Skip to main content

Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Environmental stresses adversely affect plant growth and have a major impact on agricultural production worldwide. Different strategies, namely, molecular, physiological, and agronomical methods were employed to confer stress tolerance to plants, plant–microbe associations being one of the key explored areas. Among plant-associated fungal communities, fungal endophyte and arbuscular mycorrhizal fungi comprise the beneficial fungi that improve plant growth and productivity. A better understanding of the functional dynamics and how the fungal communities confer beneficial traits to plants would be an ideal platform for enhancing crop productivity and a more sustainable agriculture. Highlighting the emerging importance of plant-associated fungal communities and their multifaceted beneficial role in the ecosystem, this chapter extensively discusses the functional dynamics of the fungal communities in conferring stress tolerance and promoting plant growth. With a brief overview of the composition of fungal microbiomes and their mutualistic association with higher plants, a better understanding of how these microbial communities confer beneficial traits to plants is essential to increase crop productivity and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Qamar S, Luo H, Laluk K, Mickelbart VM, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by AIM1 transcription factor. Plant J 58:1–13

    Google Scholar 

  • Ada Viterbo, Udi Landau, Sofia Kim, Leonid Chernin, Ilan Chet, Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiology Letters 305 (1):42-48

    Google Scholar 

  • Ajit Varma, Madhunita Bakshi, Binggan Lou, Anton Hartmann, Ralf Oelmueller, (2012) Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus. Agricultural Research 1 (2):117-131

    Article  Google Scholar 

  • Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nut 24:1311–1323

    Article  CAS  Google Scholar 

  • Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M (2017) Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorous nutrition. Proc Natl Acad Sci U S A 114:E9403–E9412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214

    Article  PubMed  Google Scholar 

  • Arriagada C, Aranda E, Sampedro I, Garcıa-Romera I, Ocampo JA (2009b) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresour Technol 100:6250–6257

    Article  CAS  PubMed  Google Scholar 

  • Arriagada C, Sampedro I, Garcıa-Romera I, Ocampo JA (2009a) Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi. Sci Total Environ 407:4799–4806

    Article  CAS  PubMed  Google Scholar 

  • Aslam F, Ali B (2018) Halotolerant bacterial diversity associated with Suaeda fruticosa (L.) Forssk. improved growth of Maize under salinity stress. Agronomy 8:131

    Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of co-evolutionary symbioses and their role in the ecological adaptations of grasses. In: Redkin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St. Paul, MN, pp 155–178

    Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, MeInice RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma spp. Planta 224:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplexcanescens (Pursh) Nutt. J Arid Environ 51:449–459

    Article  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evo:l1–l13

    Google Scholar 

  • Bernard E, Larkin RP, Tavantzis S, SusanErich M, Alyokhin A, SewellG, et al. (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41

    Article  Google Scholar 

  • Bhatt M, Cajthaml T, Å aÅ¡ek V (2002) Mycoremediation of PAH-contaminated soil. Folia Microbiol 47:255–258

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. https://doi.org/10.1038/ncomms1046

    Article  CAS  PubMed  Google Scholar 

  • Borges KB, Borges WDS, Pupo MT, Bonato PS (2008) Stereo-selective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharm Biomed Anal 46:945–952

    Article  CAS  PubMed  Google Scholar 

  • Borie F, Rubio R, Morales A, Curaqueo G, Cornejo P (2010) Arbuscular mycorrhizae in agricultural and forest ecosystems in Chile. J Soil Sci Plant Nutr 10:185–206

    Article  Google Scholar 

  • BAREA, J. M. Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J. Soil Sci. Plant Nutr. [online]. 2015, vol.15, n.2 [citado 2020-11-11], pp.261-282.

    Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A et al (2010) Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol 185:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Baker R, Kleifeild O, Chet I (1986) Increased growth of plants in the presence of the biological agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Soderstrom B (eds) The Mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184

    Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Cho ST, Chang HH, Egamberdieva D, Kamilova F, Lugtenberg B, Kuo CH (2015) Genome analysis of Pseudomonas fluorescensPCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS One 10:e0140231. https://doi.org/10.1371/journal.pone.0140231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colla G, Rouphae Y, Cardarelli M, Tulio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhiza in zucchini plants grown at low and high phosphorus concentration. Biol Fert Soils 44:501–509

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Bonini P, Cardarelli M (2015) Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int J Plant Prod 9:171–189

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dana MM, Limon MC, Mejias R, Mach RL, Benitez T, Pintor-Toro JA, Kubicek CP (2001) Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr Genet 38:335–342

    Article  Google Scholar 

  • Delaplace P, Delory BM, Baudson C, de Cazenave MMS, Spaepen S, Varin S, Brostaux Y, du Jardin P (2015) Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biol 15:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161

    Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystems 5:21–47

    Article  Google Scholar 

  • Dresselhaus T, Hückelhoven R (2018) Biotic and abiotic stress responses in crop plants. Agronomy 8:267

    Article  CAS  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Egamberdieva D, Wirth S, Jabborova D, Räsänen LA, Liao H (2017b) Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant Interact 12:100–107

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017a) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Elad Y, Freeman S, Monte E (2000) Biocontrol agents: mode of action and interaction with other means of control. IOBC Bulletin vol. 24. International Organization for Biological Control (IOBC), Seville, Spain

    Google Scholar 

  • Ellouze W, Taheri AE, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C (2014) Soil fungal resources in annual cropping systems and their potential for management. Biomed Res Int 2014:1–15

    Article  Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Fahimipour AK, Hartmann EM, Siemens A, Kline J, Levin DA, Wilson H et al (2018) The AvrE super-family: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity. Mol Plant Pathol 16:899–905

    Google Scholar 

  • Feng G, Zhang FS (2003) Effect of arbuscular mycorrhizal fungi on salinity tolerance of cotton. Chinese J Ecol Agr 11:21–24

    Google Scholar 

  • Fiers M, Edel-Hermann V, Chatot C, Le Hingrat Y, Alabouvette C, Steinberg C (2012) Potato soil-borne diseases. A review. Agron Sustain Dev 32(1):93–132

    Article  Google Scholar 

  • Finckh MR (2008) Integration of breeding and technology into diversification strategies for disease control in modern agriculture. In: Collinge DB, Munk L, Cooke BM (eds) Sustainable disease management in a European Context. Springer, Amsterdam, pp 399–409

    Chapter  Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchange in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev 25:68–72

    Article  Google Scholar 

  • Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011) Abiotic and biotic stress response crosstalk in plants. In: Shanker A, Venkateswarlu B (eds) Abiotic stress response in plants - physiological. Biochemical and Genetic Perspectives, Intech Open. https://doi.org/10.5772/23217

    Chapter  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rock, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Gan YT, Miller PR, McConkey BG, Zentner RP, Stevenson FC, McDonald CL (2003) Influence of diverse cropping sequences on durum wheat yield and protein in the semiarid northern Great Plains. Agron J 95:245–252

    Article  Google Scholar 

  • Gange A, West H (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  PubMed  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induces nodule senescence in Cajanus cajan (Pigeonpea). J Plant Grow Regul 27:115–124

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptica and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 20:38–47

    Article  CAS  Google Scholar 

  • Gupta N, Sabat J, Parida R, Kerkatta D (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot Croat 66:197–204

    CAS  Google Scholar 

  • Harman GE (2000) Trichoderma spp., including T. harzianum, T. viride, T. koningii, T. hamatum and other spp. Deuteromycetes, Moniliales (asexual classification system). Cornell University College of Agriculture and Life Sciences, New York

    Google Scholar 

  • Helaly AA (2017) Strategies for improvement of horticultural crops against abiotic stresses. J Hortic 4:1. https://doi.org/10.4172/2376-0354.1000e107

    Article  Google Scholar 

  • Henning K (1993) Response of roots to heavy metal toxicity. Env Exploratory Bot:99–119

    Google Scholar 

  • Higo M, Isobe K, Yamaguchi M, Drijber RA, Jeske ES, Ishii R (2013) Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biol Fertil Soils 49:1085–1096

    Article  Google Scholar 

  • Jakobsen I, Nielsen NE (1983) Vesicular-arbuscular mycorrhiza in field-grown crops. I. Mycorrhizal infection in cereals and peas at various times and soil depths. New Phytol 93:401–413

    Article  Google Scholar 

  • Jansa J, Treseder KK (2017) Introduction: mycorrhizas and the carbon cycle. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil. Elsevier, pp 343–355. https://doi.org/10.1016/B978-0-12-804312-7.00019-X

  • Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. Geol Soc Lond Spec Publ 266:89–115

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16

    Article  Google Scholar 

  • Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R et al (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee I-J (2011a) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H, Kang SM, Lee JH, Lee IN (2011b) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Kiær LP, Skovgaard IM, Østergard H (2009) Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res 114:361–373

    Article  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2020a) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India B. https://doi.org/10.1007/s40011-019-01151-4

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020b) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019a) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting Rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer, Singapore, pp 255–308

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in White biotechnology through Fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64

    Google Scholar 

  • Kumar V, Joshi S, Pant NC, Sangwan P, Yadav AN, Saxena A et al (2019) Molecular approaches for combating multiple abiotic stresses in crops of arid and semi-arid region. In: Singh SP, Upadhyay SK, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Springer, Singapore, pp 149–170

    Chapter  Google Scholar 

  • Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctoniasolani AG3 on potato plants. FEMS Microbiol Lett 311:152–159

    Article  CAS  PubMed  Google Scholar 

  • Lahlali R, McGregor L, Song T, Gossen BD, Narisawa K, Peng G (2014) Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS One 9(4):e94144. https://doi.org/10.1371/journal.pone.0094144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laloi C, Appel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  CAS  PubMed  Google Scholar 

  • Larkin RP, Honeycutt CW (2006) Effects of different 3- year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96:68–79

    Article  PubMed  Google Scholar 

  • Liu Y, Shi Z, Yao L, Yue H, Li H, Li C (2013) Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress. J Gen Appl Microbiol 59:59–65

    Article  PubMed  Google Scholar 

  • Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A et al (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  CAS  PubMed  Google Scholar 

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233

    Article  Google Scholar 

  • Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B 273:2575–2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  CAS  PubMed  Google Scholar 

  • Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth promoting fungus Trichoderma koningii suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26:128–134

    Article  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Irene B, Dekkers E, van der Voort M, Schneider JHM et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Merz U, Falloon RE (2009) Review: powdery scab of potato-increased knowledge of pathogen biology and disease epidemiology for effective disease management. Potato Res 52:17–37

    Article  Google Scholar 

  • Mohammed MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nut 26:125–137

    Article  CAS  Google Scholar 

  • Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441

    Article  Google Scholar 

  • Nath R, Sharma G, Barooah M (2012) Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L.). Eur J Exp Biol 2:1354–1358

    CAS  Google Scholar 

  • Nelson A, Pswarayi A, Quideau S, Frick B, Spaner D (2012) Yield and weed suppression of crop mixtures in organic and conventional systems of the western Canadian prairie. Agron J 104:756–762

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Article  Google Scholar 

  • Niculaes C, Abramov A, Hannemann L, Frey M (2018) Plant protection by Benzoxazinoids—recent insights into biosynthesis and function. Agronomy 8:143

    Article  CAS  Google Scholar 

  • Nosir W, McDonald J, Woodward S (2011) Impact of biological control agents on fusaric acid secreted from Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen in Gladiolus grandiflorus corms. J Ind Microbiol Biotechnol 38:21–27

    Article  CAS  PubMed  Google Scholar 

  • Oelmuller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  CAS  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van Der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities on mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Ranf S (2018) Pattern recognition receptors-versatile genetic tools for engineering broad-spectrum disease resistance in crops. Agronomy 8:134

    Article  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Ravel C, Courty C, Coudret A, Charmet G (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181

    Article  Google Scholar 

  • Reis Martins MD, Angers DA, Cora JE (2012) Carbohydrate composition and water-stable aggregation of an oxisol as affected by crop sequence under no-till. Soil Sci Soc Am J 76:475–484

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9:261–272

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induce nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Oscar R, Edgardo A, Ana M (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Schön CC (2018) BayKlimaFit-Strategies for the adaptation of crop plants to climate change. Available online: http://www.bayklimafit.de. Accessed on 25 Oct 2018

  • Schwechheimer C (2018) SFB 924: molecular mechanisms regulating yield and yield stability in plants. Available online: http://sfb924.wzw.tum.de. Accessed on 25 Oct 2018

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Shanker C (eds) (2016. ISBN 978-953-51-2250-0, Printed in Croatia.) Abiotic and biotic stress in plants – recent advances and future perspectives. https://doi.org/10.5772/60477

    Book  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. CR Biol 331:215–225

    Article  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 85–120

    Chapter  Google Scholar 

  • Shivanna MB, Meera MS, Kageyama K, Hyakumachi M (1996) Growth promotion ability of zoysia grass rhizosphere fungi in consecutive plantings of wheat and soybean. Mycoscience 37:163–168

    Article  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2012) Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Futai K (2009) Biocontrol of Meloidogyne incognita on tomato using antagonistic fungi, plant-growth promoting rhizobacteria and cattle manure. Pest Manag Sci 65:943–948

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020a) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15

    Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020b) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Singh S, Kumar V, Singh S, Dhanjal DS, Datta S, Singh J (2020) Global scenario of plant–microbiome for sustainable agriculture: current advancements and future challenges. In: Yadav AN et al (eds) Plant microbiomes for sustainable agriculture, sustainable development and biodiversity 25. https://doi.org/10.1007/978-3-030-38453-1_14

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, eBook ISBN: 9780080559346

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune response. Cell Host Microbe 3:348–351

    Article  CAS  PubMed  Google Scholar 

  • Srivastava NK, Srivastava DK, Singh P (2012) A preliminary survey of the vesicular arbuscular mycorrhizal status of vegetable and fruit yielding plants in Eastern U.P. Indian J L Sci 1:79–82

    Google Scholar 

  • Swer H, Dkhar MS, Kayang H (2011) Fungal population and diversity in organically amended agricultural soils of Meghalaya, India. JOS 6:3–12

    Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282

    Google Scholar 

  • Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921–929

    Article  CAS  Google Scholar 

  • Tian LS, Dai C, Zhao Y, Zhao M, Yong Y, Wang X (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. China Environ Sci 27:757–762

    CAS  Google Scholar 

  • Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer, Cham, pp 1–25

    Google Scholar 

  • Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unnikumar KR, Sowjanya SK, Varma A (2013) Piriformospora indica: a versatile root endophytic symbiont. Symbiosis 60:107–113

    Article  Google Scholar 

  • Ustuner O, Wininger S, Gadkar V, Badani H, Raviv M, Dudai N et al (2009) Evaluation of different compost amendments with AM fungal inoculum for optimal growth of chives. Compost Sci Util 17:257–265

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought; salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss M, Sýkorová Z, Garnica S, Riess K, Martos F et al (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. Plos One 6:e167983

    Article  Google Scholar 

  • Xu Y (2016) Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet 129:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The combined effects of Arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10:e0145726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103:3327–3340

    CAS  PubMed  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang Y (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14:1588–1597

    Article  CAS  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank their respective institutions for encouragement and support. The authors declare no competing conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanhong Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, P., Bajpai, M., Singh, L.K., Yadav, A.N., Bae, H. (2021). Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60659-6_12

Download citation

Publish with us

Policies and ethics