Skip to main content

Introduction to Laser Micro-to-Nano Manufacturing

  • Chapter
  • First Online:
Laser Micro-Nano-Manufacturing and 3D Microprinting

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 309))

  • 1285 Accesses

Abstract

Laser-based micro-to-nanomanufacturing becomes attractive in surface engineering, precising machining and 2D and 3D microprinting. This chapter introduces the fundamental of light-nanomaterial interaction, the size effect and scaling of nanomaterials and the surface plasmonic excitation of nanomaterials. We focus on the unique features of energy and mass transporting at a nanoscale under photonic excitation. For photonic manufacturing, we mainly compare the photothermal effect induced by long pulse (long than 1 picosecond) or continue wave laser to the nonthermal effect induced by an ultrafast pulsed laser (shorter than 1 picoseconds). We review various laser-based processing, such as, photonic reduction, sintering, laser direct writing and laser carbonization. Subsequently we reviewed two kinds of key techniques for micro-to-nanomanufacturing: various micro-to-nano manipulations and nanojoining. On the basis of these reviews, we introduce latest progresses on innovative molecular devices, near-field manufacturing and super-resolution manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Lei, X. Zhao, X. Yu, A. Hu, S. Vukelic, M.B.G. Jun, H.-E. Joe, Y.L. Yao, Y.C. Shin. Ultrafast laser applications in manufacturing processes: a state-of-the-art review. J. Manuf. Sci. Eng. 142 (2020)

    Google Scholar 

  2. Y. Yu, S. Bai, S. Wang, A. Hu, Ultra-short pulsed laser manufacturing and surface processing of microdevices. Engineering 4, 779–786 (2018)

    Article  Google Scholar 

  3. Y. Yu, S. Wang, D. Ma, P. Joshi, A. Hu, Recent progress on laser manufacturing of microsize energy devices on flexible substrates. JOM 70, 1816–1822 (2018)

    Article  Google Scholar 

  4. A. Hu, Interaction of nanosecond and femtosecond laser pulses with carbon: deposition of carbon films having novel compositions. Thesis, UWSpace (2008)

    Google Scholar 

  5. A. Hu, P. Peng, H. Alarifi, X. Zhang, J. Guo, Y. Zhou, W. Duley, Femtosecond laser welded nanostructures and plasmonic devices. J. Laser Appl. 24, 042001 (2012)

    Article  ADS  Google Scholar 

  6. Y. Yu, Y. Deng, M.A. Al Hasan, Y. Bai, R.-Z. Li, S. Deng, P. Joshi, S. Shin, A. Hu. Femtosecond laser-induced non-thermal welding for a single Cu nanowire glucose sensor. Nanoscale Adv. 2, 1195–1205 (2020)

    Google Scholar 

  7. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Optics Commun. 56, 219–221 (1985)

    Article  ADS  Google Scholar 

  8. M.F. Yanik, H. Cinar, H.N. Cinar, A.D. Chisholm, Y. Jin, A. Ben-Yakar, Functional regeneration after laser axotomy. Nature 432, 822 (2004)

    Article  ADS  Google Scholar 

  9. C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, B. Wellegehausen, Short-pulse laser ablation of solid targets. Opt. Commun. 129, 134–142 (1996)

    Article  ADS  Google Scholar 

  10. R. Srinivasan, E. Sutcliffe, B. Braren, Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl. Phys. Lett. 51, 1285–1287 (1987)

    Article  ADS  Google Scholar 

  11. S. Küper, M. Stuke, Femtosecond UV excimer laser ablation. Appl. Phys. B 44, 199–204 (1987)

    Article  ADS  Google Scholar 

  12. N. Bärsch, K. Körber, A. Ostendorf, K.H. Tönshoff, Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl. Phys. A 77, 237–242 (2003)

    Article  ADS  Google Scholar 

  13. S.S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, The role of electron–phonon coupling in femtosecond laser damage of metals. Appl. Phys. A 69, S99–S107 (1999)

    Google Scholar 

  14. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  15. K. Sugioka, Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing. Light: Sci. Appl. 3, e149–e149 (2014)

    Google Scholar 

  16. A. Hu, M. Rybachuk, Q.B. Lu, W.W. Duley, Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation. Appl. Phys. Lett. 91, 131906 (2007)

    Article  ADS  Google Scholar 

  17. C. Zheng, A. Hu, T. Chen, K.D. Oakes, S. Liu, Femtosecond laser internal manufacturing of three-dimensional microstructure devices. Appl. Phys. A 121, 163–177 (2015)

    Article  ADS  Google Scholar 

  18. J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7, 22–44 (2013)

    Article  ADS  Google Scholar 

  19. W. Zhou, D. Bridges, R. Li, S. Bai, Y. Ma, T. Hou, A. Hu, Recent progress of laser micro-and nano manufacturing. Sci. Lett. J 5, 228 (2016)

    Google Scholar 

  20. S. Küper, M. Stuke, Ablation of UV-transparent materials with femtosecond UV excimer laser pulses. MRS Proc. 129, 375 (1988)

    Article  Google Scholar 

  21. C. Zheng, A. Hu, K.D. Kihm, Q. Ma, R. Li, T. Chen, W.W. Duley, Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging. Small 11, 3007–3016 (2015)

    Article  Google Scholar 

  22. K. Seibert, G.C. Cho, W. Kütt, H. Kurz, D.H. Reitze, J.I. Dadap, H. Ahn, M.C. Downer, A.M. Malvezzi, Femtosecond carrier dynamics in graphite. Phys. Rev. B 42, 2842–2851 (1990)

    Article  ADS  Google Scholar 

  23. D.E. Aspnes, E.D. Palik, Handbook of optical constants of solids (Academic, New York, 1985), pp. 89–112

    Book  Google Scholar 

  24. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

    Google Scholar 

  25. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M.L. de la Chapelle, Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 71, 085416 (2005)

    Article  ADS  Google Scholar 

  26. C.B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Measure. Sci. Technol. 12, 1784–1794 (2001)

    Article  ADS  Google Scholar 

  27. L. Sheng-hsien, F. Yuichi, (Advances in Multi-photon Processes and Spectroscopy (World Scientific, 2004)

    Google Scholar 

  28. Y.L. Yao, H. Chen, W. Zhang, Time scale effects in laser material removal: a review. Int. J. Adv. Manuf. Technol. 26, 598–608 (2005)

    Article  Google Scholar 

  29. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965)

    MathSciNet  Google Scholar 

  30. P. Lambropoulos, Multiphoton Ionization of Atoms (Academic Press, 1984)

    Google Scholar 

  31. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–1761 (1996)

    Article  ADS  Google Scholar 

  32. K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron-hole plasmas in silicon. Phys. Review B 61, 2643–2650 (2000)

    Article  ADS  Google Scholar 

  33. P. Stampfli, K.H. Bennemann, Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. Phys. Rev. B 42, 7163–7173 (1990)

    Article  ADS  Google Scholar 

  34. P. Stampfli, K.H. Bennemann, Dynamical theory of the laser-induced lattice instability of silicon. Phys. Rev. B 46, 10686–10692 (1992)

    Article  ADS  Google Scholar 

  35. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996)

    Article  ADS  Google Scholar 

  36. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study. Phys. Rev. B 56, 3806–3812 (1997)

    Article  ADS  Google Scholar 

  37. D.H. Reitze, H. Ahn, M.C. Downer, Optical properties of liquid carbon measured by femtosecond spectroscopy. Phys. Rev. B 45, 2677–2693 (1992)

    Article  ADS  Google Scholar 

  38. M. Wautelet, Scaling laws in the macro-, micro- and nanoworlds. Eur. J. Phys. 22, 601–611 (2001)

    Article  Google Scholar 

  39. C. Yang, C.P. Wong, M.M.F. Yuen, Printed electrically conductive composites: conductive filler designs and surface engineering. J. Mat. Chem. C 1, 4052–4069 (2013)

    Article  Google Scholar 

  40. K. Lu, Sintering of nanoceramics. Int. Mat. Rev. 53, 21–38 (2008)

    Article  Google Scholar 

  41. Y. Ma, H. Li, D. Bridges, P. Peng, B. Lawrie, Z. Feng, A. Hu, Zero-dimensional to three-dimensional nanojoining: current status and potential applications. RSC Adv. 6, 75916–75936 (2016)

    Article  Google Scholar 

  42. F.G. Shi, Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9, 1307–1314 (1994)

    Article  ADS  Google Scholar 

  43. Q. Jiang, S.H. Zhang, J.C. Li, Grain size-dependent diffusion activation energy in nanomaterials. Solid State Commun. 130, 581–584 (2004)

    Article  ADS  Google Scholar 

  44. P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces. 7, 12597–12618 (2015)

    Article  Google Scholar 

  45. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97, 153117 (2010)

    Article  ADS  Google Scholar 

  46. D. Bridges, C. Rouleau, Z. Gosser, C. Smith, Z. Zhang, K. Hong, J. Cheng, Y. Bar-Cohen, A. Hu, Self-powered fast brazing of Ti–6Al–4 V using Ni/Al reactive multilayer films. Appl. Sci. 8, 985 (2018)

    Article  Google Scholar 

  47. Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218–224 (2010)

    Article  ADS  Google Scholar 

  48. P. Peng, L. Liu, A.P. Gerlich, A. Hu, Y.N. Zhou, Self-oriented nanojoining of silver nanowires via surface selective activation. Particle Particle Syst. Character. 30, 420–426 (2013)

    Article  Google Scholar 

  49. K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel, Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002)

    Article  Google Scholar 

  50. A. Ghosh, B. Corves. Introduction to Micromechanisms and Microactuators (Springer, 2015)

    Google Scholar 

  51. K.E. Drexier, in Nanosystems (Wiley, 1992, Chap. 2)

    Google Scholar 

  52. K. Liu, S. Sun, A. Majumdar, V.J. Sorger, Fundamental scaling laws in nanophotonics. Sci. Rep. 6, 37419 (2016)

    Article  ADS  Google Scholar 

  53. X.-Y. Zhang, A. Hu, T. Zhang, X.-J. Xue, J.Z. Wen, W.W. Duley, Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties. Appl. Phys. Lett. 96, 043109 (2010)

    Article  ADS  Google Scholar 

  54. X. Zhang, T. Zhang, A. Hu, Y. Song, W.W. Duley, Controllable plasmonic antennas with ultra narrow bandwidth based on silver nano-flags. Appl. Phys. Lett. 101, 153118 (2012)

    Article  ADS  Google Scholar 

  55. X.-Y. Zhang, A. Hu, J.Z. Wen, T. Zhang, X.-J. Xue, Y. Zhou, W.W. Duley, Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides. Opt. Express 18, 18945–18959 (2010)

    Article  ADS  Google Scholar 

  56. H. Raether, in Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer 1988), pp. 4–39

    Google Scholar 

  57. Z. Fang, X. Zhu, Plasmonics in Nanostructures. Adv. Mater. 25, 3840–3856 (2013)

    Article  Google Scholar 

  58. Y. Fang, N.-H. Seong, D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced raman scattering. Science 321, 388 (2008)

    Article  ADS  Google Scholar 

  59. P. Peng, H. Huang, A. Hu, A.P. Gerlich, Y.N. Zhou, Functionalization of silver nanowire surfaces with copper oxide for surface-enhanced Raman spectroscopic bio-sensing. J. Mater. Chem. 22, 15495–15499 (2012)

    Article  Google Scholar 

  60. W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013)

    Article  Google Scholar 

  61. G. Baffou, R. Quidant, C. Girard, Heat generation in plasmonic nanostructures: influence of morphology. Appl. Phys. Lett. 94, 153109 (2009)

    Article  ADS  Google Scholar 

  62. C. Ma, J. Yan, Y. Huang, C. Wang, G. Yang, The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Sci. Adv. 4, eaas9894 (2018)

    Google Scholar 

  63. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014)

    Article  ADS  Google Scholar 

  64. T. Neumann, M.L. Johansson, D. Kambhampati, W. Knoll, Surface-plasmon fluorescence spectroscopy. Adv. Funct. Mat. 12, 575–586 (2002)

    Article  Google Scholar 

  65. G.I. Stegeman, J.J. Burke, D.G. Hall, Nonlinear optics of long range surface plasmons. Appl. Phys. Lett. 41, 906–908 (1982)

    Article  ADS  Google Scholar 

  66. P. Drude, Zur Elektronentheorie der Metalle. Ann. Phys. 306, 566–613 (1900)

    Article  MATH  Google Scholar 

  67. S. Link, M.A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Inte. Rev. Phys. Chem. 19, 409–453 (2000)

    Article  Google Scholar 

  68. E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 706, 8–24 (2011)

    Article  Google Scholar 

  69. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  70. K. Welford, Surface plasmon-polaritons and their uses. Opt. Quant. Electron. 23, 1–27 (1991)

    Article  Google Scholar 

  71. Y. Hong, Y.-M. Huh, D.S. Yoon, J. Yang, Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater. (2012)

    Google Scholar 

  72. A. Agrawal, S.H. Cho, O. Zandi, S. Ghosh, R.W. Johns, D.J. Milliron, Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 118, 3121–3207 (2018)

    Article  Google Scholar 

  73. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908)

