hokka, C. O. 1980. The influence of oxygen concentration on microbial insecticide production. In Advances in biotechnology. Vol. 2, Fuels, chemicals, foods, and waste treatment, ed. MY. Murray, 75–79. Proc. Sixth Intnl. Fermentation Sym., London, Canada, 20–25 July 1980.

    Google Scholar 

  • Nishiitsutsuji-Uwo, J.; Wakisaka, K.; and Eda, M. 1975. Sporeless mutants of Bacillus thuringiensis J. Invertebr. Pathol 25: 355–361.

    Article  Google Scholar 

  • Rishikesh, N., and Quelennec, G. 1983. Introduction to a standardized method for the evaluation of the potency of Bacillus thuringiensis serotype H-l4-based products. WHO Bull 61 (1): 93–97.

    CAS  Google Scholar 

  • Salama, H. S., and Foda, M. S. 1984. Studies on the sbility of some cotton pests to various strains of Bacillus thuringiensis Z. Pflanzenkr. Pflanzenschutz 91 ( 1 ): 65–70.

    Google Scholar 

  • Salama, H. S.; Foda, M. S.; and Dulmage, H. T. 1983. Novel fermentation media for production of δ-endotoxins from Bacillus thuringiensis J. Invertebr. Pathol 41:8–19.

    Article  Google Scholar 

  • Salama, H. S.; Foda, M. S.; and E1-Sharaby, A. 1981. Potency of spore-δ-endotoxin complexes of Bacillus thuringiensis against some cotton pests. Z. ang. Ent 91: 388–398.

    Article  CAS  Google Scholar 

  • Salama, H. S.; Foda, M. S.; El-Sharaby, A.; and Selim, M. H. 1983a. A novel approach for whey recycling in production of bacterial insecticides. Entomophaga 28 ( 2 ): 151–160.

    Article  Google Scholar 

  • Salama, H. S.; Foda, M. S.; Selim, M. H.; and El-Sharaby, A. M. 1983b. Utilization of fodder yeast and agro-industrial by-products in production of spores and biologically-active endotoxins from Bacillus thuringiensis Zbl Mikrobiol 138: 553–563.

    CAS  Google Scholar 

  • Scherrer, P.; Lüthy, P.; and Trumpi, B. 1973. Production of δ-endotoxin by Bacillus thuringiensis as a function of glucose concentrations. Appl Micriobiol Biotechnol 25 (4): 644–646.

    CAS  Google Scholar 

  • Shimizu, S.; Ohmori, I; Ito, H.; and Suzuki, S. 1973. Insecticides based on a toxin from Bacillus thuringiensis sporangia. Japanese Patent Kokai 73,22,620. 23 March 1973.

    Google Scholar 

  • Smith, R. A. 1982. Effect of strain and medium variation on mosquito toxin production by Bacillus thuringiensis var. israelensis Can J. Microbiol 28: 1089–1092.

    Article  PubMed  CAS  Google Scholar 

  • Utsumi, S. 1973. Sporicidal activity with treatment of some chemicals for Bacillus thuringiensis Kyota Kogei Sen’i Daigaku Sen’igakubu Gakujutsu Hokoku 7:68–73.

    CAS  Google Scholar 

  • Wakisaka, Y.; Masaki, E.; Koizumi, K.; Nishimoto, Y.; Endo, Y.; Nishimura, M. S.; and Nishiitsutsuji-Uwo, J. 1982. Asporogenous Bacillus thuringiensis mutant producing high yields of δ-endo-toxim. Appl Environ Microbiol 43(6): 1498–1500.

    PubMed  CAS  Google Scholar 

  • Wakisaka, Y.; Masaki, E.; and Nishimoto, Y. 1982. Formation of crystalline δ-endotoxin or poly-β-hydroxybutyric acid granules by asporogenous mutants of Bacillus thuringiensis Appl Environ Microbiol 43 (6): 1473–1480.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T., and McLaughlin, R. E. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larvae, Aedes taeniorhynchus Biochem Biophys Res Commun 103 (2): 414–421.

    Article  CAS  Google Scholar 

  • Zamola, B., and Kajfez, F. 1977. Biosynthesis of a microbial insecticide. Swiss Patent no. 587,014. 15 June 1977.

    Google Scholar 

  • Zamola, B.; Rendic, S.; Kajfes, F.; and Tamburasev, G. 1970. Investigation of aeration effect on the sporulation of Bacillus thuringiensis Mikrobiologija 7 ( 1 ): 117–122.

    Google Scholar 

  • Zamola, B.; Valles, P.; Meli, G.; Miccoli, P.; and Kajfez, F. 1981. Use of the centrifugal separation technique in manufacturing a bioinsecticide based on Bacillus thuringiensis Biotechnol Bioeng 23 (5): 1079–1086.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Rutgers University Press

About this chapter

Cite this chapter

Dulmage, H.T., Correa, J.A., Gallegos-Morales, G. (1990). Potential for Improved Formulations of Bacillus thuringiensis israelensis through Standardization and Fermentation Development. In: de Barjac, H., Sutherland, D.J. (eds) Bacterial Control of Mosquitoes & Black Flies. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5967-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5967-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-5969-2

  • Online ISBN: 978-94-011-5967-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics