Skip to main content

Multi-Photon 3D Lithography and Calcination for sub-100-nm Additive Manufacturing of Inorganics

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Abstract

Development of 3D micro-/nanostructures leads to device miniaturization, enhanced function, and advanced integration opportunities in the fields of photonics, micro-fluidics, micro-mechanics, micro-electronics, and micro-optics. Multi-photon lithography (also widely known as two-photon polymerization) as a laser direct writing technique offers the flexibility to rapidly prototype 3D structure for additive manufacturing. Recent developments of this ultrafast laser technique together with the advances in material science allowed routine 3D printing of inorganic structures via a combination of mask-less photopolymerization and thermal post-treatment (pyrolysis and/or calcination). The present achievements are very promising for technical applications where highly resilient structures (made out of inert and durable materials) are required to withstand harsh environments, for high-intensity optics applications in open space industry.

In this chapter, the physical and chemical principles for 3D nanostructuring of inorganics are covered via laser lithography of hybrid and composite materials with subsequent post-treatment. The most recent advances are overviewed, and the major achievements are highlighted including resilient sub-100-nm feature fabrication made of crystalline nanostructures, with a high refractive index and transparency. Advances and limitations within the context of the emerging trends and potential near-future applications are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Stampfl, R. Liskas, A. Ovsianikov, Multiphoton Lithography (Wiley, London, 2016)

    Book  Google Scholar 

  2. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997)

    Article  Google Scholar 

  3. K. Sugioka, Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review. Int. J. Extrem. Manuf. 1, 012003 (2019)

    Article  Google Scholar 

  4. M. Mangirdas, A. Z̄ukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, 16133 (2016)

    Google Scholar 

  5. L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, M. Malinauskas, Mesoscale laser 3D printing. Opt. Exp. 27(11), 15205–15221 (2019)

    Article  Google Scholar 

  6. E. Skliutas, M. Lebedevaite, E. Kabouraki, T. Baldacchini, J. Ostrauskaite, M. Vamvakaki, M. Farsari, S. Juodkazis, M. Malinauskas, Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 10(4), 1211–1242 (2021)

    Article  Google Scholar 

  7. T. Baldacchini, Three-Dimensional Microfabrication Using Two Photon Polymerization: Fundamentals, Technology, and Applications (Elsevier, Amsterdam, 2015)

    Google Scholar 

  8. L. Yang, F. Mayer, U.H.F. Bunz, E. Blasco, M. Wegener, Multi-material multi-photon 3D laser micro- and nanoprinting. Light Adv. Manuf. 2, 2021020003 (2021)

    Google Scholar 

  9. P. Kiefer, V. Hahn, M. Nardi, L. Yang, E. Blasco, C. Barner-Kowollik, M. Wegener, Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting. Adv. Opt. Mater. 8, 2000895 (2020)

    Article  Google Scholar 

  10. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, S. Juodkazis, Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Opt. Exp. 18(10), 10209–10221 (2010)

    Article  Google Scholar 

  11. V. Hahn, T. Messer, N. Maximilian Bojanowski, E.R. Curticean, I. Wacker, R.R. Schroder, E. Blasco, M. Wegener, Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021)

    Article  Google Scholar 

  12. V. Hahn, P. Kiefer, T. Frenzel, J. Qu, E. Blasco, C. Barner-Kowollik, M. Wegener, Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials. Adv. Func. Mater. 30, 1907795 (2020)

    Article  Google Scholar 

  13. M. Lago, A. Rodriguez, R. Sendón, J. Bustos, M. Nieto, P. Paseiro, Photoinitiators: a food safety review. Food Addit. Contam. A: Chem. Anal. Control Exposure Risk Assess. 32, 779–798 (2015)

    Google Scholar 

  14. T. Bérces, Chapter 3. The Decomposition of Aldehydes and Ketones, volume 5 of Comprehensive Chemical Kinetics (Elsevier, Amsterdam, 1972)

    Google Scholar 

  15. E. Andrzejewska, Three-Dimensional Microfabrication Using Two-photon Polymerization. Micro and Nano Technologies (William Andrew Publishing, Oxford, 2016)

    Google Scholar 

  16. I. Bernardeschi, M. Ilyas, L. Beccai, A review on active 3D microstructures via direct laser lithography. Adv. Intell. Syst. 3(9), 2100051 (2021)

    Google Scholar 

  17. J. Bauer, A.G. Izard, Y. Zhang, T. Baldacchini, L. Valdevit, Thermal post-curing as an efficient strategy to eliminate process parameter sensitivity in the mechanical properties of two-photon polymerized materials. Opt. Exp. 28(14), 20362–20371 (2020)

    Article  Google Scholar 

  18. G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, C. David, Beyond 100nm resolution in 3D laser lithography—post processing solutions. Microelectron. Eng. 191, 25–31 (2018)

    Article  Google Scholar 

  19. D. Gailevičius, V. Padolskytė, L. Mikoliānaitė, S. Šakirzanovas, S. Juodkazis, M. Malinauskas, Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horizons 4, 647–651 (2019)

    Article  Google Scholar 

  20. G. Merkininkaite, E. Aleksandravicius, M. Malinauskas, D. Gailevicius, S. Sakirzanovas, Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures. Opto-Electron. Adv. 5, 210077 (2022)

    Article  Google Scholar 

  21. E. Balčiūnas, S.J. Baldock, N. Dreižė, M. Grubliauskaitė, S. Coultas, D.L. Rochester, M. Valius, J.G. Hardy, D. Baltriukienė, 3D printing hybrid organometallic polymer-based biomaterials via laser two-photon polymerization. Polym. Int. 68(11), 1928–1940 (2019)

    Article  Google Scholar 

  22. G. Barroso, Q. Li, R.K. Bordia, G. Motz, Polymeric and ceramic silicon-based coatings—a review. J. Mater. Chem. A 7, 1936–1963 (2019)

    Article  Google Scholar 

  23. R.K. Gupta, R. Mishra, S. Kumar, A. Ranjan, L. M. Manocha, N. Eswara Prasad, Development of Polycarbosilane PCS Polymer and PCS-Derived SiC Fibers and Their Composites (Springer, Berlin, 2020)

    Google Scholar 

  24. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review. J. Eur. Ceram. Soc. 39(4), 661–687 (2019)

    Article  Google Scholar 

  25. P.A. Mathews, S. Koonisetty, S. Bhardwaj, P. Biswas, R. Johnson, P. Gadhe, Patent trends in additive manufacturing of ceramic materials (2020)

    Google Scholar 

  26. G. Merkininkaitė, D. Gailevičius, S. Šakirzanovas, L. Jonušauskas, Polymers for regenerative medicine structures made via multiphoton 3D lithography. Int. J. Polym. Sci. 2019, 3403548 (2019)

    Article  Google Scholar 

  27. M. Farsari, M. Vamvakaki, B. Chichkov, Multiphoton polymerization of hybrid materials. J. Opt. 12, 124001 (2010)

    Article  Google Scholar 

  28. M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, Ultrafast-laser micro/nano-structuring of photo-polymers: a decade of advances. Phys. Rep. 533, 1–31 (2013)

    Article  Google Scholar 

  29. G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles, Sol–gel based materials for biomedical applications. Progr. Mater. Sci. 77, 1–79 (2016)

    Article  Google Scholar 

  30. J. Liu, Y. Liu, C. Deng, K. Yu, X. Fan, W. Zhang, Y. Tao, H.e Hu, L. Deng, W. Xiong, 3D printing nano-architected semiconductors based on versatile and customizable metal-bound composite photoresins. Adv. Mat. Tech. 7(6) 2101230 (2022)

    Google Scholar 

  31. J. Livage, Sol-gel synthesis of hybrid materials. Bull. Mater. Sci. 22, 201–205 (1999)

    Article  Google Scholar 

  32. M. Oubaha, Introduction to hybrid sol-gel materials, in World Scientific Reference of Hybrid Materials (2019), pp. 1–36

    Google Scholar 

  33. B.L. Rivas, B.F. Urbano, J. Sánchez, Water-soluble and insoluble polymers, nanoparticles, nanocomposites and hybrids with ability to remove hazardous inorganic pollutants in water. Front. Chem. 6, 320 (2018)

    Article  Google Scholar 

  34. S. Fafenrot, N. Grimmelsmann, M. Wortmann, A. Ehrmann, Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 10(10), 1199 (2017)

    Google Scholar 

  35. E. Balčiūnas, S. Baldock, N. Dreize, M. Grubliauskaitė, S. Coultas, D. Rochester, M. Valius, J. Hardy, D. Baltriukiene, 3D printing hybrid organometallic polymer-based biomaterials via laser two-photon polymerisation. Polym. Int. 68, 08 (2019)

    Article  Google Scholar 

  36. Q. Wen, Z. Yu, R. Riedel, The fate and role of in situ formed carbon in polymer-derived ceramics. Progr. Mater. Sci. 109, 100623 (2020)

    Article  Google Scholar 

  37. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. Maccraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257–2262 (2008)

    Article  Google Scholar 

  38. P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010)

    Google Scholar 

  39. P. Colombo, G. Mera, R. Riedel, Gian D. Sorarú, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 1805–1837 (2010)

    Google Scholar 

  40. L. Jonušauskas, D. Gailevicius, L. Mikoliunaite, D. Sakalauskas, S. Sakirzanovas, S. Juodkazis, Optically clear and resilient free-form μ-optics 3D-printed via ultrafast laser lithography. Materials 10, 12 (2017)

    Article  Google Scholar 

  41. D.L.G. Hernandez, S. Varapnickas, G. Merkininkaite, A. Ciburys, D. Gailevičius, S. Sakirzanovas, S. Juodkazis, M. Malinauskas, Laser 3D printing of inorganic free-form micro-optics. Photonics 8(12), 577 (2021)

    Google Scholar 

  42. M. Nogami, Glass preparation of the ZrO2-SiO2 system by the sol-gel process from metal alkoxides. J. Non-Crystall. Sol. 69, 415–423 (1985)

    Article  Google Scholar 

  43. M. Schmid, F. Sterl, S. Thiele, A. Herkommer, H. Giessen, 3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range. Opt. Lett. 46(10), 2485–2488 (2021)

    Article  Google Scholar 

  44. A. Vyatskikh, R.C. Ng, B. Edwards, R.M. Briggs, J.R. Greer, Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett. 20(5), 3513–3520 (2020)

    Article  Google Scholar 

  45. K. Arnold, S. Sevim, J. Puigmartí–Luis, A. Quick, M. Thiel, A. Hrynevich, P.D. Dalton, D. Helmer, B.E. Rapp, F. Kotz, P. Risch, Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nat. Commun. 10(1439) (2019)

    Google Scholar 

  46. J. Bauer, C. Crook, A.G. Izard, Z.C. Eckel, N. Ruvalcaba, T.A. Schaedler, L. Valdevit, Additive manufacturing of ductile, ultrastrong polymer-derived nanoceramics. Matter 1(6), 1547–1556 (2019)

    Article  Google Scholar 

  47. Z. Vangelatos, H.-M. Sheikh, P.-S. Marcus, C.-P. Grigoropoulos, V.-Z. Lopez, G. Flamourakis, M. Farsari, Strength through defects: A novel Bayesian approach for the optimization of architected materials. Sci. Adv. 7, 2218 (2021)

    Article  Google Scholar 

  48. E. Blasco, J. Muller, P. Muller, V. Trouillet, M. Schon, T. Scherer, C. Barner-Kowollik, M. Wegener, Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Adv. Mater. 28, 3592–3595 (2016)

    Article  Google Scholar 

  49. C. Ido, I.S.R.K. Chaitanya, B. Alisa, L. Uriel, M. Shlomo, 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv. Mat. 32(28), 2001675 (2020)

    Google Scholar 

  50. Y. Cheng, C. Qun, P. Pumidech, L. Scott, G. Mallikarjunarao, L. Nickolay, V.B. Jill, 3D-printed carbon electrodes for neurotransmitter detection. Angew. Chem. Int. Ed. 57(43), 14255–14259 (2018)

    Article  Google Scholar 

  51. D.W. Yee, M.L. Lifson, B.W. Edwards, J.R. Greer, Additive manufacturing of 3D-architected multifunctional metal oxides. Adv. Mater. 31(33), 1901345 (2019)

    Google Scholar 

  52. G. Konstantinou, E. Kakkava, L. Hagelüken, P. Vallachira W. Sasikumar, J. Wang, M.G. Makowska, G. Blugan, N. Nianias, F. Marone, H. Van Swygenhoven, J. Brugger, D. Psaltis, C. Moser, Additive micro-manufacturing of crack-free PDCs by two-photon polymerization of a single, low-shrinkage preceramic resin. Addit. Manuf. 35, 101343 (2020)

    Google Scholar 

  53. A. Zakhurdaeva, P.I. Dietrich, H. Hölscher, Ch. Koos, J.G. Korvink, S. Sharma, Custom-designed glassy carbon tips for atomic force microscopy. Micromachines 8(9), 285 (2017)

    Google Scholar 

  54. S. Passinger, M. Saifullah, C. Reinhardt, K.R.V Subramanian, B. Chichkov, M. Welland, Direct 3D patterning of TiO2 using femtosecond laser pulses. Ad. Mat. 19, 1218–1221 (2007)

    Google Scholar 

  55. R.K. Jayne, Th. J. Stark, J.B. Reeves, D.J. Bishop, A.E. White, Dynamic actuation of soft 3D micromechanical structures using micro-electromechanical systems (MEMS). Adv. Mater. Technol. 3(3), 1700293 (2018)

    Google Scholar 

  56. Z. Vangelatos, L. Wang, C.P. Grigoropoulos, Laser pyrolysis for controlled morphing and chemical modification on 3D microlattices. J. Micromech. Microeng. 30, 055008 (2020)

    Article  Google Scholar 

  57. B. Cardenas-Benitez, C. Eschebaum, D. Mager, J. Korvink, M. Madou, U. Lemmer, I. De Leon, S.O. Martinez-Chapa, Pyrolysis-induced shrinking of three-dimensional structures fabricated by two-photon polymerization: experiment and theoretical model. Microsyst. Nanoeng. 5, 1–13 (2019)

    Article  Google Scholar 

  58. Y. Liu, H. Wang, J. Ho, R. Ng, R. Ng, V. Hall-Chen, E. Koay, Z. Dong, H. Liu, C.W. Qiu, J. Greer, J. Yang, Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 1–8 (2019)

    Google Scholar 

  59. T.A. Pham, D.-P. Kim, T.-W. Lim, S.-H. Park, D.-Y. Yang, K.-S. Lee, Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16(9), 1235–1241 (2006)

    Article  Google Scholar 

  60. F. Kotz, A.S. Quick, P. Risch, T. Martin, T. Hoose, M. Thiel, D. Helmer, B.E. Rapp, Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv. Mat. 33(9), 2006341 (2021)

    Google Scholar 

  61. W. Wang, F. Ye, S. Yue, H. Guo, G. Gao, Y. Zhao, Q. Fang, C. Nguyen, X. Zhang, J. Bao, J.T. Robinson, P.M. Ajayan, J. Lou, X. Wen, B. Zhang, 3D-printed silica with nanoscale resolution. Nat. Mater. 20, 1506–1511 (2021)

    Article  Google Scholar 

  62. J. Fischer, G. von Freymann, M. Wegener, The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578–3582 (2010)

    Article  Google Scholar 

  63. J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7, 22–44 (2013)

    Article  Google Scholar 

  64. R. Wollhofen, J. Katzmannn, C. Hrelescu, J. Jacak, T.A. Klar, 120 nm resolution and 55 nm structure size in STED-lithography. Opt. Exp. 21, 10831–10840 (2013)

    Article  Google Scholar 

  65. A. Zukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, R. Gadonas, Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics. Laser. Photon. Rev. 9(6), 706–712 (2015)

    Article  Google Scholar 

  66. S. Grauzeliene, A. Navaruckiene, E. Skliutas, M. Malinauskas, A. Serra, J. Ostrauskaite, Vegetable oil-based thiol-ene/thiol-epoxy resins for laser direct writing 3D micro-/nano-lithography. Polymers 13, 872 (2021)

    Article  Google Scholar 

  67. A. Navaruckiene, E. Skliutas, S. Kasetaite, S. Rekstyte, V. Raudoniene, D. Bridziuviene, M. Malinauskas, J. Ostrauskaite, Vanillin acrylate-based resins for optical 3D printing. Polymers 12(2), 397 (2020)

    Google Scholar 

  68. P. Boch, J.-C Niepce, Ceramic Materials: Processes, Properties and Applications (2010)

    Google Scholar 

  69. J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, V.R. Diaz, A. D’Angio, P. Ramanujam, T. Zhang, T.S.R.C. Murthy, Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—a review. Int. Mater. Rev. 65(7), 389–444 (2020)

    Article  Google Scholar 

  70. R. Bermejo, L. Llanes, P. Supancic, T. Lube, Thermal shock behaviour of an Al2O3/ZrO2 multilayered ceramic with residual stresses due to phase transformations. Key Eng. Mater. 290, 191–198 (2005)

    Article  Google Scholar 

  71. W. Liu, Y. Xie, Z. Deng, Y. Peng, J. Dong, Z. Zhu, D. Ma, Z. Yi, G. Zhang, X. Wang, Preparation of Al2TiO5 ceramic fibers and thermal expansion, insulation, and strength of ZrO2-Al2TiO5 fiberboards (2021)

    Google Scholar 

  72. Z.L. Belal M.S. Elmaghraby, A.I.M. Ismail, Thermal expansion, physico-mechanical properties and microstructure of cordierite synthesized from different starting materials. Int. Ceram. Rev. 64, 209–213 (2015)

    Article  Google Scholar 

  73. E. Bajraktarova Valjakova, V. Korunoska-Stevkovska, B. Kapusevska, N. Gigovski, C. Bajraktarova Misevska, A. Grozdanov, Contemporary dental ceramic materials, a review: Chemical composition, physical and mechanical properties, indications for use. Open Access Macedonian J. Med. Sci. 6, 1742 (2018)

    Article  Google Scholar 

  74. E. Moustafa, Hybridization effect of BN and Al2O3 nanoparticles on the physical, wear, and electrical properties of aluminum AA1060 nanocomposites. Appl. Phys. A, 127, 1–9 (2021)

    Article  Google Scholar 

  75. Q. Chen, B. Zou, Q. Lai, Y. Wang, R. Xue, H. Xing, X. Fu, C. Huang, P. Yao, A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly. J. Mech. Behav. Biomed. Mater. 98, 327–335 (2019)

    Article  Google Scholar 

  76. H.M. Oh, Y.J. Park, H.N. Kim, J.W. Ko, H.K. Lee, Effect of milling ball size on the densification and optical properties of transparent Y2O3 ceramics. Ceram. Int. 47(4), 4681–4687 (2021)

    Article  Google Scholar 

  77. A. Solodar, R. Drevinskas, P. Kazansky, I. Abdulhalim, A. Cerkauskaite, Ultrafast laser induced nanostructured ITO for liquid crystal alignment and higher transparency electrodes. Appl. Phys. Lett. 113, 081603 (2018)

    Article  Google Scholar 

  78. T.D. Nguyen, L.P. Yeo, T.C. Kei, D. Mandler, S. Magdassi, A.I.Y. Tok, Efficient near infrared modulation with high visible transparency using SnO2–WO3 nanostructure for advanced smart windows. Adv. Opt. Mater. 7(8), 1801389 (2019)

    Google Scholar 

  79. L. Wang, B. Lu, X. Liu, Y. Shi, J. Li, Y. Liu, Fabrication and upconversion luminescence of novel transparent Er2O3 ceramics. J. Eur. Ceram. Soc. 40(4), 1767–1772 (2020)

    Article  Google Scholar 

  80. K. Hashimoto, H. Irie, A Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005)

    Article  Google Scholar 

  81. H. Yin, A. Akey, R. Jaramillo, Large and persistent photoconductivity due to hole-hole correlation in CdS. Phys. Rev. Mater. 2, 084602 (2018)

    Article  Google Scholar 

  82. Y. Yao, D. Sang, L. Zou, Q. Wang, C. Liu, A review on the properties and applications of WO3 nanostructure based optical and electronic devices. Nanomaterials 11(8), 2136 (2021)

    Google Scholar 

  83. S. Trolier-McKinstry, S. Zhang, A.J. Bell, X. Tan, High-performance piezoelectric crystals, ceramics, and films. Annu. Rev. Mater. Res. 48(1), 191–217 (2018)

    Article  Google Scholar 

  84. B. Szafraniak, Ł. Fuśnik, J. Xu, F. Gao, A. Brudnik, A. Rydosz, Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: a review. Coatings 11(2) (2021)

    Google Scholar 

  85. D. Mendes, D. Sousa, An. C. Cerdeira, L. C.J. Pereira, A. Marques, J. Murta-Pina, A. Pronto, I. Ferreira, Low-cost and high-performance 3D printed YBCO superconductors. Ceram. Int. 47(1), 381–387 (2021)

    Google Scholar 

  86. Z. Chen, Z. Li, J. Li, C. Liu, Ch. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review. J. Eur. Ceram. Soc. 39(4), 661–687 (2019)

    Article  Google Scholar 

  87. K. Watari, High thermal conductivity non-oxide ceramics. J. Ceram. Soc. Jpn. 109(1265), S7–S16 (2001)

    Article  Google Scholar 

  88. S. Thapliyal, Manufacturing and characterization of a 3D-printable, antibacterial, magnesium oxide nanoparticles reinforced ABS filament. Ph.D. Thesis, 04 2017

    Google Scholar 

  89. B. Leukers, H. Gülkan, S. Irsen, S. Milz, C. Tille, H. Seitz, M. Schieker, Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing. Materialwiss. Werkstofftech. 36, 781–787, 12 (2005)

    Google Scholar 

  90. X. Du, S. Fu, Y. Zhu, 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J. Mater. Chem. B 6, 06 (2018)

    Article  Google Scholar 

  91. K. Weber, D. Werdehausen, P. König, S. Thiele, M. Schmid, M. Decker, P.W. De Oliveira, A. Herkommer, H. Giessen, Tailored nanocomposites for 3D printed micro-optics. Opt. Mater. Exp. 10(10), 2345–2355 (2020)

    Article  Google Scholar 

  92. T. Shimazu, H. Maeda, E.H. Ishida, M. Miura, N. Isu, A. Ichikawa, K. Ota, High-damping and high-rigidity composites of Al2TiO5–MgTi2O5 ceramics and acrylic resin. J. Mater. Sci. 44, 93–101 (2009)

    Article  Google Scholar 

  93. J. Wang, Extrusion-based 3D printing of macro/microstructures for advanced lithium/sodium batteries (2019)

    Google Scholar 

  94. Z. Liu, J. Yu, P. Li, W. Xiaolong, Z. Yusong, X. Chu, X. Wang, H. Li, Z. Wu, Band alignments of -Ga2O3 with MgO, Al2O3 and MgAl2O4 measured by X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 52, 295104 (2019)

    Article  Google Scholar 

  95. C. Han, R. Babicheva, J. Dong Qiu Chua, U. Ramamurty, S. B. Tor, C. N. Sun, K. Zhou, Microstructure and mechanical properties of (TiB+TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders. Addit. Manuf. 36, 101466 (2020)

    Google Scholar 

  96. K.A. Hamzah, C.K. Yeoh, M.M. Noor, P.L. Teh, Y.Y. Aw, S.A. Sazali, W.M.A.W. Ibrahim, Mechanical properties and thermal and electrical conductivity of 3D printed ABS-copper ferrite composites via 3D printing technique. J. Thermoplast. Compos. Mater. 35(1), 3–16 (2022)

    Article  Google Scholar 

  97. R. Venkatkarthick, J. Qin, A new 3D composite of V2O5-based biodegradable ceramic material prepared by an environmentally friendly thermal method for supercapacitor applications. Environ. Technol. Innovation 22, 101474 (2021)

    Article  Google Scholar 

  98. Li B. Chen Z. Mi S.-Lao C. Liu C., Cheng X, Fabrication and characterization of 3D-printed highly-porous 3D LiFePO4 electrodes by low temperature direct writing process. Materials 8, 934 (2017)

    Google Scholar 

  99. M. Väätäjä, H. Kähäri, K. Ohenoja, M. Sobocinski, J. Juuti, H. Jantunen, 3D printed dielectric ceramic without a sintering stage. Sci. Rep. 8, 10 (2018)

    Article  Google Scholar 

  100. J. Kopfler, T. Frenzel, J. Schamlian, M. Wegener, Fused-silica 3D chiral metamaterials via helium-assisted microcasting supporting topologically protected twist edge resonances with high mechanical quality factors. Adv. Mater. 33, 2103205 (2021)

    Article  Google Scholar 

  101. S. Rekstyte, E. Kaziulionyte, E. Balciunas, D. Kaskelyte, M. Malinauskas, Direct laser fabrication of composite material 3D microstructured scaffoldings. J. Laser Micro. Nanoen. 9, 25–30 (2014)

    Article  Google Scholar 

  102. E. Skliutas, M. Lebedevaite, S. Kasetaite, S. Rekstyte, S. Lileikis, J. Ostrauskaite, M. Malinauskas, A bio-based resin for a multi-scale optical 3D printing. Sci. Rep. 10, 9758 (2020)

    Article  Google Scholar 

  103. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 11763 (2016)

    Article  Google Scholar 

  104. A. Butkute, L. Cekanavičius, G. Rimselis, D. Gailevicius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonusauskas, M. Malinauskas, Optical damage thresholds of microstructures made by laser three-dimensional nanolithography. Opt. Lett. 45, 13–16 (2020)

    Article  Google Scholar 

  105. A. Toulouse, J. Drozella, P. Motzfeld, N. Fahrbach, V. Aslani, S. Thiele, H. Giessen, A.M. Herkommer, Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design. Opt. Exp. 30, 707–720 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge Dr. Maria Farsari (IESL-FORTH) and Prof. Saulius Juodkazis (SUT) for valuable information and fruitful discussions regarding materials and sintering processes. We are heartily thankful to PhD. students Edvinas Skliutas (VU) and Diana Laura Gonzalez Hernandez (at a time VU) for their help with SEM and contribution of some items presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangirdas Malinauskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merkininkaitė, G., Aleksandravičius, E., Varapnickas, S., Gailevičius, D., Šakirzanovas, S., Malinauskas, M. (2023). Multi-Photon 3D Lithography and Calcination for sub-100-nm Additive Manufacturing of Inorganics. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_22

Download citation

Publish with us

Policies and ethics