    Article  MATH  Google Scholar 

  74. H. Yu, Y. Peng, Y. Yang, Z.-Y. Li, Plasmon-enhanced light–matter interactions and applications. NPJ Comput. Mater. 5, 45 (2019)

    Google Scholar 

  75. X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, W.W. Duley, Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5, 9082–9092 (2011)

    Article  Google Scholar 

  76. W. Zhou, A. Hu, S. Bai, Y. Ma, D. Bridges, Anisotropic optical properties of large-scale aligned silver nanowire films via controlled coffee ring effects. RSC Adv. 5, 39103–39109 (2015)

    Article  Google Scholar 

  77. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  78. M. Born, E. Wolf, Principle of Optics, 7th edn (World Scientific, Cambridge, 1999)

    Google Scholar 

  79. L. Tong, F. Zi, X. Guo, J. Lou, Optical microfibers and nanofibers: a tutorial. Opt. Commun. 285, 4641–4647 (2012)

    Article  ADS  Google Scholar 

  80. L. Tong, J. Lou, E. Mazur, Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 12, 1025–1035 (2004)

    Article  ADS  Google Scholar 

  81. X. Guo, Y. Ma, Y. Wang, L. Tong, Nanowire plasmonic waveguides, circuits and devices. Laser Photon. Rev. 7, 855–881 (2013)

    Article  ADS  Google Scholar 

  82. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Branched silver nanowires as controllable plasmon routers. Nano Lett. 10(5), 1950–1954 (2010)

    Article  ADS  Google Scholar 

  83. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)

    Article  ADS  Google Scholar 

  84. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005)

    Article  ADS  Google Scholar 

  85. A.W. Sanders, D.A. Routenberg, B.J. Wiley, Y. Xia, E.R. Dufresne, M.A. Reed, Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006)

    Article  ADS  Google Scholar 

  86. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2, 496–500 (2008)

    Article  Google Scholar 

  87. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)

    Article  ADS  Google Scholar 

  88. L. Lin, L. Liu, P. Peng, G. Zou, W.W. Duley, Y.N. Zhou, In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 27, 125201 (2016)

    Article  ADS  Google Scholar 

  89. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Branched silver nanowires as controllable plasmon routers. Nano Lett. 10, 1950–1954 (2010)

    Article  ADS  Google Scholar 

  90. R. Yan, P. Pausauskie, J. Huang, P. Yang, Direct photonic–plasmonic coupling and routing in single nanowires. Proc. Natl. Acad. Sci. 106, 21045 (2009)

    Article  ADS  Google Scholar 

  91. A.D. Semenov, G.N. Goltsman, R. Sobolewski. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol. 15, R1–R16 (2002)

    Google Scholar 

  92. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    Article  Google Scholar 

  93. A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006)

    Article  ADS  Google Scholar 

  94. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M. Greyson Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mat. 11, 241–249 (2012)

    Google Scholar 

  95. R.-Z. Li, A. Hu, D. Bridges, T. Zhang, K.D. Oakes, R. Peng, U. Tumuluri, Z. Wu, Z. Feng, Robust Ag nanoplate ink for flexible electronics packaging. Nanoscale 7, 7368–7377 (2015)

    Article  ADS  Google Scholar 

  96. J. Qiu, W.D. Wei, Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 118, 20735–20749 (2014)

    Article  Google Scholar 

  97. A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, W. Fritzsche, A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett. 7, 247–253 (2007)

    Article  ADS  Google Scholar 

  98. R.Z. Li, R. Peng, K.D. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, Z. Feng, A. Hu, High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 9, 1458–1467 (2016)

    Article  Google Scholar 

  99. L. Röntzsch, K.-H. Heinig, J.A. Schuller, M.L. Brongersma, Thin film patterning by surface-plasmon-induced thermocapillarity. Appl. Phys. Lett. 90, 044105 (2007)

    Article  ADS  Google Scholar 

  100. J.M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, J.A. Cadeddu, Selective Prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol. 179, 748–753 (2008)

    Article  Google Scholar 

  101. R.-Z. Li, A. Hu, T. Zhang, K.D. Oakes, Direct writing on paper of foldable capacitive touch pads with silver nanowire inks. ACS Appl. Mater. Interfaces. 6, 21721–21729 (2014)

    Article  Google Scholar 

  102. Y. Huang, Y. Tian, C. Hang, Y. Liu, S. Wang, M. Qi, H. Zhang, J. Zhao, Self-limited nanosoldering of silver nanowires for high-performance flexible transparent heaters. ACS Appl. Mater. Interfaces. 11, 21850–21858 (2019)

    Article  Google Scholar 

  103. R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009)

    Article  ADS  Google Scholar 

  104. F.E. Kruis, K.A. Kusters, S.E. Pratsinis, B. Scarlett, A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci. Technol. 19, 514–526 (1993)

    Article  ADS  Google Scholar 

  105. W.K. Lee, R.L. Eadie, G.C. Weatherly, K.T. Aust, A study of the sintering of spherical silver powder—II. The initial stage. Acta Metall. 26, 1837–1843 (1978)

    Article  Google Scholar 

  106. M.I. Alymov, E.I. Maltina, Y.N. Stepanov, Model of initial stage of ultrafine metal powder sintering. Nanostruct. Mater. 4, 737–742 (1994)

    Article  Google Scholar 

  107. H.A. Alarifi, M. Atis, Z. Ouml, C. Gbreve, A. Hu, M. Yavuz, Y. Zhou. Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater. Tran. 54, 884–889 (2013)

    Google Scholar 

  108. H.A. Alarifi, M. Atiş, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J. Phys. Chem. C 117, 12289–12298 (2013)

    Article  Google Scholar 

  109. W. Zhou, S. Bai, Y. Ma, D. Ma, T. Hou, X. Shi, A. Hu, Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength. ACS Appl. Mater. Interf. 8, 24887–24892 (2016)

    Article  Google Scholar 

  110. H.-J. Hwang, K.-H. Oh, H.-S. Kim, All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Sci. Rep. 6, 19696 (2016)

    Article  ADS  Google Scholar 

  111. J.R. Greer, R.A. Street, Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 55, 6345–6349 (2007)

    Article  ADS  Google Scholar 

  112. S. Mypati, S.R. Dhanushkodi, M. McLaren, A. Docoslis, B.A. Peppley, D.P.J. Barz, Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations. RSC Adv. 8, 19679–19689 (2018)

    Article  Google Scholar 

  113. M. Kaganov, E. Lifshitz, L. Tanatarov, Relaxation between electrons and the crystalline lattice. Soviet Phys.-JETP 4, 173–178 (1957)

    MATH  Google Scholar 

  114. S. Anisimov, B. Kapeliovich, T. Perelman, Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh. Eksp. Teor. Fiz. 66, 375–377 (1974)

    Google Scholar 

  115. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Appl. Phys. A 63, 109 (1996)

    Google Scholar 

  116. M.D. Shirk, P.A. Molian, Ultra-short pulsed laser ablation of highly oriented pyrolytic graphite. Carbon 39, 1183–1193 (2001)

    Article  Google Scholar 

  117. W.W. Duley (UV Lasers: Effects and Applications in Materials Science (Cambridge University Press, 2005)

    Google Scholar 

  118. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, Ultrashort-pulse laser machining of dielectric materials. J. Appl. Phys. 85, 6803–6810 (1999)

    Article  ADS  Google Scholar 

  119. T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2011)

    Google Scholar 

  120. J.H. Lienhard, A Heat Transfer Textbook (Courier Dover Publications, 2019)

    Google Scholar 

  121. D. Bergström, The absorption of laser light by rough metal surfaces (2008)

    Google Scholar 

  122. Z. Yang, J. Hao, S. Yuan, S. Lin, H.M. Yau, J. Dai, S.P. Lau, Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015)

    Article  Google Scholar 

  123. L.L. Taylor, R.E. Scott, J. Qiao, Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon. Opt. Mater. Express 8, 648–658 (2018)

    Article  ADS  Google Scholar 

  124. Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  125. Y. Wang, Z. Lu, X. Ruan, First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering. J. Appl. Phys. 119, 225109 (2016)

    Article  ADS  Google Scholar 

  126. S.W. Holman, R.R. Lawrence, L. Barr (1895)

    Google Scholar 

  127. U. Nerle, M.K. Rabinal, Thermal oxidation of copper for favorable formation of cupric oxide (CuO) semiconductor. IOSR J. Appl. Phys. 5, 1–7 (2013)

    Article  Google Scholar 

  128. M. Kaur, K.P. Muthe, S.K. Despande, S. Choudhury, J.B. Singh, N. Verma, S.K. Gupta, J.V. Yakhmi, Growth and branching of CuO nanowires by thermal oxidation of copper. J. Cryst. Growth 289, 670–675 (2006)

    Article  ADS  Google Scholar 

  129. J.K. Chen, D.Y. Tzou, J.E. Beraun, Numerical investigation of ultrashort laser damage in semiconductors. Int. J. Heat Mass Transf. 48, 501–509 (2005)

    Article  MATH  Google Scholar 

  130. Y. Bentor, Periodic Table: Copper. http://www.chemicalelements.com/elements/cu.html

  131. J.P. Abid, A.W. Wark, P.F. Brevet, H.H. Girault, Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun. 792–793 (2002). https://doi.org/10.1039/b200272h

  132. S. Bai, Y.-H. Lin, X.-P. Zhang, W.-P. Zhou, T. Chen, Y. Ma, T.-X. Hou, D. Bridges, K.D. Oakes, A. Hu, Two-step photonic reduction of controlled periodic silver nanostructures for surface-enhanced Raman spectroscopy. Plasmonics 10, 1675–1685 (2015)

    Article  Google Scholar 

  133. S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, P. Joshi, A. Hu, Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9, 42 (2017)

    Article  ADS  Google Scholar 

  134. E. Marzbanrad, A. Hu, B. Zhao, Y. Zhou, Room temperature nanojoining of triangular and hexagonal silver nanodisks. J. Phys. Chem. C 117, 16665–16676 (2013)

    Article  Google Scholar 

  135. J. Bai, Y. Qin, C. Jiang, L. Qi, Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chem. Mater. 19, 3367–3369 (2007)

    Article  Google Scholar 

  136. C.L. Thomsen, D. Madsen, J. Tho/gersen, J.R. Byberg, S.R. Keiding, Femtosecond spectroscopy of the dissociation and geminate recombination of aqueous CS2. J. Chem. Phys. 111, 703–710

    Google Scholar 

  137. C.R. Wang, A. Hu, Q.B. Lu, Direct observation of the transition state of ultrafast electron transfer reaction of a radiosensitizing drug bromodeoxyuridine. J. Chem. Phys. 124, 241102 (2006)

    Article  ADS  Google Scholar 

  138. M. Maillard, P. Huang, L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag +]. Nano Lett. 3, 1611–1615 (2003)

    Article  ADS  Google Scholar 

  139. S. Bai, W. Zhou, Y. Lin, Y. Zhao, T. Chen, A. Hu, W.W. Duley, Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy. J. Nanopart. Res. 16, 2470 (2014)

    Article  ADS  Google Scholar 

  140. Y. Nakata, Y. Matsuba, K. Murakawa, N. Miyanaga, Change of interference pattern using fundamental and second-harmonic wavelengths by phase shift of a beam. Appl. Phys. A 117, 207–210 (2014)

    Article  ADS  Google Scholar 

  141. S. Bai, D. Serien, A. Hu, K. Sugioka, 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv. Funct. Mater. 28, 1706262 (2018)

    Article  Google Scholar 

  142. S.M. Yalisove, K. Sugioka, C.P. Grigoropoulos, Advances and opportunities of ultrafast laser synthesis and processing. MRS Bull. 41, 955–959 (2016)

    Article  Google Scholar 

  143. A. Hu, J. Sanderson, A.A. Zaidi, C. Wang, T. Zhang, Y. Zhou, W.W. Duley, Direct synthesis of polyyne molecules in acetone by dissociation using femtosecond laser irradiation. Carbon 46, 1823–1825 (2008)

    Article  Google Scholar 

  144. L. Rapp, B. Haberl, C.J. Pickard, J.E. Bradby, E.G. Gamaly, J.S. Williams, A.V. Rode, Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 6, 7555 (2015)

    Article  ADS  Google Scholar 

  145. A.A. Zaidi, A. Hu, D.E. Henneke, W.W. Duley, Femtosecond laser irradiation of liquid alkanes: mechanism of polyyne formation. Chem. Phys. Lett. 723, 151–154 (2019)

    Article  ADS  Google Scholar 

  146. A.A. Zaidi, A. Hu, M.J. Wesolowski, X. Fu, J.H. Sanderson, Y. Zhou, W.W. Duley, Time of flight mass spectrometry of polyyne formation in the irradiation of liquid alkanes with femtosecond laser pulses. Carbon 48, 2517–2520 (2010)

    Article  Google Scholar 

  147. T. Matsuda, T. Sano, K. Arakawa, O. Sakata, H. Tajiri, A. Hirose, Femtosecond laser-driven shock-induced dislocation structures in iron. Appl. Phys. Express 7, 122704 (2014)

    Article  ADS  Google Scholar 

  148. T. Sano, T. Eimura, R. Kashiwabara, T. Matsuda, Y. Isshiki, A. Hirose, S. Tsutsumi, K. Arakawa, T. Hashimoto, K. Masaki, Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions. J. Laser Appl. 29, 012005 (2017)

    Article  Google Scholar 

  149. J.D. Majumdar, E.L. Gurevich, R. Kumari, A. Ostendorf, Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4% C) steel. Appl. Surface Sci. 364, 133–140 (2016)

    Google Scholar 

  150. P. Russo, A. Hu, G. Compagnini, W.W. Duley, N.Y. Zhou, Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale 6, 2381–2389 (2014)

    Article  ADS  Google Scholar 

  151. P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5, 260–273 (2013)

    Article  Google Scholar 

  152. Q. Su, S. Bai, J. Han, Y. Ma, Y. Yu, Y. Deng, M. Wu, C. Zheng, A. Hu, Precise laser trimming of alloy strip resistor: a comparative study with femtosecond laser and nanosecond laser. J. Laser Appl. 32, 022013 (2020)

    Article  ADS  Google Scholar 

  153. C. Zheng, A. Hu, R. Li, D. Bridges, T. Chen, Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser. Opt. Express 23, 17584–17598 (2015)

    Article  ADS  Google Scholar 

  154. D.C. Cox, R.D. Forrest, P.R. Smith, V. Stolojan, S.R.P. Silva, Study of the current stressing in nanomanipulated three-dimensional carbon nanotube structures. Appl. Phys. Lett. 87, 033102 (2005)

    Article  ADS  Google Scholar 

  155. K. Keshoju, H. Xing, L. Sun, Magnetic field driven nanowire rotation in suspension. Appl. Phys. Lett. 91, 123114 (2007)

    Article  ADS  Google Scholar 

  156. E.R. Dufresne, D.G. Grier, Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrum. 69, 1974–1977 (1998)

    Article  ADS  Google Scholar 

  157. B.J. Roxworthy, K.C. Toussaint, Femtosecond-pulsed plasmonic nanotweezers. Sci. Rep. 2, 660 (2012)

    Article  ADS  Google Scholar 

  158. C. Cheng, S. Wang, J. Wu, Y. Yu, R. Li, S. Eda, J. Chen, G. Feng, B. Lawrie, A. Hu, Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces. 8, 17784–17792 (2016)

    Article  Google Scholar 

  159. W. Jie, Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Trans. Nanotechnol. 5, 84–89 (2006)

    Article  Google Scholar 

  160. J. Wu, Y. Ben, D. Battigelli, H.-C. Chang, Long-range AC electroosmotic trapping and detection of bioparticles. Ind. Eng. Chem. Res. 44, 2815–2822 (2005)

    Article  Google Scholar 

  161. M. Lian, N. Islam, J. Wu, AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. IET Nanobiotechnol. 1, 36–43 (2007)

    Article  Google Scholar 

  162. A. GonzÁLez, A. Ramos, H. Morgan, N.G. Green, A. Castellanos, Electrothermal flows generated by alternating and rotating electric fields in microsystems. J. Fluid Mech. 564, 415–433 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. M. Stubbe, J. Gimsa, A short review on AC electro-thermal micropumps based on smeared structural polarizations in the presence of a temperature gradient. Colloids Surfaces A: Physicochem. Eng. Aspects 376, 97–101 (2011)

    Article  Google Scholar 

  164. G. Baysinger, L.I. Berger, R.N. Goldberg, H.V. Kehiaian, K. Kuchitsu, CRC Handbook of Chemistry and Physics (National Institute of Standards and Technology, 2015)

    Google Scholar 

  165. J. Wu, Interactions of electrical fields with fluids: laboratory-on-a-chip applications. IET Nanobiotechnol. 2, 14–27 (2008)

    Article  Google Scholar 

  166. A. Salari, M. Navi, T. Lijnse, C. Dalton, AC electrothermal effect in microfluidics: a review. Micromachines 10, 762 (2019)

    Article  Google Scholar 

  167. A. Jamshidi, Optoelectronic manipulation, assembly, and patterning of nanoparticles (2009)

    Google Scholar 

  168. X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, T. Wu, Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation. Opt. Express 21, 31862–31871 (2013)

    Article  ADS  Google Scholar 

  169. L. Dai, Jiao, L. Liu, in Presented at 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), 22–25 Aug. 2016 (2016)

    Google Scholar 

  170. L. Dai, Z. Ge, N. Jiao, L. Liu, 2D to 3D manipulation and assembly of microstructures using optothermally generated surface bubble microrobots. Small 15, 1902815 (2019)

    Article  Google Scholar 

  171. E.C.H. Ng, K.M. Chin, C.C. Wong, Controlling inplane orientation of a monolayer colloidal crystal by meniscus pinning. Langmuir 27, 2244–2249 (2011)

    Article  Google Scholar 

  172. W. Lu, C.M. Lieber, in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific 2010), pp. 137–146

    Google Scholar 

  173. H. Yan, H.S. Choe, S. Nam, Y. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M. Lieber, Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011)

    Article  ADS  Google Scholar 

  174. J. Kim, H.-C. Lee, K.-H. Kim, M.-S. Hwang, J.-S. Park, J.M. Lee, J.-P. So, J.-H. Choi, S.-H. Kwon, C.J. Barrelet, H.-G. Park, Photon-triggered nanowire transistors. Nat. Nanotechnol. 12, 963–968 (2017)

    Article  ADS  Google Scholar 

  175. C. Rewitz, G. Razinskas, P. Geisler, E. Krauss, S. Goetz, M. Pawłowska, B. Hecht, T. Brixner, Coherent control of plasmon propagation in a nanocircuit. Phys. Rev. Appl. 1, 014007 (2014)

    Article  ADS  Google Scholar 

  176. T. Gong, Y. Zhang, W. Liu, J. Wei, C. Li, K. Wang, D. Wu, M. Zhong, Connection of macro-sized double-walled carbon nanotube strands by bandaging with double-walled carbon nanotube films. Carbon 45, 2235–2240 (2007)

    Article  Google Scholar 

  177. K.P. Yung, J. Wei, B.K. Tay, Formation and assembly of carbon nanotube bumps for interconnection applications. Diamond Related Mater. 18, 1109–1113 (2009)

    Article  ADS  Google Scholar 

  178. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Y. Aso, K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215–1222 (2011)

    Article  Google Scholar 

  179. P. Peng, W. Guo, Y. Zhu, L. Liu, G. Zou, Y.N. Zhou, Nanoscale wire bonding of individual ag nanowires on au substrate at room temperature. Nano-Micro Lett. 9, 26 (2017)

    Article  ADS  Google Scholar 

  180. Z. Gu, Y. Chen, D.H. Gracias, Surface tension driven self-assembly of bundles and networks of 200 nm diameter rods using a polymerizable adhesive. Langmuir 20, 11308–11311 (2004)

    Article  Google Scholar 

  181. T. Gong, Y. Zhang, W. Liu, J. Wei, Y. Jia, K. Wang, D. Wu, M. Zhong, Reinforcing the bandaged joint of double-walled carbon nanotube strands by intercalation of epoxy resin. Mater. Lett. 62, 4431–4433 (2008)

    Article  Google Scholar 

  182. H. Tohmyoh, S. Fukui, Self-completed Joule heat welding of ultrathin Pt wires. Phys. Rev. B 80, 155403 (2009)

    Article  ADS  Google Scholar 

  183. T.-B. Song, Y. Chen, C.-H. Chung, Y. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, Y. Yang, Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8, 2804–2811 (2014)

    Article  ADS  Google Scholar 

  184. A.T. Bellew, H.G. Manning, C. Gomes da Rocha, M.S. Ferreira, J.J. Boland, Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks. ACS Nano 9, 11422–11429 (2015)

    Article  Google Scholar 

  185. A. Vafaei, A. Hu, I.A. Goldthorpe, Joining of individual silver nanowires via electrical current. Nano-Micro Lett. 6, 293–300 (2014)

    Article  Google Scholar 

  186. Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, E. Ide, Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater. Trans. 49, 1537–1545 (2008)

    Article  Google Scholar 

  187. H. Alarifi, A. Hu, M. Yavuz, Y.N. Zhou, Silver nanoparticle paste for low-temperature bonding of copper. J. Electron. Mater. 40, 1394–1402 (2011)

    Article  ADS  Google Scholar 

  188. J.S. Oh, J.S. Oh, J.H. Shin, G.Y. Yeom, K.N. Kim, Nano-welding of Ag nanowires using rapid thermal annealing for transparent conductive films. J. Nanosci. Nanotechnol. 15, 8647–8651 (2015)

    Article  Google Scholar 

  189. Ç.Ö. Girit, A. Zettl, Soldering to a single atomic layer. Appl. Phys. Lett. 91, 193512 (2007)

    Article  ADS  Google Scholar 

  190. Y. Peng, T. Cullis, B. Inkson, Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9, 91–96 (2009)

    Article  ADS  Google Scholar 

  191. Q. Cui, F. Gao, S. Mukherjee, Z. Gu, Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems. Small 5, 1246–1257 (2009)

    Article  Google Scholar 

  192. Y. Ma, H. Li, L. Yang, A. Hu, Reaction-assisted diffusion bonding of Ti6Al4V alloys with Ti/Ni nanostructured multilayers. J. Mater. Process. Technol. 262, 204–209 (2018)

    Article  Google Scholar 

  193. Mafune, J. Am. Chem. Soc. 125, 1636 (2003)

    Google Scholar 

  194. C. Ma, S. Xue, D. Bridges, Z. Palmer, Z. Feng, A. Hu, Low temperature brazing nickel with Ag nanoparticle and Cu-Ag core-shell nanowire nanopastes. J. Alloys Compd. 721, 431–439 (2017)

    Article  Google Scholar 

  195. D. Bridges, R. Xu, A. Hu, Microstructure and mechanical properties of Ni nanoparticle-bonded Inconel 718. Mater. Des. 174, 107784 (2019)

    Article  Google Scholar 

  196. S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, M. Qiu, Laser-induced single point nanowelding of silver nanowires. Appl. Phys. Lett. 108, 121103 (2016)

    Article  ADS  Google Scholar 

  197. L. Lin, G. Zou, L. Liu, W.W. Duley, Y.N. Zhou, Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units. Appl. Phys. Lett. 108, 203107 (2016)

    Article  ADS  Google Scholar 

  198. Y. Deng, Y. Bai, Y. Yu, S. Deng, Y. Tian, G. Zhang, C. Zheng, J. Wu, A. Hu, Laser nanojoining of copper nanowires. J. Laser Appl. 31, 022414 (2019)

    Article  ADS  Google Scholar 

  199. M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan, Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002)

    Article  ADS  Google Scholar 

  200. H. Shehla, A. Ishaq, Y. Khan, I. Javed, R. Saira, N. Shahzad, M. Maaza, Ion beam irradiation-induced nano-welding of Ag nanowires. Micro Nano Lett. 11, 34–37 (2016)

    Article  Google Scholar 

  201. C. Chen, L. Yan, E.S.-W. Kong, Y. Zhang, Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology 17, 2192–2197 (2006)

    Article  ADS  Google Scholar 

  202. S. Hausner, S. Weis, B. Wielage, G. Wagner, Low temperature joining of copper by Ag nanopaste: correlation of mechanical properties and process parameters. Welding World 60, 1277–1286 (2016)

    Article  Google Scholar 

  203. G. Satoh, C. Qiu, S. Naveed, Y. Lawrence Yao, Strength and phase identification of autogenous laser brazed dissimilar metal microjoints. J. Manuf. Sci. Eng. 137 (2015)

    Google Scholar 

  204. S.J. Henley, M. Cann, I. Jurewicz, A. Dalton, D. Milne, Laser patterning of transparent conductive metal nanowire coatings: simulation and experiment. Nanoscale 6, 946–952 (2014)

    Article  ADS  Google Scholar 

  205. H. Yang, J. Lu, P. Ghosh, Z. Chen, W. Wang, H. Ye, Q. Yu, M. Qiu, Q. Li, Plasmonic-enhanced targeted nanohealing of metallic nanostructures. Appl. Phys. Lett. 112, 071108 (2018)

    Article  ADS  Google Scholar 

  206. Y. Li, Y. Li, L. Feng, G. Lu, Metal alloy nanowire joining induced by femtosecond laser heating: A hybrid atomistic-continuum interpretation. Int. J. Heat Mass Transfer 150, 119287 (2020)

    Article  Google Scholar 

  207. A.W. Ghosh, T. Rakshit, S. Datta, Gating of a molecular transistor: electrostatic and conformational. Nano Lett. 4, 565–568 (2004)

    Article  ADS  Google Scholar 

  208. C.H. Ahn, A. Bhattacharya, M. Di Ventra, J.N. Eckstein, C.D. Frisbie, M.E. Gershenson, A.M. Goldman, I.H. Inoue, J. Mannhart, A.J. Millis, A.F. Morpurgo, D. Natelson, J.-M. Triscone, Electrostatic modification of novel materials. Rev. Modern Phys. 78, 1185–1212 (2006)

    Article  ADS  Google Scholar 

  209. H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Observation of molecular orbital gating. Nature 462, 1039–1043 (2009)

    Article  ADS  Google Scholar 

  210. A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974)

    Article  ADS  Google Scholar 

  211. A.R.I. Aviram, P. Roland, The effect of electric fields on double-well-potential molecules. Ann. N.Y Acad. Sci. 852, 339–348 (1998)

    Article  ADS  Google Scholar 

  212. E.R. Brown, J.R. Söderström, C.D. Parker, L.J. Mahoney, K.M. Molvar, T.C. McGill, Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Letters 58, 2291–2293 (1991)

    Article  ADS  Google Scholar 

  213. J.C. Ellenbogen, J.C. Love, Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes. Proc. IEEE 88, 386–426 (2000)

    Google Scholar 

  214. M. Jurow, A.E. Schuckman, J.D. Batteas, C.M. Drain, Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 254, 2297–2310 (2010)

    Article  Google Scholar 

  215. Z. Chen, B. Lee, S. Sarkar, S. Gowda, V. Misra, A molecular memory device formed by HfO2 encapsulation of redox-active molecules. Appl. Phys. Lett. 91, 173111 (2007)

    Article  ADS  Google Scholar 

  216. M.J. Kumar, Molecular diodes and applications. Recent Patents Nanotechnol 1, 51–57 (2007)

    Article  Google Scholar 

  217. N.J. Tao, in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific 2010), pp. 185–193

    Google Scholar 

  218. A. Hu, Q.B. Lu, W.W. Duley, M. Rybachuk, Spectroscopic characterization of carbon chains in nanostructured tetrahedral carbon films synthesized by femtosecond pulsed laser deposition. J. Chem. Phys. 126, 154705 (2007)

    Article  ADS  Google Scholar 

  219. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997)

    Article  ADS  Google Scholar 

  220. P. Avouris, Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35, 1026–1034 (2002)

    Article  Google Scholar 

  221. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  ADS  Google Scholar 

  222. K. Sotthewes, V. Geskin, R. Heimbuch, A. Kumar, H.J.W. Zandvliet, Research update: molecular electronics: the single-molecule switch and transistor. APL Mater. 2, 010701 (2014)

    Article  ADS  Google Scholar 

  223. C. Joachim, J.K. Gimzewski, R.R. Schlittler, C. Chavy, Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995)

    Article  ADS  Google Scholar 

  224. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris, Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002)

    Article  ADS  Google Scholar 

  225. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    Article  ADS  Google Scholar 

  226. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young‘s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  ADS  Google Scholar 

  227. D. Dragoman, M. Dragoman, Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes. Physica E: Low-Dimens. Syst. Nanostruct. 24, 282–289 (2004)

    Article  ADS  Google Scholar 

  228. R.R. Pandey, N. Bruque, K. Alam, R.K. Lake. Carbon nanotube—molecular resonant tunneling diode. Phys. Status Solidi (a), 203, R5–R7 (2006)

    Google Scholar 

  229. S. Venkataramani, U. Jana, M. Dommaschk, F.D. Sönnichsen, F. Tuczek, R. Herges, Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331, 445–448 (2011)

    Article  ADS  Google Scholar 

  230. S. Di Motta, E. Di Donato, F. Negri, G. Orlandi, D. Fazzi, C. Castiglioni, Resistive molecular memories: influence of molecular parameters on the electrical bistability. J. Am. Chem. Soc. 131, 6591–6598 (2009)

    Article  Google Scholar 

  231. Y. Li, H. Li, Y. Li, H. Liu, S. Wang, X. He, N. Wang, D. Zhu, Energy transfer switching in a bistable molecular machine. Org. Lett. 7, 4835–4838 (2005)

    Article  Google Scholar 

  232. M.S. Madani, M. Monajjemi, H. Aghaei, M. Giahi, Thin double wall boron nitride nanotube: nano-cylindrical capacitor. Orient. J. Chem. 33, 1213–1222 (2017)

    Article  Google Scholar 

  233. J.E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B.A. Sheriff, K. Xu, Y. Shik Shin, H.-R. Tseng, J.F. Stoddart, J.R. Heath, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007)

    Google Scholar 

  234. J.R. Pinzon, A. Villalta-Cerdas, L. Echegoyen, in Unimolecular and Supramolecular Electronics I (Springer 2011), pp. 127–174

    Google Scholar 

  235. G. Wang, Y. Kim, M. Choe, T.-W. Kim, T. Lee, A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv. Mater. 23, 755–760 (2011)

    Article  Google Scholar 

  236. J. Liu, Z. Yin, X. Cao, F. Zhao, A. Lin, L. Xie, Q. Fan, F. Boey, H. Zhang, W. Huang, Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS Nano 4, 3987–3992 (2010)

    Article  Google Scholar 

  237. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)

    Article  ADS  Google Scholar 

  238. M. Freitag, M. Radosavljevic, Y. Zhou, A.T. Johnson, W.F. Smith, Controlled creation of a carbon nanotube diode by a scanned gate. Appl. Phys. Lett. 79, 3326–3328 (2001)

    Article  ADS  Google Scholar 

  239. M.A. Hughes, K.P. Homewood, R.J. Curry, Y. Ohno, T. Mizutani, An ultra-low leakage current single carbon nanotube diode with split-gate and asymmetric contact geometry. Appl. Phys. Lett. 103, 133508 (2013)

    Article  ADS  Google Scholar 

  240. T. Tsuji, T. Kakita, M. Tsuji, Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl. Surf. Sci. 206, 314–320 (2003)

    Article  ADS  Google Scholar 

  241. M. Hörstmann-Jungemann, J. Gottmann, D. Wortmann, Nano-and microstructuring of SiO2 and sapphire with fs-laser induced selective etching. J. Laser Micro/Nanoeng. 4, 135–140 (2009)

    Article  Google Scholar 

  242. A. Maurice, L. Bodelot, B.K. Tay, B. Lebental, Controlled, low-temperature nanogap propagation in graphene using femtosecond laser patterning. Small 14, 1801348 (2018)

    Article  Google Scholar 

  243. F. Prins, A. Barreiro, J.W. Ruitenberg, J.S. Seldenthuis, N. Aliaga-Alcalde, L.M.K. Vandersypen, H.S.J. van der Zant, Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011)

    Article  ADS  Google Scholar 

  244. Q. Xu, G. Scuri, C. Mathewson, P. Kim, C. Nuckolls, D. Bouilly, Single electron transistor with single aromatic ring molecule covalently connected to graphene nanogaps. Nano Lett. 17, 5335–5341 (2017)

    Article  ADS  Google Scholar 

  245. H.W.C. Postma, Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10, 420–425 (2010)

    Article  ADS  Google Scholar 

  246. J. Prasongkit, A. Grigoriev, B. Pathak, R. Ahuja, R.H. Scheicher, Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 11, 1941–1945 (2011)

    Article  ADS  Google Scholar 

  247. W. Kubo, S. Fujikawa, Au double nanopillars with nanogap for plasmonic sensor. Nano Lett. 11, 8–15 (2011)

    Article  ADS  Google Scholar 

  248. E. Braun*, K. Keren, From DNA to transistors. Adv. Phys. 53, 441–496 (2004)

    Google Scholar 

  249. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998)

    Article  ADS  Google Scholar 

  250. J. Richter, M. Mertig, W. Pompe, I. Mönch, H.K. Schackert, Construction of highly conductive nanowires on a DNA template. Appl. Phys. Lett. 78, 536–538 (2001)

    Article  ADS  Google Scholar 

  251. R. Seidel, M. Mertig, W. Pompe, Scanning force microscopy of DNA metallization. Surface Interface Anal. 33, 151–154 (2002)

    Article  Google Scholar 

  252. K. Keren, R.S. Berman, E. Braun, Patterned DNA metallization by sequence-specific localization of a reducing agent. Nano Lett. 4, 323–326 (2004)

    Article  ADS  Google Scholar 

  253. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002)

    Article  ADS  Google Scholar 

  254. K. Keren, R.S. Berman, E. Buchstab, U. Sivan, E. Braun, DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003)

    Article  ADS  Google Scholar 

  255. Y. Ye, L. Chen, X. Liu, U.J. Krull, DNA and microfluidics: building molecular electronics systems. Anal. Chim. Acta 568, 138–145 (2006)

    Article  Google Scholar 

  256. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. Huis in’t Veld, V. Kovalenko, Laser nano-manufacturing—State of the art and challenges. CIRP Ann. 60 735–755 (2011)

    Google Scholar 

  257. C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Müller, B. Richter, M. Wegener, 3D laser micro- and nanoprinting: challenges for chemistry. Angewandte Chemie Int. Edn. 56, 15828–15845 (2017)

    Article  Google Scholar 

  258. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016)

    Article  ADS  Google Scholar 

  259. C. Liao, W. Anderson, F. Antaw, M. Trau, Two-photon nanolithography of tailored hollow three-dimensional microdevices for biosystems. ACS Omega 4, 1401–1409 (2019)

    Article  Google Scholar 

  260. K.S. Worthington, A.-V. Do, R. Smith, B.A. Tucker, A.K. Salem, Two-photon polymerization as a tool for studying 3D printed topography-induced stem cell fate. Macromol. Biosci. 19, 1800370 (2019)

    Article  Google Scholar 

  261. Z.B. Wang, N. Joseph, L. Li, B.S. Luk’Yanchuk, A review of optical near-fields in particle/tip-assisted laser nanofabrication. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 224, 1113–1127 (2010)

    Article  Google Scholar 

  262. W. Guo, Z.B. Wang, L. Li, D.J. Whitehead, B.S. Luk’yanchuk, Z. Liu, Near-field laser parallel nanofabrication of arbitrary-shaped patterns. Appl. Phys. Lett. 90, 243101 (2007)

    Google Scholar 

  263. S.M. Huang, M.H. Hong, B.S. Luk’yanchuk, Y.W. Zheng, W.D. Song, Y.F. Lu, T.C. Chong, Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92, 2495–2500 (2002)

    Google Scholar 

  264. J.W. Kingsley, S.K. Ray, A.M. Adawi, G.J. Leggett, D.G. Lidzey, Optical nanolithography using a scanning near-field probe with an integrated light source. Appl. Phys. Lett. 93, 213103 (2008)

    Article  ADS  Google Scholar 

  265. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004)

    Article  ADS  Google Scholar 

  266. W. Srituravanich, S. Durant, H. Lee, C. Sun, X. Zhang, Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenomena 23, 2636–2639 (2005)

    Article  ADS  Google Scholar 

  267. Z.-W. Liu, Q.-H. Wei, X. Zhang, Surface plasmon interference nanolithography. Nano Lett. 5, 957–961 (2005)

    Article  ADS  Google Scholar 

  268. J. Dong, J. Liu, G. Kang, J. Xie, Y. Wang, Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci. Rep. 4, 5618 (2014)

    Article  ADS  Google Scholar 

  269. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

  270. E. Rittweger, K.Y. Han, S.E. Irvine, C. Eggeling, S.W. Hell, STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009)

    Article  ADS  Google Scholar 

  271. B. Harke, P. Bianchini, F. Brandi, A. Diaspro, Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography. Chem. Phys. Chem. 13, 1429–1434 (2012)

    Article  Google Scholar 

  272. B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Schönle, S.W. Hell, Resolution scaling in STED microscopy. Opt. Express 16, 4154–4162 (2008)

    Article  ADS  Google Scholar 

  273. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, T.A. Klar, 120 nm resolution and 55 nm structure size in STED-lithography. Opt. Express 21, 10831–10840 (2013)

    Article  ADS  Google Scholar 

  274. A.G. Vitukhnovsky, D.A. Chubich, S.P. Eliseev, V.V. Sychev, D.A. Kolymagin, A.S. Selyukov, Advantages of STED-inspired 3D direct laser writing for fabrication of hybrid nanostructures. J. Russian Laser Res. 38, 375–382 (2017)

    Article  Google Scholar 

  275. M. Wiesbauer, R. Wollhofen, B. Vasic, K. Schilcher, J. Jacak, T.A. Klar, Nano-anchors with single protein capacity produced with STED lithography. Nano Lett. 13, 5672–5678 (2013)

    Article  ADS  Google Scholar 

  276. X. He, T. Li, J. Zhang, Z. Wang, STED direct laser writing of 45 nm width nanowire. Micromachines 10, 726 (2019)

    Article  Google Scholar 

  277. Z. Gan, Y. Cao, R.A. Evans, M. Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This book chapter is partially based on the lectures of Dr. Anming Hu presented at the course of “introduction to micro-to-nanomanufacturing” at the University of Tennessee Knoxville (UTK) for the period of 2014 to 2019. Some materials are modified from the students’ presentations and course exercises. The contribution from all students is therefore recognized. The authors are also grateful to Dr. Seungha Shin (UTK) for numerical simulation and computation simulation, Dr. Jayne Wu (UTK) for ACEK mechanism, and Dr. Feng-yuan Zhang (UTK) for the scaling theory. The cited research work was supported by numerical funds. These supports are also sincerely grateful by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anming Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, A. et al. (2020). Introduction to Laser Micro-to-Nano Manufacturing. In: Hu, A. (eds) Laser Micro-Nano-Manufacturing and 3D Microprinting. Springer Series in Materials Science, vol 309. Springer, Cham. https://doi.org/10.1007/978-3-030-59313-1_1

Download citation

Publish with us

Policies and ethics