Skip to main content

Cardiac PET Procedure: Perfusion, Coronary Flow, Viability, Inflammation, and PET/MR

  • Chapter
  • First Online:
Nuclear Cardiology
  • 934 Accesses

Abstract

Cardiovascular diseases remain the leading cause of morbidity and mortality in Western societies. Integrated positron emission tomography (PET) with computed tomography (CT) in a single unit—PET/CT—has become an established and valued imaging modality in clinical routine. Cardiac PET allows a noninvasive evaluation of myocardial perfusion, blood flow, function, and metabolism, using physiological substrates labeled with positron-emitting radionuclides, such as oxygen-15, nitrogen-13, carbon-11, fluorine-18, and rubidium-82. This chapter aims to present the most commonly used PET procedures in cardiology. It is schematically divided into perfusion, coronary flow, myocardial viability, and infection/inflammation. The improved PET diagnostic accuracy is due to instrumentation and radiotracer advantages over single photon emission computed tomography (SPECT). PET allows for data acquisition in dynamic sequences to delineate radiotracer kinetics for absolute quantification of myocardial blood flow (MBF) in mL/min/g during the stress and the rest, providing the assessment of coronary flow reserve (ratio of the hyperemic and resting myocardial blood flow), which offers important in vivo insight into the complex nature of the mechanisms underlying functional alteration of the coronary circulation, suggesting a paradigm shift in the evaluation and management of patients with coronary artery disease (CAD). In high-risk patients with CAD and left ventricular dysfunction, PET myocardial viability is an important tool used to identify patients with hibernating and/or stunned myocardium that may benefit from undergoing cardiac revascularization. Areas with reduced perfusion but preserved or increased glucose metabolism (mismatch) represent hibernating myocardium, which implies potential to improve function after revascularization. Inflammation forms an important core of the pathogenic process involved in many diseases affecting the heart and the blood vessels. These diseases include infectious as well as inflammatory noninfectious cardiovascular conditions. In vivo fluorine-18 fluorodeoxyglucose (18F-FDG) is accumulated in activated inflammatory cells such as lymphocytes and macrophages, at the inflammation/infection site. Cardiac infection and inflammation remain a diagnostic challenge, and PET is gaining use in this scenario. 18F-FDG-PET is an important newer tool for the identification of active inflammation in cardiac sarcoidosis. The procedure has a well-established role in the setting of infective endocarditis, mainly in cases of diagnostic uncertainty, and has recently been introduced as a major criterion for the diagnosis of prosthetic valve infections in international guidelines. Cardiac PET offers a wide diagnostic spectrum and utility with proven reduced downstream testing as well as reduced radiation exposure, making this test very appealing as a first line for the assessment of ischemic heart disease and other conditions. The new hybrid PET/MR system certainly will result in interesting new clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Townsend DW. Positron emission tomography/computed tomography. Semin Nucl Med. 2008;38(3):152–66.

    Article  PubMed  Google Scholar 

  2. Schindler TH, Schelbert HR, Quercioli A, et al. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40.

    Article  PubMed  Google Scholar 

  3. Schindler TH, Dilsizian V. PET-determined hyperemic myocardial blood flow: further progress to clinical application. J Am Coll Cardiol. 2014;64:1476–8.

    Article  PubMed  Google Scholar 

  4. Ziadi MC, Beanlands RS. The clinical utility of assessing myocardial blood flow using positron emission tomography. J Nucl Cardiol. 2010;17:571–81.

    Article  PubMed  Google Scholar 

  5. Ziadi MC, Dekemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.

    Article  PubMed  Google Scholar 

  6. Slomka PJ, Berman DS, Germano G. New cardiac cameras: single-photon CT and PET. Semin Nucl Med. 2014;44:232–51.

    Article  PubMed  Google Scholar 

  7. Lewellen TK. The challenge of detector designs for PET. Am J Roentgenol. 2010;195:301–9.

    Article  Google Scholar 

  8. Moody JB, Lee BC, Corbett JR, et al. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: a technical perspective. J Nucl Cardiol. 2015;22(5):935–51.

    Article  PubMed  Google Scholar 

  9. Schindler TH. Positron-emitting myocardial blood flow tracers and clinical potential. Prog Cardiovasc Dis. 2015;57:588–606.

    Article  PubMed  Google Scholar 

  10. Wolk MJ, Bailey SR, Doherty JU, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;63(4):380–406.

    Article  PubMed  Google Scholar 

  11. Medical Advisory Secretariat. Single photon emission computed tomography for the diagnosis of coronary artery disease: an evidence-based analysis. Health Quality Ontario. Ont Health Technol Assess Ser. 2010;10(8):1–64.

    PubMed Central  Google Scholar 

  12. Underwood SR, Anagnostopoulos C, Cerqueira M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31:261–91.

    Article  CAS  PubMed  Google Scholar 

  13. Bateman TM, Heller GV, McGhie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13(1):24–33.

    Article  PubMed  Google Scholar 

  14. Bateman TM, Dilsizian V, Beanlands RS, et al. American Society of Nuclear Cardiology and Society of Nuclear Medicine and Molecular Imaging joint position statement on the clinical indications for myocardial perfusion PET. J Nucl Med. 2016;57(10):1–3. Published online: 25 Aug 2016. https://doi.org/10.2967/jnumed.116.180448.

  15. Nandalur KR, Dwamena BA, Choudhri AF, et al. Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol. 2008;15:444–51.

    Article  PubMed  Google Scholar 

  16. Lee DS, Yeo JS, Chung JK, et al. Transient prolonged stunning induced by dipyridamole and shown on 1- and 24-hour poststress 99mTc-MIBI gated SPECT. J Nucl Med. 2000;41:27–35.

    CAS  PubMed  Google Scholar 

  17. Giorgi MCP, Meneghetti JC, Soares J Jr, et al. Left ventricular function in response to dipyridamole stress: head-to-head comparison between 82Rubidium PET and 99mTc-sestamibi SPECT ECG-gated myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2017;44:876–85.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med. 1996;37:1701–12.

    CAS  PubMed  Google Scholar 

  19. Park SJ, Rogers WL, Clinthorne NH. Effects of positron range and annihilation photon acolinearity on image resolution of a Compton PET. IEEE Trans Nucl Sci. 2007;54:1543–52.

    Article  CAS  Google Scholar 

  20. Heller GV, Calnon D, Dorbala S. Recent advances in cardiac PET and PET/CT myocardial perfusion imaging. J Nucl Cardiol. 2009;16:962–9.

    Article  PubMed  Google Scholar 

  21. Maddahi J, Packard RRS. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44(5):333–43.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bol A, Melin JA, Vanoverschelde JL, et al. Direct comparison of [13N]ammonia and [15O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation. 1993;87:512–25.

    Article  CAS  PubMed  Google Scholar 

  23. Nitzsche EU, Choi Y, Czernin J, Hoh CK, et al. Noninvasive quantification of myocardial blood flow in humans. A direct comparison of the [13N]ammonia and the [15O]water techniques. Circulation. 1996;93:2000–6.

    Article  CAS  PubMed  Google Scholar 

  24. Lautamaki R, George RT, Kitagawa K, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging. 2009;36:576–386.

    Article  PubMed  CAS  Google Scholar 

  25. Herrero P, Markham J, Shelton ME, et al. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation. 1990;82:1377–86.

    Article  CAS  PubMed  Google Scholar 

  26. Orozco LEJ, Mendoza JRC, Nishimura GYG, et al. PET myocardial perfusion quantification: anatomy of a spreading functional technique. Clin Transl Imaging. 2018;6(1):47–60.

    Article  Google Scholar 

  27. Schindler TH, Nitzche EU, Olschewski M, et al. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med. 2004;45:419–28.

    PubMed  Google Scholar 

  28. Falcão A, Chalela W, Giorgi MC, et al. Myocardial blood flow assessment with 82rubidium-PET imaging in patients with left bundle branch block. Clinics. 2015;70:726–32.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23:1187–226.

    Article  PubMed  Google Scholar 

  30. Sitek A, Gullberg GT, Huesman RH. Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans Med Imaging. 2002;21:216–25.

    Article  PubMed  Google Scholar 

  31. El Fakhiri G, Sitek A, Guerin B, et al. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analysis. J Nucl Med. 2005;46:1264–127.

    Google Scholar 

  32. Schelbert HR. Positron emission tomography of the heart: methodology, findings in the normal and the diseased heart, and clinical applications. In: Phelps ME, editor. PET: molecular imaging and its biological applications. 1st ed. New York: Springer; 2004. p. 389–508.

    Chapter  Google Scholar 

  33. Martin CC, Christian BT, Satter MR, et al. Quantitative PET with positron emitters that emit prompt gamma rays. IEEE Trans Med Imaging. 1995;14:681–7.

    Article  CAS  PubMed  Google Scholar 

  34. Snyder DL, Thomas LJ, Ter-Pogossian MM. A mathematical model for positron-emission tomography systems having time-of-flight measurements. IEEE Trans Nucl Sci. 1981;28:3575–83.

    Article  Google Scholar 

  35. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.

    CAS  PubMed  Google Scholar 

  36. Schleyer PJ, Thielemans K, Marsden PK. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics. Phys Med Biol. 2014;59:43–5.

    Article  Google Scholar 

  37. Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885.

    Article  PubMed  Google Scholar 

  38. Rezaei A, Nuyts J. Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET. In: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seoul; 2013.

    Google Scholar 

  39. Lortie M, Beanlands RSB, Yoshinaga K, et al. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765–74.

    Article  PubMed  Google Scholar 

  40. Coxson PG, Huesman RH, Borland L. Consequences of using a simplified kinetic model for dynamic PET data. J Nucl Med. 1997;38:660–7.

    CAS  PubMed  Google Scholar 

  41. Prior JO, Allenbach G, Valenta I, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging. 2012;39:1037–47.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Klein R, Beanlands R, deKemp R. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17:555–70.

    Article  PubMed  Google Scholar 

  43. Armstrong IS, Tonge CM, Arumugam P. Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. J Nucl Cardiol. 2014;21:467–74.

    Article  PubMed  Google Scholar 

  44. deKemp RA, Declerck J, Klein R, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med. 2013;54:571–7.

    Article  CAS  PubMed  Google Scholar 

  45. Tahari AK, Lee A, Rajaram M, et al. Absolute myocardial flow quantification with 82Rb PET/CT: comparison of different software packages and methods. Eur J Nucl Med Mol Imaging. 2014;41:126–35.

    Article  PubMed  Google Scholar 

  46. Yalamanchili P, Wexler E, Hayes M, et al. Mechanism of uptake and retention of F-18 BMS-747158–02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol. 2007;14:782–8.

    Article  PubMed  Google Scholar 

  47. Nekolla SG, Reder S, Saraste A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation. 2009;119:2333–42.

    Article  CAS  PubMed  Google Scholar 

  48. Packard RRS, Huang S-C, Dahlbom M, et al. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med. 2014;55:1438–44.

    Article  PubMed  Google Scholar 

  49. Senthamizhchelvan S, Bravo PE, Esaias C, et al. Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med. 2010;51(10):1592–9.

    Article  PubMed  Google Scholar 

  50. Mc Ardle BA, Dowsley TF, de Kemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–37.

    Article  PubMed  Google Scholar 

  51. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5(6):700–7.

    Article  PubMed  Google Scholar 

  52. Botvinik EH, editor. Nuclear medicine self-study program III: nuclear medicine cardiology. Reston: Society of Nuclear Medicine; 1998.

    Google Scholar 

  53. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, Lok-Tin Szeto A, Aung M, Davies RA, Ruddy TD, Beanlands RS. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006 Sep 5;48(5):1029-39. 

    Google Scholar 

  54. Dorbala S, Vangala D, Sampson U, et al. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48(3):349–58.

    PubMed  Google Scholar 

  55. Sharir T, Kang X, Germano G, et al. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol. 2006;13(4):495–506.

    Article  PubMed  Google Scholar 

  56. Ambrosio G, Betocchi S, Pace L, et al. Prolonged impairment of regional contractile function after resolution of exercise-induced angina. Evidence of myocardial stunning in patients with coronary artery disease. Circulation. 1996;94(10):2455–64.

    Article  CAS  PubMed  Google Scholar 

  57. Verberne HJ, Dijkgraaf MG, Somsen GA, et al. Stress-related variations in left ventricular function as assessed with gated myocardial perfusion SPECT. J Nucl Cardiol. 2003;10(5):456–63.

    Article  PubMed  Google Scholar 

  58. Van Tosh A, Votaw JR, Reichek N, et al. The relationship between ischemia-induced left ventricular dysfunction, coronary flow reserve, and coronary steal on regadenoson stress-gated 82Rb PET myocardial perfusion imaging. J Nucl Cardiol. 2013;20:1060–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parker MW, Iskandar A, Limone B, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5:700–7.

    Article  PubMed  Google Scholar 

  60. Taqueti VR, Solomon SD, Shah AM, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9.

    Article  CAS  PubMed  Google Scholar 

  61. Ziad MC, Dekemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8.

    Article  Google Scholar 

  62. Fukushima K, Javadi MS, Higuchi T, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med. 2011;52:726–32.

    Article  PubMed  Google Scholar 

  63. Daniele S, Nappi C, Acampa W, et al. Incremental prognostic value of coronary flow reserve assessed with single-photon emission computed tomography. J Nucl Cardiol. 2011;18:612–9.

    Article  PubMed  Google Scholar 

  64. Shaw LJ, Hage FG, Berman DS, et al. Prognosis in the era of comparative effectiveness research: where is nuclear cardiology now and where should it be? J Nucl Cardiol. 2012;19(5):1026–43.

    Article  PubMed  Google Scholar 

  65. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with non-invasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gupta A, Taqueti VR, van de Hoef TP, et al. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017;136(24):2325–36.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  PubMed  Google Scholar 

  68. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62:1639–53.

    Article  PubMed  Google Scholar 

  69. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.

    Article  CAS  PubMed  Google Scholar 

  70. Naya M, Murthy VL, Foster CR, et al. Prognostic interplay of coronary artery calcification and underlying vascular dysfunction in patients with suspected coronary artery disease. J Am Coll Cardiol. 2013;61(20):2098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Am J Cardiol. 1974;33:87–94.

    Article  CAS  PubMed  Google Scholar 

  72. Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330:1782–8.

    Article  CAS  PubMed  Google Scholar 

  73. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.

    Article  PubMed  Google Scholar 

  74. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995;91:1944–51.

    Article  PubMed  Google Scholar 

  75. Choudhury L, Rosen SD, Patel D, et al. Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J. 1997;18:108–16.

    Article  CAS  PubMed  Google Scholar 

  76. Sdringola A, Dhaval P, Gould KL. High prevalence of myocardial perfusion abnormalities on positron emission tomography in asymptomatic persons with a parent or sibling with coronary artery disease. Circulation. 2001;103:496–501.

    Article  CAS  PubMed  Google Scholar 

  77. Rajappan K, Rimoldi O, Dutka D, et al. Mechanism of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation. 2002;105:470–6.

    Article  PubMed  Google Scholar 

  78. Kaufmann PA, Gnecchi-Ruscone T, Schäfers KP, et al. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36:103–9.

    Article  CAS  PubMed  Google Scholar 

  79. Alexanderson E, Jacome R, Jimenez-Santos M, et al. Evaluation of the endothelial function in hypertensive patients with 13N-ammonia PET. J Nucl Cardiol. 2012;19:979–86.

    Article  PubMed  Google Scholar 

  80. Alexanderson E, Rodriguez-Valero M, Martinez A, et al. Endothelial dysfunction in recently diagnosed type 2 diabetic patients evaluated by PET. Mol Imaging Biol. 2009;11:1–5.

    Article  PubMed  Google Scholar 

  81. Alexanderson E, Ochoa JM, Calleja R, et al. Endothelial dysfunction in systemic lupus erythematosus: evaluation with 13N-ammonia PET. J Nucl Med. 2010;51:1927–31.

    Article  CAS  PubMed  Google Scholar 

  82. Anagnostopoulos C, Almonacid A, El Fakhri G, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82-Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging. 2008;35(9):1593–601.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sdringola S, Johnson NP, Kirkeeide RL, et al. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers. JACC Cardiovasc Imaging. 2011;4(4):402–12.

    Article  PubMed  Google Scholar 

  84. Chamuleau SA, van Eck-Smit BL, Meuwissen M, et al. Long-term prognostic value of CFVR and FFR versus perfusion scintigraphy in patients with multivessel disease. Neth Heart J. 2007;15(11):369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kern MJ, Lerman A, Bech JW, American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114(12):1321–41.

    Article  PubMed  Google Scholar 

  86. Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther. 2017;7(2):206–18.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248–55.

    Article  PubMed  Google Scholar 

  88. Juneau D, deKemp RA, Beanlands RSB. Reporting myocardial flow reserve with PET. Ready or not, here it is! But walk before you fly. J Nucl Cardiol. 2018;25:164–8.

    Article  PubMed  Google Scholar 

  89. Manabe O, Naya M, Tamaki N. Feasibility of PET for the management of coronary artery disease: comparison between CFR and FFR. J Cardiol. 2017;70(2):135–40.

    Article  PubMed  Google Scholar 

  90. van de Hoef TP, van Lavieren MA, Damman P, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7(3):301–11.

    Article  PubMed  Google Scholar 

  91. Rimoldi O, Maranta F. Microvascular dysfunction in infiltrative cardiomyopathies. J Nucl Cardiol. 2019;26(1):200–7.

    Article  PubMed  Google Scholar 

  92. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40.

    Article  PubMed  Google Scholar 

  93. Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

  94. Dilsizian V. Transition from SPECT to PET myocardial perfusion imaging: a desirable change in nuclear cardiology to approach perfection. J Nucl Cardiol. 2016;23:337–8.

    Article  PubMed  Google Scholar 

  95. Dilsizian V. Highlights from the updated joint ASNC/SNMMI PET myocardial perfusion and metabolism clinical imaging guidelines. J Nucl Med. 2016;57(9):1327–8.

    Article  CAS  PubMed  Google Scholar 

  96. Kinuuti J. Integrated positron emission tomography/computed tomography (PET/CT) in coronary disease. Heart. 2009;95:1457–63.

    Article  Google Scholar 

  97. Alessanderson Berman DS, Maddahi J, Tamarappoo BK, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469–77.

    Article  PubMed  CAS  Google Scholar 

  98. Kajander S, Ukkonen H, Sipila H, et al. Low radiation dose imaging of myocardial perfusion and coronary angiography with a hybrid PET/CT scanner. Clin Physiol Funct Imaging. 2009;29:81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gewirtz H, Dilsizian V. Myocardial viability. Survival mechanisms and molecular imaging targets in acute and chronic ischemia. Circ Res. 2017;120:1197–212.

    Article  CAS  PubMed  Google Scholar 

  100. Jamiel A, Ebid M, Ahmed AM, et al. The role of myocardial viability in contemporary cardiac practice. Heart Fail Rev. 2017;22:401–13.

    Article  PubMed  Google Scholar 

  101. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32:217–38.

    Article  CAS  PubMed  Google Scholar 

  102. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med. 1998;339:173–81.

    Article  CAS  PubMed  Google Scholar 

  103. Soares J Jr, Rodrigues FF, Izaki M, et al. Low-carbohydrate diet versus euglycemic hyperinsulinemic clamp for the assessment of myocardial viability with 18F-fluorodeoxyglucose-PET: a pilot study. Int J Cardiovasc Imaging. 2014;30(2):415–23.

    Article  PubMed  Google Scholar 

  104. Taegtmeyer H, Dilzizian V. Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med. 2008;5(suppl 2):S42–8.

    Article  CAS  PubMed  Google Scholar 

  105. Osterholt M, Sen S, Dilzizian V, et al. Targeted metabolic imaging to improve the management of heart disease. JACC Cardiovasc Imaging. 2012;5:214–26.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tillish J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–8.

    Article  Google Scholar 

  107. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary. Circulation. 2003;108:1404–18.

    PubMed  Google Scholar 

  108. International Commission on Radiation Protection ICRP. Radiation dose to patients from radiopharmaceuticals – addendum 3 to ICRP publication 53. ICRP publication 106. Ann ICRP 2008;38(1–2).

    Google Scholar 

  109. Bulluck H, White SK, Frohlich GM, et al. Quantifying the area at risk in reperfused ST-segment-elevation myocardial infarction patients using hybrid cardiac positron emission tomography-magnetic resonance imaging clinical perspective. Circ Cardiovasc Imaging. 2016;9(3):e003900.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Camisi PG, Prasadi SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117:103–14.

    Article  Google Scholar 

  111. Abraham A, Nichol G, Williams KA, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51:567–74.

    Article  PubMed  Google Scholar 

  112. Bergmann SR, Weinheimer CJ, Markham J, et al. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med. 1996;37:1723–30.

    CAS  PubMed  Google Scholar 

  113. Schulz R, Kappeler C, Coenen H, et al. Positron emission tomography analysis of 11C-acetate kinetics in short-term hibernating myocardium. Circulation. 1998;97:1009–16.

    Article  CAS  PubMed  Google Scholar 

  114. Gurm GS, Danik SB, Shoup TM, et al. 4-[18F]-tetraphenylphosphonium as a PET tracer for myocardial mitochondrial membrane potential. JACC Cardiovasc Imaging. 2012;5:285–92.

    Article  PubMed  Google Scholar 

  115. Kadenbach B, Ramzan R, Moosdorf R, et al. The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion. 2011;11:700–6.

    Article  CAS  PubMed  Google Scholar 

  116. Fukuoka Y, Nakano A, Tama N, et al. Impaired myocardial microcirculation in the flow-glucose metabolism mismatch regions in revascularized acute myocardial infarction. J Nucl Cardiol. 2017;24:1641–50.

    Article  PubMed  Google Scholar 

  117. Montisci R, Chen L, Ruscazio M, et al. Non-invasive coronary flow reserve is correlated with microvascular integrity and myocardial viability after primary angioplasty in acute myocardial infarction. Heart. 2006;92:1113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen W, Kim J, Molchanova-Cook OP, Dilsizian V. The potential of FDG PET/CT for early diagnosis of cardiac device and prosthetic valve infection before morphologic damages ensue. Curr Cardiol Rep. 2014;16:459.

    Article  PubMed  Google Scholar 

  119. Aguadé BS, Roque PA, Cuellar CH, et al. 18FDG PET/CT procedure for diagnosis of prosthetic endocarditis and intracardiac devices. Rev Esp Med Nucl Imagen Mol. 2018;37:163–71.

    Google Scholar 

  120. Osborne MT, Hulten EA, Murthy VL, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol. 2017;24:86–99.

    Article  PubMed  Google Scholar 

  121. Reuben Tang, Jeffrey Tzu-Yu Wang, Louis Wang, et al. Impact of patient preparation on the diagnostic performance of 18F-FDG PET in cardiac sarcoidosis. A systematic review and meta-analysis. Clin Nucl Med. 2016;41:e327–39.

    Article  PubMed  Google Scholar 

  122. Maurer AH, Burshteyn M, Adler LP, et al. How to differentiate benign versus malignant cardiac and paracardiac18F FDG uptake at oncologic PET/CT. Radiographics. 2011;31:1287–305.

    Article  PubMed  Google Scholar 

  123. Ishimaru S, Tsujino I, Takei T, et al. Focal uptake on 18F-flooro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.

    Article  PubMed  Google Scholar 

  124. Kaneta T, Hakamatsuka T, Takanami K, et al. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann Nucl Med. 2006;20(3):203–8.

    Article  PubMed  Google Scholar 

  125. Boqia Xie, Bi-Xi Chen, Jiao-Yan Wu, et al. Factors relevant to atrial 18F-fluorodeoxyglucose uptake in atrial fibrillation. J Nucl Cardiol. 2018; https://doi.org/10.1007/s12350-018-1387-4.

  126. Fujii H, Yasuda S, Ide M, et al. Increased fluorine-18 fluorodeoxyglucose uptake in the right atrial wall in a patient with atrial fibrillation. Clin Nucl Med. 1999;24:136–7.

    Article  CAS  PubMed  Google Scholar 

  127. Fan CM, Fischman AJ, Kwek BH, et al. Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET. AJR Am J Roentgenol. 2005;184(1):339–42.

    Article  PubMed  Google Scholar 

  128. Zukotynski KA, Israel DA, Kim CK. FDG uptake in lipomatous hypertrophy of the interatrial septum is not likely related to brown adipose tissue. Clin Nucl Med. 2011;36(9):767–9.

    Article  PubMed  Google Scholar 

  129. Gormsen LC, Haraldsen A, Kramer S, et al. A dual tracer 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT pilot study for detection of cardiac sarcoidosis EJNMMI. Research. 2016;6:52.

    Google Scholar 

  130. Ishida I, Yoshinaga K, Myiagawa M, et al. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014;28:393–403.

    Article  PubMed  Google Scholar 

  131. Swart LE, Gomes A, Scholtens AM, et al. Improving the diagnostic performance of 18F-FDG PET/CT in prosthetic heart valve endocarditis. Circulation. 2018;138:1412–27.

    Article  PubMed  Google Scholar 

  132. Bassettia M, Carneluttia A, Muserb D, et al. 18F-Fluorodeoxyglucose positron emission tomography and infectious diseases: current applications and future perspectives. Curr Opin Infect Dis. 2017;30:192–200.

    Article  Google Scholar 

  133. Millar BC, Camargo RA, Alavi A, et al. PET/computed tomography evaluation of infection of the heart. PET Clin. 2019;14:251–9.

    Article  PubMed  Google Scholar 

  134. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.

    Article  PubMed  Google Scholar 

  135. Hill EE, Herijgers P, Claus P, et al. Abscess in infective endocarditis: the value of transesophageal echocardiography and outcome: a 5-year study. Am Heart J. 2007;157:923–8.

    Article  Google Scholar 

  136. Vieira ML, Grimberg M, Pomerantzeff PM, et al. Repeated echocardiographic examinations of patients with suspected infective endocarditis. Heart. 2004;90:1020–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saby L, Laas O, Habib G, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. JACC. 2013;61:2374–82.

    Article  PubMed  Google Scholar 

  138. Pizzi MN, Roque A, Fernández-Hidalgo N, et al. Improving the diagnosis of infective endocarditis in prosthetic valves and intracardiac devices with 18F-fluordeoxyglucose positron emission tomography/computed tomography angiography: initial results at an infective endocarditis referral center. Circulation. 2015;132:1113–26.

    Article  PubMed  Google Scholar 

  139. Camargo RA, Bittencourt MS, Meneghetti JC, et al. The role of 18F-FDG-PET/CT in the diagnosis of left-sided endocarditis: native vs. prosthetic valves endocarditis. Clin Infect Dis. 2019; https://doi.org/10.1093/cid/ciz267.

  140. Erba PA, Sollini M, Lazzeri E, et al. FDG-PET in cardiac infections. Semin Nucl Med. 2013;43:377–95.

    Article  PubMed  Google Scholar 

  141. Van Riet J, Hill EE, Gheysens O, et al. (18)FDG PET/CT for early detection of embolism and metastatic infection in patients with infective endocarditis. Eur J Nucl Med Mol Imaging. 2010;37:1189–97.

    Article  PubMed  Google Scholar 

  142. Kusumoto FM, Schoenfeld MH, Wilkoff BL. 2017 HRs expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm. 2017;14:e503–51.

    Article  PubMed  Google Scholar 

  143. Sarrazin JF, Philippon F, Tessier M, et al. Usefulness of fluorine-18 positron emission tomography/computed tomography for identification of cardiovascular implantable electronic device infections. J Am Coll Cardiol. 2012;59:1616–25.

    Article  PubMed  Google Scholar 

  144. Mahmood M, Kendi AT, Farid S, et al. Role of 18F-FDG PET/CT in the diagnosis of cardiovascular electronic device infections: a meta-analysis. J Nucl Cardiol. 2019;26:958–70.

    Article  PubMed  Google Scholar 

  145. Pizzi MN, Dos-Subirà L, Roque A, et al. 18F-FDG PET/CT angiography in the diagnosis of infective endocarditis and cardiac device infection in adult patients with congenital heart disease and prosthetic material. Int J Cardiol. 2017;248:396–402.

    Article  PubMed  Google Scholar 

  146. Roque A, Pizzi MN, Cuéllar-Calàbria H, et al. 18F-FDG PET/CT angiography for the diagnosis of infective endocarditis. Curr Cardiol Rep. 2017;19:15.

    Article  CAS  PubMed  Google Scholar 

  147. García-Arribas D, Vilacosta I, Ortega Candil A, et al. Usefulness of positron emission tomography/computed tomography in patients with valve-tube graft infection. Heart. 2018 Sep;104(17):1447-1454.

    Google Scholar 

  148. Machelart I, Greib C, Wirth G, et al. Graft infection after a Bentall procedure: a case series and systematic review of the literature. Diagn Microbiol Infect Dis. 2017;88:158–62.

    Article  CAS  PubMed  Google Scholar 

  149. Iwai K, Sekiguti M, Hosoda Y, et al. Racial differences in cardiac sarcoidosis incidence observed at autopsy. Sarcoidosis. 1994;11:26–31.

    CAS  PubMed  Google Scholar 

  150. Silverman HJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.

    Article  CAS  PubMed  Google Scholar 

  151. Lagana SM, Parwani AV, Niclhols LC. Cardiac sarcoidosis: a pathology-focused review. Arch Pathol Lab Med. 2010;134:1039–46.

    Article  PubMed  Google Scholar 

  152. Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis; a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.

    Article  CAS  PubMed  Google Scholar 

  153. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63:329–36.

    Article  PubMed  Google Scholar 

  154. Chareonthaithawee P, Beanlands RS, Chen W, et al. Joint SNMMI-ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017;24(5):1741–58.

    Article  Google Scholar 

  155. Martinez-Moller A, Souvatzoglou M, Delso G, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  PubMed  Google Scholar 

  156. Visvikis D, Monnier F, Bert J, et al. PET/MR attenuation correction: where have we come from and where are we going? Eur J Nucl Med Mol Imaging. 2014;41(6):1172–5.

    Article  PubMed  Google Scholar 

  157. Nensa F, Bamberg F, Rischpler C, et al. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol. 2018;28(10):4086–101.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lau JMC, Laforest R, Sotoudeh H, et al. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol. 2017;24(3):839–46.

    Article  PubMed  Google Scholar 

  159. Chen Y, An H. Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):245–55.

    Article  PubMed  PubMed Central  Google Scholar 

  160. von Olshausen G, Hyafil F, Langwieser N, et al. Detection of acute inflammatory myocarditis in Epstein Barr virus infection using hybrid 18Ffluoro-deoxyglucose-positron emission tomography/magnetic resonance imaging. Circulation. 2014;130:925–6.

    Article  Google Scholar 

  161. Schneider S, Batrice A, Rischpler C, et al. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;35:312.

    Article  PubMed  Google Scholar 

  162. Dwerk MR, Abgral R, Trivieri MG, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. 2018;11(1):108–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Soares Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soares Junior, J. (2021). Cardiac PET Procedure: Perfusion, Coronary Flow, Viability, Inflammation, and PET/MR. In: Mesquita, C.T., Rezende, M.F. (eds) Nuclear Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-62195-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62195-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62194-0

  • Online ISBN: 978-3-030-62195-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics