Skip to main content

Other Nanomanufacturing Principles and Technological Breakthroughs

  • Chapter
  • First Online:
Fundamental Research on Nanomanufacturing

Abstract

Focusing on the core research goals of nanoprecision manufacturing, nanoscale manufacturing, and cross-scale manufacturing in nanomanufacturing, this Major Research Plan is aimed at subdivided areas such as nanomaterial manufacturing, special nanoprocessing methods, nanodevice integrated manufacturing, and nanometering and measurement. The corresponding layout and project support have been achieved, and breakthroughs in principles and methods have been achieved, providing support for the overall development of China’s nanomanufacturing field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinchetti V (2018) Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat Nanotechnol 13(2):145–151

    Article  Google Scholar 

  2. Liu W, Li Y, Wang T et al (2013) Elliptical polymer brush ring array mediated protein patterning and cell adhesion on patterned protein surfaces. ACS Appl Mater Inter 5(23):12587–12593

    Article  Google Scholar 

  3. Liu W, Liu X, Ge P et al (2015) Hierarchical-multiplex DNA patterns mediated by polymer brush nanocone arrays that possess potential application for specific DNA sensing. ACS Appl Mater Inter 7(44):24760–24771

    Article  Google Scholar 

  4. Zhu S, Zhang J, Tang S et al (2012) Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to upconversion bioimaging applications. Adv Funct Mater 22(22):4732–4740

    Article  Google Scholar 

  5. Zhang G, Chen J, Yang S et al (2011) Preparation of amino-acid-regulated hydroxyapatite particles by hydrotermal method. Mater Lett 65(3):572–574

    Article  Google Scholar 

  6. Zhong L, Zhou X, Bao S et al (2011) Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods. J Mater Chem 21(38):14448–14455

    Article  Google Scholar 

  7. Zhang M, Xiong Q, Wang Y et al (2014) A well-defined coil-comb polycationic brush with “star polymers” as side chains for gene delivery. Polym Chem-UK 5(16):4670–4678

    Article  Google Scholar 

  8. Pu YC, Wang G, Chang KD et al (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13(8):3817–3823

    Article  Google Scholar 

  9. Lu X, Yu M, Wang G et al (2013) H-TiO2@ MnO2/H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25(2):267–272

    Article  MathSciNet  Google Scholar 

  10. Lu X, Wang G, Zhai T et al (2012) Hydrogenated TiO2 nnotube arrays for supercapacitors. Nano Lett 12(3):1690–1696

    Article  Google Scholar 

  11. Li Q, Wang ZL, Li GR et al (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12(7):3803–3807

    Article  Google Scholar 

  12. Lu H, Lin J, Wu N et al (2015) Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl Phys Lett 106(9):27

    Article  Google Scholar 

  13. Cui Z (2016) Printed electronics: materials, technologies and applications. John Wiley & Sons, Singapore.

    Google Scholar 

  14. Chen Z, Qin X, Zhou T et al (2015) Ethanolamine-assisted synthesis of size-controlled indium tin oxide nanoinks for low temperature solution deposited transparent conductive films. J Mater Chem C 3(43):11464–11470

    Article  Google Scholar 

  15. Cui Z (2017) Printing practice for the fabrication of flexible and stretchable electronics. Sci China Technol Sci:1–9.

    Google Scholar 

  16. Lai M, Zhang X, Fang F et al (2013) Study on nanometric cutting of germanium by molecular dynamics simulation. Nanoscale Res Lett 8(1):13

    Article  Google Scholar 

  17. Fang FZ, Chen YH, Zhang XD et al (2011) Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann Manuf Techn 60(1):527–530

    Article  Google Scholar 

  18. Gong H, Fang FZ, Hu XT (2010) Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials. Int J Mach Tool Manu 50(3):303–307

    Article  Google Scholar 

  19. Yuan D, Zhu P, Fang F et al (2013) Study of nanoscratching of polymers by using molecular dynamics simulations. Sci China Phys Mech 56(9):1760–1769

    Article  Google Scholar 

  20. Ji J, Hu Y, Meng Y et al (2016) The steady flying of a plasmonic flying head over a photoresistcoated surface in a near-field photolithography system. Nanotechnology 27(18):185303

    Article  Google Scholar 

  21. Ji J, Meng Y, Zhang J (2015) Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination. J Nanophotonics 9(1):093794

    Article  Google Scholar 

  22. Ji J, Meng Y, Sun L et al (2016) Strong focusing of plasmonic lens with nanofinger and multiple concentric rings under radially polarized illumination. Plasmonics 11(1):23–27

    Article  Google Scholar 

  23. Liu Z, Xia X, Sun Y et al (2012) Visible transmission response of nanoscale complementary metamaterials for sensing applications. Nanotechnology 23(27):275503.

    Google Scholar 

  24. Li L, Sun W, Tian S et al (2012) Floral-clustered few-layer graphene nanosheet array as high performance field emitter. Nanoscale 4(20):6383–6388

    Article  Google Scholar 

  25. Chen S, Cheng H, Yang H et al (2011) Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Appl Phys Lett 99(25):253104

    Article  Google Scholar 

  26. Zhou J, Lin L, Zhang L et al (2011) Molecule-assembled modulation of the photocurrent direction of TiO2 nanotube electrodes under the assistance of the applied potential and the excitation wavelength. J Phys Chemi C 115(34):16828–16832

    Article  Google Scholar 

  27. Shan K, Zhou P, Cai J et al (2015) Electrogenerated chemical polishing of copper. Preci Eng 39:161–166

    Article  Google Scholar 

  28. Wang C, Zhang HW, Zhang JF et al (2014) New strategy for electrochemical micropatterning of nafion film in sulfuric acid solution. Electrochi Acta 146:125–133

    Article  Google Scholar 

  29. Fang Q, Zhou JZ, Zhan D et al (2013) A novel planarization method based on photoinduced confined chemical etching. Chem Commun 49(57):6451–6453

    Article  Google Scholar 

  30. Zhou P, Kang R, Shi K et al (2013) Numerical studies on scavenging reaction in confined etchant layer technique. J Electroanal Chem 705:1–7

    Article  Google Scholar 

  31. Zhou H, Lai LJ, Zhao XH et al (2014) Development of an electrochemical micromachining instrument for the confined etching techniques. Rev Sci Instrum 85(4):045122

    Article  Google Scholar 

  32. Gu GY, Zhu LM, Su CY et al (2013) Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation. IEEE-ASME T Mech 18(5):1459–1471

    Article  Google Scholar 

  33. Lai LJ, Zhou H, Du YJ et al (2013) High precision electrochemical micromachining based on confined etchant layer technique. Electrochem Commun 28:135–138

    Article  Google Scholar 

  34. Xing J, Liu J, Zhang T et al (2014) A water soluble initiator prepared through host-guest chemical interaction for microfabrication of 3D hydrogels via two-photon polymerization. J Mater Chem B 2(27):4318–4323

    Article  Google Scholar 

  35. Cao HZ, Zheng ML, Dong XZ et al (2013) Two-photon nanolithography of positive photoresist thin film with ultra-fast laser direct writing. Appl Phys Lett 102(20):201108

    Article  Google Scholar 

  36. Lu WE, Zhang YL, Zheng ML et al (2013) Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction. Opt Mater Exp 3(10):1660–1673

    Article  Google Scholar 

  37. Liu X, Xu T, Wu X et al (2013) Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat Commun 4:1776

    Article  Google Scholar 

  38. Guo W, Liu X (2014) 2D materials: metallic when narrow. Nat Nanotech 9(6):413

    Article  Google Scholar 

  39. Yin J, Zhang Z, Li X et al (2014) Waving potential in graphene. Nat Commun 5:3582

    Article  Google Scholar 

  40. Guo W, Yin J, Qiu H et al (2014) Friction of low-dimensional nanomaterial systems. Friction 2(3):209–225

    Article  Google Scholar 

  41. Xue G, Xu Y, Ding T et al (2017) Water-evaporation-induced electricity with nanostructured carbon materials. Nat Nanotech 12(4):317

    Article  Google Scholar 

  42. Zhang Z, Li X, Yin J et al (2018) Emerging hydrovoltaic technology. Nat Nanotech 13(12):1109

    Article  Google Scholar 

  43. Li L, Wang Q (2013) Spontaneous self-assembly of silver nanoparticles into lamellar structured silver nanoleaves. ACS Nano 7(4):3053–3060

    Article  Google Scholar 

  44. Li F, Chen Y, Chen H et al (2011) Monofunctionalization of protein nanocages. J Am Chem Soc 133(50):20040–20043

    Article  Google Scholar 

  45. Li F, Chen H, Zhang Y et al (2012) Three-dimensional gold nanoparticle clusters with tunable cores templated by a viral protein scaffold. Small 8(24):3832–3838

    Article  Google Scholar 

  46. Chen Z, Lan X, Wang Q (2013) DNA origami directed large-scale fabrication of nanostructures resembling room temperature single-electron transistors. Small 9(21):3567–3571

    Article  Google Scholar 

  47. Cheng X, Meng B, Chen X et al (2016) Single-step fluorocarbon plasma treatmentinduced wrinkle structure for high-performance triboelectric nanogenerator. Small 12(2):229–236

    Article  Google Scholar 

  48. Chen X, Song Y, Chen H et al (2017) An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J Mater Chem A 5(24):12361–12368

    Article  Google Scholar 

  49. Han M, Yu B, Qiu G et al (2015) Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection. J Mater Chem A 3(14):7382–7388

    Article  Google Scholar 

  50. Liu W, Han M, Sun X et al (2014) An unmovable single-layer triboloelectric generator driven by sliding friction. Nano Energ 9:401–407

    Article  Google Scholar 

  51. Zhang J, Yu J, Jaroniec M et al (2012) Noble metal-free reduced graphene oxide-Znx Cd1-x S nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett 12(9):4584–4589

    Article  Google Scholar 

  52. Zhang J, Yu J, Zhang Y et al (2011) Visible light photocatalytic H2-production activity of CuS/ZnS porousnanosheets based on photoinduced interfacial charge transfer. Nano Lett 11(11):4774–4779

    Article  Google Scholar 

  53. Liu Q, Guo B, Rao Z et al (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13(6):2436–2441.

    Google Scholar 

  54. Xie G, Zhang K, Guo B et al (2013) Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater 25(28):3820–3839

    Article  Google Scholar 

  55. Li CJ, Xu GR, Zhang B et al (2012) High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Appl Catal B-Environ 115:201–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingheng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, B. et al. (2023). Other Nanomanufacturing Principles and Technological Breakthroughs. In: Lu, B. (eds) Fundamental Research on Nanomanufacturing. Reports of China’s Basic Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-8975-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8975-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8974-2

  • Online ISBN: 978-981-19-8975-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics