Skip to main content

Biohydrogen Production Through Mixed Culture Dark Anaerobic Fermentation of Industrial Waste

  • Chapter
  • First Online:
Integrated Natural Resources Management

Abstract

Industrial organic waste from food processing, livestock production, brewery, bakery, and other related industries is a renewable substrate for anaerobic digestion to produce methane (CH4) or with some process manipulation and control to produce hydrogen (H2). Type of waste, its strength, presence of any toxic compounds, and other specific characteristics affect the operating conditions such as organic loading rate, hydraulic retention time, substrate pretreatment, as well as the yield and the rate of H2 production from industrial waste. Therefore, they need to be optimized for each waste. Research is required on the modeling, cost analysis, economic evaluation, comparative studies about the effect of bioreactor design, as well as on combining several industrial wastes to prepare a well-balanced substrate for H2-producing mixed culture dark fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AnSBBR:

Anaerobic sequencing batch biofilm reactor

AFBR:

Anaerobic fluidized bed reactor

ASBR:

Anaerobic sequence batch reactor

BESA:

2-Bromoethanesulfonic acid sodium salt

BOD:

Biochemical oxygen demand

CH4:

Methane

CO2:

Carbon dioxide

COD:

Chemical oxygen demand

CSTR:

Continuous stirred tank reactor

EGSBR :

Expanded granular sludge bed reactor

GHG:

Greenhouse gas

H2:

Hydrogen

HCl:

Hydrochloric acid

HRT:

Hydraulic retention time

LBR :

Leaching bed reactor

LCFAs:

Long-chain fatty acids

MCF:

Mixed culture anaerobic fermentation

NAD:

Nicotinamide adenine dinucleotide

NaOH:

Sodium hydroxide

OFMSW:

Organic fraction of municipal solid waste

OLR:

Organic loading rate

OMW:

Olive mill waste

\( {P}_{{\mathrm{H}}_2} \) :

Hydrogen partial pressure

POME:

Palm oil mill effluent

SBR:

Sequencing batch reactor

UASB:

Upflow anaerobic sludge blanket

VFAs:

Volatile fatty acids

VS:

Volatile solids

VSS:

Volatile suspended solids

References

  1. Wei C, Zhang T, Feng C, Wu H, Deng Z, Wu C, Lu B (2011) Treatment of food processing wastewater in a full-scale jet biogas internal loop anaerobic fluidized bed reactor. Biodegradation 22(2):347–357

    Article  CAS  Google Scholar 

  2. Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (pome) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11(1):70–81

    CAS  Google Scholar 

  3. Alkaya E, Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters. Biomass Bioenergy 35(1):32–39

    Article  CAS  Google Scholar 

  4. Passeggi M, López I, Borzacconi L (2009) Integrated anaerobic treatment of dairy industrial wastewater and sludge. Water Sci Technol 59(3):501–506

    Article  CAS  Google Scholar 

  5. Durham RJ, Hourigan JA (2007) Waste management and co-product recovery in dairy processing. In: Waldron K (ed) Handbook of waste management and co-product recovery in food processing. Woodhead Publishing Limited, Cambridge, England, pp 332–387

    Chapter  Google Scholar 

  6. Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds) (2005) Waste treatment in the food processing industry. Taylor & Francis Group, LLC, New York, p 344

    Google Scholar 

  7. Scott J, Smith K (1997) A bioreactor coupled to a membrane to provide aeration and filtration in ice-cream factory wastewater remediation. Water Res 31(1):69–74

    Article  CAS  Google Scholar 

  8. Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27(11–12):1359–1365

    Article  CAS  Google Scholar 

  9. Jordening H-J (2007) Water re-use and wastewater treatment in the German sugar industry. In Water & waste conference 2007. Assiut University, Egypt

    Google Scholar 

  10. Wang D, Duan Y, Yang Q, Liu Y, Ni B-J, Wang Q, Zeng G, Li X, Yuan Z (2018) Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res 133:272–281

    Article  CAS  Google Scholar 

  11. Baez-Smith C (2006) Anaerobic digestion of vinasse for the production of methane in the sugar cane distillery. In: SPRI conference on sugar processing, Loxahatchee

    Google Scholar 

  12. Rouf M, Bajpai P, Jotshi C (2010) Optimization of biogas generation from press mud in batch reactor. Bangladesh J Sci Ind Res 45(4):371–376

    Article  CAS  Google Scholar 

  13. Mustafa Evren Ersahin, Hale Ozgun, Recep Kaan Dereli and Izzet Ozturk (April 1st 2011). Anaerobic Treatment of Industrial Effluents: An Overview of Applications, Waste Water - Treatment and Reutilization, Fernando Sebastián García Einschlag, IntechOpen, https://doi.org/10.5772/16032. Available from: https://www.intechopen.com/books/waste-water-treatment-and-reutilization/anaerobic-treatment-of-industrial-effluents-an-overview-of-applications

  14. Sentürk E, Ince M, Engin GO (2010) Treatment efficiency and vfa composition of a thermophilic anaerobic contact reactor treating food industry wastewater. J Hazard Mater 176(1–3):843–848

    Article  CAS  Google Scholar 

  15. Corbari SD, Andreani CL, Torres DG, Eng F, Gomes SD (2019) Strategies to improve the biohydrogen production from cassava wastewater in fixed-bed reactors. Int J Hydrog Energy 44(32):17214–17223

    Article  CAS  Google Scholar 

  16. Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27(11–12):1367–1371

    Article  CAS  Google Scholar 

  17. Vijayaraghavan K, Ahmad D, Ibrahim MKB (2006) Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrog Energy 31(5):569–579

    Article  CAS  Google Scholar 

  18. Mizuno O, Shinya M, Miyahara T, Noike T (2001) Effect ofphon biological hydrogen production from organic wastewater. In: 9th world congress anaerobic digestion: anaerobic conversion for sustainability, Antwerpen

    Google Scholar 

  19. Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2005) Potential for biohydrogen and methane production from olive pulp. Water Sci Technol 52(1–2):209–215

    Article  CAS  Google Scholar 

  20. Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2006) Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process. Water Sci Technol 53(8):271–279

    Article  CAS  Google Scholar 

  21. Eroğlu E, Eroğlu İ, Gündüz U, Türker L, Yücel M (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrog Energy 31(11):1527–1535

    Article  CAS  Google Scholar 

  22. Eroğlu E, Eroğlu İ, Gündüz U, Yücel M (2009) Treatment of olive mill wastewater by different physicochemical methods and utilization of their liquid effluents for biological hydrogen production. Biomass Bioenergy 33(4):701–705

    Article  CAS  Google Scholar 

  23. Lyberatos G, Antonopoulou G, Koutrouli E, Kalfas H, Gavala H, Skiadas I (2006) Gaseous biofuels production from sweet sorghum and olive pulp. In: AIChE annual meeting, conference proceedings

    Google Scholar 

  24. Ntaikou I, Kourmentza C, Koutrouli E, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour Technol 100(15):3724–3730

    Article  CAS  Google Scholar 

  25. Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42(12):155–162

    Article  CAS  Google Scholar 

  26. Fang HH, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrog Energy 31(6):683–692

    Article  CAS  Google Scholar 

  27. Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22(5):389–395

    Article  CAS  Google Scholar 

  28. Zhang T, Liu H, Fang HH (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manag 69(2):149–156

    Article  Google Scholar 

  29. Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82(2):194–197

    Article  CAS  Google Scholar 

  30. Zhu H, Ueda S, Asada Y, Miyake J (2002) Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped r. Sphaeroides and mutagenesis. Int J Hydrog Energy 27(11–12):1349–1357

    Article  CAS  Google Scholar 

  31. FAO SAVE FOOD: Global initiative on food loss and waste reduction: key findings. 2014. Available from: http://www.fao.org/save-food/

  32. Awarwnet (2004) Handbook for the prevention and minimization of waste and valorization of by-products in european agro-food industries: Deposito Legal: BI-223-04

    Google Scholar 

  33. WRAP (2010) Household food and drink waste in the UK: environmental benefits of recycling – 2010 update. Available from: http://www.wrap.org.uk/sites/files/wrap/Environmental_benefits_of_recycling_2010_update.3b174d59.8816.pdf

  34. Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18(7):695–704

    Article  CAS  Google Scholar 

  35. Madaki YS, Seng L (2013) Pollution control: how feasible is zero discharge concepts in Malaysia palm oil mills. Am J Eng Res 2(10):239–252

    Google Scholar 

  36. Wu TY, Mohammad AW, Jahim JM, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (pome) through end-of-pipe processes. J Environ Manag 91(7):1467–1490

    Article  CAS  Google Scholar 

  37. Bundhoo ZM (2019) Potential of bio-hydrogen production from dark fermentation of crop residues: a review. Int J Hydrog Energy 44(32):17346–17362

    Article  CAS  Google Scholar 

  38. Sobhi B, Isam S, Ahmad Y, Jacob H (2007) Reducing the environmental impact of olive mill wastewater in Jordan, Palestine and Israel. In: Shuval H, Dweik H (eds) Water resources in the middle east. Springer, Berlin, Heidelberg, pp 409–415

    Chapter  Google Scholar 

  39. Arvanitoyannis IS, Kassaveti A (2008) Olive oil waste management: treatment methods and potential uses of treated waste. In: Waste management for the food industries. Elsevier Academic Press, Amsterdam, pp 453–568

    Chapter  Google Scholar 

  40. Hamdi M (1992) Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion. Appl Biochem Biotechnol 37(2):155–163

    Article  CAS  Google Scholar 

  41. Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  CAS  Google Scholar 

  42. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73

    Article  CAS  Google Scholar 

  43. Plaza G, Robredo P, Pacheco O, Toledo AS (1996) Anaerobic treatment of municipal solid waste. Water Sci Technol 33(3):169–175

    Article  CAS  Google Scholar 

  44. McInerney MJ, Bryant MP (1981) Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Sofer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Springer, New York, pp 277–296

    Chapter  Google Scholar 

  45. Batstone DJ, Keller J, Newell RB, Newland M (2000) Modelling anaerobic degradation of complex wastewater. I: Model development. Bioresour Technol 75(1):67–74

    Article  CAS  Google Scholar 

  46. Zoetemeyer RJ, Vandenheuvel JC, Cohen A (1982) pH influence on acidogenic dissimilation of glucose in an anaerobic digester. Water Res 16(3):303–311

    Article  CAS  Google Scholar 

  47. Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, Xu KQ, Kim SH, Kim DH (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sust Energ Rev 77:28–42

    Article  CAS  Google Scholar 

  48. Urbaniec K, Bakker RR (2015) Biomass residues as raw material for dark hydrogen fermentation - a review. Int J Hydrog Energy 40(9):3648–3658

    Article  CAS  Google Scholar 

  49. Parawira W, Murto M, Zvauya R, Mattiasson B (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energy 29(11):1811–1823

    Article  CAS  Google Scholar 

  50. Liu TC, Ghosh S (1997) Phase separation during anaerobic fermentation of solid substrates in an innovative plug-flow reactor. Water Sci Technol 36(6–7):303–310

    Article  CAS  Google Scholar 

  51. Pavlostathis SG, Giraldogomez E (1991) Kinetics of anaerobic treatment - a critical-review. Crit Rev Environ Sci Technol 21(5–6):411–490

    CAS  Google Scholar 

  52. Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Ecology, physiology, biochemistry & genetics. Springer, New York, pp 35–80

    Google Scholar 

  53. Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38(30):13172–13191

    Article  CAS  Google Scholar 

  54. Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81(1–4):257–261

    Article  CAS  Google Scholar 

  55. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190

    Article  CAS  Google Scholar 

  56. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–+

    Google Scholar 

  57. Jerris J, McCarty P (1965) The biochemistry of methane fermentation using c14 tracers. J Water Poll Control Fed 39:178–192

    Google Scholar 

  58. McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219(2):297–304

    Article  CAS  Google Scholar 

  59. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11–12):1185–1193

    Article  CAS  Google Scholar 

  60. Xu KW, Liu H, Li XF, Chen JA, Wang AJ (2010) Typical methanogenic inhibitors can considerably alter bacterial populations and affect the interaction between fatty acid degraders and homoacetogens. Appl Microbiol Biotechnol 87(6):2267–2279

    Article  CAS  Google Scholar 

  61. Lyberatos G, Skiadas I (1999) Modelling of anaerobic digestion–a review. Global Nest Int J 1(2):63–76

    Google Scholar 

  62. Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  63. Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84

    Article  CAS  Google Scholar 

  64. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185

    Article  CAS  Google Scholar 

  65. Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79(4):395–397

    Article  CAS  Google Scholar 

  66. Brosseau JD, Zajic JE (1982) Hydrogen-gas production with citrobacter-intermedius and clostridium-pasteurianum. J Chem Technol Biotechnol 32(3):496–502

    Article  CAS  Google Scholar 

  67. Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579–2586

    Article  CAS  Google Scholar 

  68. Fang HHP, Zhang T, Liu H (2002) Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58(1):112–118

    Article  CAS  Google Scholar 

  69. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582

    Article  CAS  Google Scholar 

  70. Kumar N, Das D (2001) Continuous hydrogen production by immobilized enterobacter cloacae iit-bt 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29(4–5):280–287

    Article  CAS  Google Scholar 

  71. Oh SE, Van Ginkel S, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37(22):5186–5190

    Article  CAS  Google Scholar 

  72. Yu HQ, Fang HHP (2001) Acidification of mid- and high-strength dairy wastewaters. Water Res 35(15):3697–3705

    Article  CAS  Google Scholar 

  73. Chookaew T, O-Thong S, Prasertsan P (2014) Biohydrogen production from crude glycerol by immobilized klebsiella sp tr17 in a UASB reactor and bacterial quantification under non-sterile conditions. Int J Hydrog Energy 39(18):9580–9587

    Article  CAS  Google Scholar 

  74. Sarma S, Dubey VK, Moholkar VS (2016) Kinetic and thermodynamic analysis (with statistical optimization) of hydrogen production from crude glycerol using clostridium pasteurianum. Int J Hydrog Energy 41(44):19972–19989

    Article  CAS  Google Scholar 

  75. Maru BT, Bielen AAM, Kengen SWM, Constanti M, Medina F, International, J.P (2012) Biohydrogen production from glycerol using thermotoga spp. In: Whec 2012 conference proceedings - 19th world hydrogen energy conference 2012

    Google Scholar 

  76. Liu Q, Xiong D, Hong-Bo H, Zhang X (2015) Hydrogen production from glycerol using a genetically engineered Escherichia coli HW2 strain. J Chem Eng Chin Univ 5:1133–1137

    Google Scholar 

  77. Zhang D, Xiao N, Mahbubani KT, del Rio-Chanona EA, Slater NKH, Vassiliadis VS (2015) Bioprocess modelling of biohydrogen production by rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chem Eng Sci 130:68–78

    Article  CAS  Google Scholar 

  78. Li YF, Qiu YQ, Zhang X, Zhu ML, Tan WS (2019) Strain screening and optimization of biohydrogen production by Enterobacter aerogenes EB-06 from glycerol fermentation. Bioresour Bioprocess 6:15

    Article  CAS  Google Scholar 

  79. Asadi N, Zilouei H (2017) Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour Technol 227:335–344

    Article  CAS  Google Scholar 

  80. Duangmanee T, Padmasiri SI, Simmons JJ, Raskin L, Sung S (2007) Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. Water Environ Res 79(9):975–983

    Article  CAS  Google Scholar 

  81. Chen WH, Sung S, Chen SY (2009) Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. Int J Hydrog Energy 34(1):227–234

    Article  CAS  Google Scholar 

  82. Goud RK, Mohan SV (2012) Regulating biohydrogen production from wastewater by applying organic load-shock: change in the microbial community structure and bio-electrochemical behavior over long-term operation. Int J Hydrog Energy 37(23):17763–17777

    Article  CAS  Google Scholar 

  83. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32(2):172–184

    Article  CAS  Google Scholar 

  84. Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sust Energ Rev 13(5):1000–1013

    Article  CAS  Google Scholar 

  85. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297

    Article  CAS  Google Scholar 

  86. Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42(7):2401–2407

    Article  CAS  Google Scholar 

  87. Chen X, Sun YQ, Xiu ZL, Li XH, Zhang DJ (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrog Energy 31(4):539–549

    Article  CAS  Google Scholar 

  88. Rodriguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93(3):592–606

    Article  CAS  Google Scholar 

  89. Bartacek J, Zabranska J, Lens PNL (2007) Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Biorefin 1(3):201–214

    Article  CAS  Google Scholar 

  90. Rai PK (2016) Recent advances in substrate utilization for fermentative hydrogen production. J Appl Biol Biotechnol 4(06):059–067

    Article  CAS  Google Scholar 

  91. Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29(13):1355–1363

    Article  CAS  Google Scholar 

  92. Kim DH, Kim SH, Ko IB, Lee CY, Shin HS (2008) Start-up strategy for continuous fermentative hydrogen production: early switchover from batch to continuous operation. Int J Hydrog Energy 33(5):1532–1541

    Article  CAS  Google Scholar 

  93. Kim SH, Han SK, Shin HS (2008) Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem 43(2):213–218

    Article  CAS  Google Scholar 

  94. Lay JJ, Fan KS, Hwang JI, Chang JI, Hsu PC (2005) Factors affecting hydrogen production from food wastes by clostridium-rich composts. J Environ Eng-ASCE 131(4):595–602

    Article  CAS  Google Scholar 

  95. Sreela-Or C, Imai T, Plangklang P, Reungsang A (2011) Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrog Energy 36(21):14120–14133

    Article  CAS  Google Scholar 

  96. Sreela-or C, Plangklang P, Imai T, Reungsang A (2011) Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization. Int J Hydrog Energy 36(21):14227–14237

    Article  CAS  Google Scholar 

  97. Kim DH, Kim SH, Kim HW, Kim MS, Shin HS (2011) Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour Technol 102(18):8501–8506

    Article  CAS  Google Scholar 

  98. Pan JM, Zhang RH, El-Mashad HM, Sun HW, Ying YB (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrog Energy 33(23):6968–6975

    Article  CAS  Google Scholar 

  99. Chen WH, Chen SY, Khanal SK, Sung SW (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrog Energy 31(15):2170–2178

    Article  CAS  Google Scholar 

  100. Kim DH, Kim SH, Shin HS (2009) Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb Technol 45(3):181–187

    Article  CAS  Google Scholar 

  101. Kim DH, Wu JY, Jeong KW, Kim MS, Shin HS (2011) Natural inducement of hydrogen from food waste by temperature control. Int J Hydrog Energy 36(17):10666–10673

    Article  CAS  Google Scholar 

  102. Han SK, Shin HS (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manag Assoc 54(2):242–249

    Article  CAS  Google Scholar 

  103. Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29(6):569–577

    Article  CAS  Google Scholar 

  104. Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog Energy 29(15):1607–1616

    Article  CAS  Google Scholar 

  105. Lee YW, Chung J (2010) Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int J Hydrog Energy 35(21):11746–11755

    Article  CAS  Google Scholar 

  106. Wongthanate J, Chinnacotpong K, Khumpong M (2014) Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora. Int J Energy Environ Eng 5(1):6

    Article  CAS  Google Scholar 

  107. Hassan GK, Massanet-Nicolau J, Dinsdale R, Jones RJ, Abo-Aly MM, El-Gohary FA, Guwy A (2019) A novel method for increasing biohydrogen production from food waste using electrodialysis. Int J Hydrog Energy 44(29):14715–14720

    Article  CAS  Google Scholar 

  108. Abreu AA, Tavares F, Alves MM, Cavaleiro AJ, Pereira MA (2019) Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresour Technol 278:180–186

    Article  CAS  Google Scholar 

  109. Shin HS, Youn JH (2005) Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16(1):33–44

    Article  CAS  Google Scholar 

  110. Lee ZK, Li SL, Lin JS, Wang YH, Kuo PC, Cheng SS (2008) Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int J Hydrog Energy 33(19):5234–5241

    Article  CAS  Google Scholar 

  111. Lee ZK, Li SL, Kuo PC, Chen IC, Tien YM, Huang YJ, Chuang CP, Wong SC, Cheng SS (2010) Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste. Int J Hydrog Energy 35(24):13458–13466

    Article  CAS  Google Scholar 

  112. Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN (2008) A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrog Energy 33(18):4739–4746

    Article  CAS  Google Scholar 

  113. Lay JJ, Fan KS, Chang J, Ku CH (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28(12):1361–1367

    Article  CAS  Google Scholar 

  114. Wongthanate J, Chinnacotpong K (2015) Optimal conditions for biological hydrogen production from food waste. Environ Eng Res 20(2):121–125

    Article  Google Scholar 

  115. De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33(6):1345–1361

    Article  CAS  Google Scholar 

  116. Kayhanian M (1995) Biodegradability of the organic fraction of municipal solid-waste in a high-solids anaerobic digester. Waste Manag Res 13(2):123–136

    Article  CAS  Google Scholar 

  117. Themelis NJ, Kim YH (2002) Material and energy balances in a large-scale aerobic bioconversion cell. Waste Manag Res 20(3):234–242

    Article  CAS  Google Scholar 

  118. Li SL, Kuo SC, Lin JS, Lee ZK, Wang YH, Cheng SS (2008) Process performance evaluation of intermittent-continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. Int J Hydrog Energy 33(5):1522–1531

    Article  CAS  Google Scholar 

  119. Liu DW, Liu DP, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236

    Article  CAS  Google Scholar 

  120. Alzate-Gaviria LM, Sebastian PJ, Perez-Hernandez A, Eapen D (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrog Energy 32(15):3141–3146

    Article  CAS  Google Scholar 

  121. Ebrahimian F, Karimi K (2020) Efficient biohydrogen and advanced biofuel coproduction from municipal solid waste through a clean process. Bioresour Technol 300:122656

    Article  CAS  Google Scholar 

  122. Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157(2):727–732

    Article  CAS  Google Scholar 

  123. Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102(18):8582–8588

    Article  CAS  Google Scholar 

  124. Lee DY, Ebie Y, Xu KQ, Li YY, Inamori Y (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47

    Article  CAS  Google Scholar 

  125. Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41(4):1413–1419

    Article  CAS  Google Scholar 

  126. Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrog Energy 30(15):1535–1542

    Article  CAS  Google Scholar 

  127. Balin R, Raman S (2011) Biohydrogen from sugar industry waste and sewage. Proc Institution Civil Eng-Energy 164(2):78–88

    Google Scholar 

  128. Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30(8):809–819

    Article  CAS  Google Scholar 

  129. Feng XQ, Wang H, Wang Y, Wang XF, Huang JX (2010) Biohydrogen production from apple pomace by anaerobic fermentation with river sludge. Int J Hydrog Energy 35(7):3058–3064

    Article  CAS  Google Scholar 

  130. Intanoo P, Suttikul T, Leethochawalit M, Gulari E, Chavadej S (2014) Hydrogen production from alcohol wastewater with added fermentation residue by an anaerobic sequencing batch reactor (asbr) under thermophilic operation. Int J Hydrog Energy 39(18):9611–9620

    Article  CAS  Google Scholar 

  131. Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS, Tay JH (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37(11):2789–2793

    Article  CAS  Google Scholar 

  132. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrog Energy 30(5):471–483

    Article  CAS  Google Scholar 

  133. Jung KW, Kim DH, Shin HS (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35(24):13370–13378

    Article  CAS  Google Scholar 

  134. Jung KW, Kim DH, Shin HS (2011) Fermentative hydrogen production from laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102(3):2745–2750

    Article  CAS  Google Scholar 

  135. Jung KW, Kim DH, Shin HS (2011) A simple method to reduce the start-up period in a H2-producing UASB reactor. Int J Hydrog Energy 36(2):1466–1473

    Article  CAS  Google Scholar 

  136. Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int J Hydrog Energy 39(18):9599–9610

    Article  CAS  Google Scholar 

  137. Buitron G, Carvajal C (2010) Biohydrogen production from tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 101(23):9071–9077

    Article  CAS  Google Scholar 

  138. Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrog Energy 33(19):4981–4988

    Article  CAS  Google Scholar 

  139. Fan KS, Kan NR, Lay JJ (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97(1):84–89

    Article  CAS  Google Scholar 

  140. Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30(5):493–496

    Article  CAS  Google Scholar 

  141. Cui MJ, Yuan ZL, Zhi XH, Shen JQ (2009) Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int J Hydrog Energy 34(19):7971–7978

    Article  CAS  Google Scholar 

  142. Lay CH, Sung IY, Kumar G, Chu CY, Chen CC, Lin CY (2012) Optimizing biohydrogen production from mushroom cultivation waste using anaerobic mixed cultures. Int J Hydrog Energy 37(21):16473–16478

    Article  CAS  Google Scholar 

  143. Noike T, Ko IB, Yokoyama S, Kohno Y, Li YY (2005) Continuous hydrogen production from organic waste. Water Sci Technol 52(1–2):145–151

    Article  CAS  Google Scholar 

  144. Liu Q, Zhang XL, Yu LJ, Zhao AH, Tai J, Liu JY, Qian GR, Xu ZP (2011) Fermentative hydrogen production from fresh leachate in batch and continuous bioreactors. Bioresour Technol 102(9):5411–5417

    Article  CAS  Google Scholar 

  145. Song ZX, Wang ZY, Wu LY, Fan YT, Hou HW (2012) Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int J Hydrog Energy 37(8):6554–6561

    Article  CAS  Google Scholar 

  146. Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31(4):250–254

    Article  CAS  Google Scholar 

  147. Minon-Fuentes R, Aguilar-Juarez O (2019) Hydrogen production from coffee pulp by dark fermentation. Water Sci Technol 80(9):1692–1701

    Article  CAS  Google Scholar 

  148. Saraphirom P, Reungsang A (2010) Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int J Hydrog Energy 35(24):13435–13444

    Article  CAS  Google Scholar 

  149. Saraphirom P, Reungsang A (2013) Enhancement of biohydrogen production from sweet sorghum syrup by anaerobic seed sludge in an anaerobic sequencing batch reactor by nutrient and vitamin supplementations. Environ Technol 34(17):2503–2511

    Article  CAS  Google Scholar 

  150. Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99(1):110–119

    Article  CAS  Google Scholar 

  151. Sangyoka S, Reungsang A, Moonamart S (2007) Repeated-batch fermentative for bio-hydrogen production from cassava starch manufacturing wastewater. Pak J Biol Sci 10(11):1782–1789

    Article  CAS  Google Scholar 

  152. Mari AG, Andreani CL, Tonello TU, Leite LCC, Fernandes JR, Lopes DD, Rodrigues JAD, Gomes SD (2020) Biohydrogen and biomethane production from cassava wastewater in a two-stage anaerobic sequencing batch biofilm reactor. Int J Hydrog Energy 45(8):5165–5174

    Article  CAS  Google Scholar 

  153. Luo G, Xie L, Zou ZH, Wang W, Zhou Q (2010) Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Technol 101(3):959–964

    Article  CAS  Google Scholar 

  154. Wang W, Xie L, Chen JR, Luo G, Zhou Q (2011) Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. Bioresour Technol 102(4):3833–3839

    Article  CAS  Google Scholar 

  155. Luo G, Xie L, Zhou Q, Angelidaki I (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour Technol 102(18):8700–8706

    Article  CAS  Google Scholar 

  156. Mohan SV, Babu ML, Reddy MV, Mohanakrishna G, Sarma PN (2009) Harnessing of biohydrogen by acidogenic fermentation of Citrus limetta peelings: effect of extraction procedure and pretreatment of biocatalyst. Int J Hydrog Energy 34(15):6149–6156

    Article  CAS  Google Scholar 

  157. Chuang Y-S, Chen C-C, Lay C-H, Sung I-Y, Wu J-H, Lee S-C, Sen B, Lin C-Y (2012) Optimization of incubation factors for fermentative hydrogen production from agricultural wastes. Sustain Environ Res 22(2):99–106

    CAS  Google Scholar 

  158. Reungsang A, Sreela-or C (2013) Bio-hydrogen production from pineapple waste extract by anaerobic mixed cultures. Energies 6(4):2175–2190

    Article  CAS  Google Scholar 

  159. Kim MS, Lee DY (2010) Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour Technol 101:S48–S52

    Article  CAS  Google Scholar 

  160. Stabnikova O, Wang J-Y, Ivanov V (2010) Value-added biotechnological products from organic wastes. In: Wang LK, Ivanov V, Tay J-H (eds) Environmental biotechnology. Humana Press, Totowa, pp 343–394

    Chapter  Google Scholar 

  161. Yasin NHM, Mumtaz T, Hassan MA, Rahman NA (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manage 130:375–385

    Article  CAS  Google Scholar 

  162. Azbar N, Dokgoz FTC, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34(17):7441–7447

    Article  CAS  Google Scholar 

  163. Nielsen PH. Potato flour production 2004. Available from: http://www.lcafood.dk/processes/industry/potatoflourproduction.htm

  164. Diamantis VI, Vaiopoulou E, Aivasidis A (2007) Fundamentals and applications of anaerobic digestion for sustainable treatment of food industry wastewater. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 73–97

    Chapter  Google Scholar 

  165. Nielsen PH. Sugar production 2003. Available from: http://www.lcafood.dk/processes/industry/sugarproduction.htm

  166. Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for cod and color removal: a review. J Environ Manag 86(3):481–497

    Article  CAS  Google Scholar 

  167. Vlissidis A, Zouboulis AI (1993) Thermophilic anaerobic-digestion of alcohol distillery wastewaters. Bioresour Technol 43(2):131–140

    Article  CAS  Google Scholar 

  168. Guo WQ, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J (2008) Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int J Hydrog Energy 33(24):7397–7404

    Article  CAS  Google Scholar 

  169. Wu JH, Lin CY (2004) Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci Technol 49(5–6):223–228

    Article  CAS  Google Scholar 

  170. Ren NQ, Chua H, Chan SY, Tsang YF, Wang YJ, Sin N (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98(9):1774–1780

    Article  CAS  Google Scholar 

  171. Ren NQ, Li JZ, Li BK, Wang Y, Liu SR (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31(15):2147–2157

    Article  CAS  Google Scholar 

  172. Lin YH, Juan ML, Hsien HJ (2011) Effects of temperature and initial pH on biohydrogen production from food-processing wastewater using anaerobic mixed cultures. Biodegradation 22(3):551–563

    Article  CAS  Google Scholar 

  173. Aceves-Lara CA, Latrille E, Bernet N, Buffiere P, Steyer JP (2008) A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res 42(10–11):2539–2550

    Article  CAS  Google Scholar 

  174. Chang JJ, Wu JH, Wen FS, Hung KY, Chen YT, Hsiao CL, Lin CY, Huang CC (2008) Molecular, monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrog Energy 33(5):1579–1585

    Article  CAS  Google Scholar 

  175. Li QY, Li YF (2019) Coproduction of hydrogen and methane in a CSTR-IC two-stage anaerobic digestion system from molasses wastewater. Water Sci Technol 79(2):270–277

    Article  CAS  Google Scholar 

  176. Han W, Chen H, Yao X, Li Y-f, Yang C-p (2010) Biohydrogen production with anaerobic sludge immobilized by granular activated carbon in a continuous stirred-tank. J For Res 21(4):509–513

    Article  CAS  Google Scholar 

  177. O-Thong S, Mamimin C, Prasertsan P (2011) Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis. Electron J Biotechnol 14(5) https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-34582011000500009

  178. Koutrouli EC, Kalfas H, Gavala HN, Skiadas IV, Stamatelatou K, Lyberatos G (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 100(15):3718–3723

    Article  CAS  Google Scholar 

  179. O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland NK (2008) Optimization of simultaneous thermophilic fermentative hydrogen production and cod reduction from palm oil mill effluent by thermoanaerobacterium-rich sludge. Int J Hydrog Energy 33(4):1221–1231

    Article  CAS  Google Scholar 

  180. O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukom S, Birkeland NK (2007) Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 41(5):583–590

    Article  CAS  Google Scholar 

  181. Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrog Energy 30(13–14):1393–1397

    Article  CAS  Google Scholar 

  182. Mamimin C, Kongjan P, O-Thong S, Prasertsan P (2019) Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. Int J Hydrog Energy 44(32):17224–17237

    Article  CAS  Google Scholar 

  183. Seifert K, Waligorska M, Wojtowski M, Laniecki M (2009) Hydrogen generation from glycerol in batch fermentation process. Int J Hydrog Energy 34(9):3671–3678

    Article  CAS  Google Scholar 

  184. Akutsu Y, Lee DY, Li YY, Noike T (2009) Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int J Hydrog Energy 34(13):5365–5372

    Article  CAS  Google Scholar 

  185. Sittijunda S, Reungsang A (2012) Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures. Int J Hydrog Energy 37(18):13789–13796

    Article  CAS  Google Scholar 

  186. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104(6):1098–1106

    Article  CAS  Google Scholar 

  187. Rodrigues CV, Santana KO, Nespeca MG, Rodrigues AV, Pires LO, Maintinguer SI (2020) Energy valorization of crude glycerol and sanitary sewage in hydrogen generation by biological processes. Int J Hydrog Energy 45(21):11943–11953

    Article  CAS  Google Scholar 

  188. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100(3):260–265

    Article  CAS  Google Scholar 

  189. Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 98(2):340–348

    Article  CAS  Google Scholar 

  190. Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34(8):3277–3287

    Article  CAS  Google Scholar 

  191. Mohan SV, Babu VL, Sarma PN (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (ANSBR): effect of organic loading rate. Enzyme Microb Technol 41(4):506–515

    Article  CAS  Google Scholar 

  192. Yang PF, Zhang RH, MeGarvey JA, Benernann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrog Energy 32(18):4761–4771

    Article  CAS  Google Scholar 

  193. Davila-Vazquez G, Alatriste-Mondragon F, de Leon-Rodriguez A, Razo-Flores E (2008) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrog Energy 33(19):4989–4997

    Article  CAS  Google Scholar 

  194. Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47(15):5227–5233

    Article  CAS  Google Scholar 

  195. Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G (2009) Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100(15):3713–3717

    Article  CAS  Google Scholar 

  196. Romao BB, Batista FRX, Ferreira JS, Costa HCB, Resende MM, Cardoso VL (2014) Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Appl Biochem Biotechnol 172(7):3670–3685

    Article  CAS  Google Scholar 

  197. Thompson RS (2008) Hydrogen production by anaerobic fermentation using agricultural and food processing wastes utilizing a two-stage digestion system. Utah State University

    Google Scholar 

  198. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC (2019) Production of bio-hydrogen from dairy wastewater using pretreated landfill leachate sludge as an inoculum. J Biosci Bioeng 127(2):150–159

    Article  CAS  Google Scholar 

  199. Tang GL, Huang J, Sun ZJ, Tang QQ, Yan CH, Liu GQ (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106(1):80–87

    Article  CAS  Google Scholar 

  200. Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74(2):474–483

    Article  CAS  Google Scholar 

  201. Gilroyed BH, Chang C, Chu A, Hao XY (2008) Effect of temperature on anaerobic fermentative hydrogen gas production from feedlot cattle manure using mixed microflora. Int J Hydrog Energy 33(16):4301–4308

    Article  CAS  Google Scholar 

  202. Xing Y, Li Z, Fan YT, Hou HW (2010) Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res 17(2):392–399

    Article  CAS  Google Scholar 

  203. Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35(19):10660–10673

    Article  CAS  Google Scholar 

  204. Lateef SA, Beneragama N, Yamashiro T, Iwasaki M, Ying C, Umetsu K (2012) Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature. Bioresour Technol 110:251–257

    Article  CAS  Google Scholar 

  205. Perera KRJ, Nirmalakhandan N (2011) Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose. Bioresour Technol 102(18):8688–8695

    Article  CAS  Google Scholar 

  206. Zhu J, Li YC, Wu X, Miller C, Chen P, Ruan R (2009) Swine manure fermentation for hydrogen production. Bioresour Technol 100(22):5472–5477

    Article  CAS  Google Scholar 

  207. Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 degrees c). Biomass Bioenergy 33(9):1168–1174

    Article  CAS  Google Scholar 

  208. Li YC, Zhu J, Wu XA, Miller C, Wang LA (2010) The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose. Appl Biochem Biotechnol 162(5):1286–1296

    Article  CAS  Google Scholar 

  209. Wu XA, Yao WY, Zhu J (2010) Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int J Hydrog Energy 35(13):6592–6599

    Article  CAS  Google Scholar 

  210. Saady NMC, Chaganti SR, Lalman JA, Heath D (2012) Impact of culture source and linoleic acid (c18:2) on biohydrogen production from glucose under mesophilic conditions. Int J Hydrog Energy 37(5):4036–4045

    Article  CAS  Google Scholar 

  211. Iyer P, Bruns MA, Zhang HS, Van Ginkel S, Logan BE (2004) H-2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66(2):166–173

    Article  CAS  Google Scholar 

  212. Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S (2010) Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, cod:N ratio, and organic acid composition. Int J Hydrog Energy 35(9):4092–4102

    Article  CAS  Google Scholar 

  213. Lay J (2004) Factors affecting hydrogen production from high-solid organic wastes. In: Proceedings of 2nd international workshop on innovative anaerobic technology, Sendai

    Google Scholar 

  214. Griffin ME, McMahon KD, Mackie RI, Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57(3):342–355

    Article  CAS  Google Scholar 

  215. Radjaram B, Saravanane R (2011) Start up study of UASB reactor treating press mud for biohydrogen production. Biomass Bioenergy 35(7):2721–2728

    Article  CAS  Google Scholar 

  216. Fangkum A, Reungsang A (2011) Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. Int J Hydrog Energy 36(21):13928–13938

    Article  CAS  Google Scholar 

  217. Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36(11):2530–2535

    Article  CAS  Google Scholar 

  218. Saady NMC, Chaganti SR, Lalman JA, Veeravalli SS, Shanmugam SR, Heath DD (2012) Effects of linoleic acid and its degradation by-products on mesophilic hydrogen production using flocculated and granular mixed anaerobic cultures. Int J Hydrog Energy 37(24):18747–18760

    Article  CAS  Google Scholar 

  219. Saady NMC, Chaganti SR, Lalman JA, Veeravalli SS, Shanmugam SR, Heath DD (2012) Assessing the impact of palmitic, myristic and lauric acids on hydrogen production from glucose fermentation by mixed anaerobic granular cultures. Int J Hydrog Energy 37(24):18761–18772

    Article  CAS  Google Scholar 

  220. Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99(1):59–67

    Article  CAS  Google Scholar 

  221. Elbeshbishy E, Hafez H, Nakhla G (2011) Ultrasonication for biohydrogen production from food waste. Int J Hydrog Energy 36(4):2896–2903

    Article  CAS  Google Scholar 

  222. Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS (2004) Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb Technol 35(6–7):605–612

    Article  CAS  Google Scholar 

  223. Thompson LJ, Gray VM, Kalala B, Lindsay D, Reynolds K, von Holy A (2008) Biohydrogen production by enterobacter cloacae and citrobacter freundii in carrier induced granules. Biotechnol Lett 30(2):271–274

    Article  CAS  Google Scholar 

  224. Chen SD, Lo YC, Lee KS, Huang TI, Chang JS (2009) Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock. Int J Hydrog Energy 34(20):8549–8557

    Article  CAS  Google Scholar 

  225. Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, Reid G (2008) The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrog Energy 33(15):4064–4073

    Article  CAS  Google Scholar 

  226. Xiao BY, Liu JX (2009) Effects of various pretreatments on biohydrogen production from sewage sludge. Chin Sci Bull 54(12):2038–2044

    CAS  Google Scholar 

  227. Ren NQ, Cao GL, Wang AJ, Lee DJ, Guo WQ, Zhu YH (2008) Dark fermentation of xylose and glucose mix using isolated thermoanaerobacterium thermosaccharolyticum w16. Int J Hydrog Energy 33(21):6124–6132

    Article  CAS  Google Scholar 

  228. O-Thong S, Prasertsan P, Birkeland NK (2009) Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 100(2):909–918

    Article  CAS  Google Scholar 

  229. Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour Technol 101(20):7780–7788

    Article  CAS  Google Scholar 

  230. Pendyala B, Chaganti SR, Lalman JA, Heath DD (2012) Evaluation of food waste and paper-cardboard waste blend for biohydrogen and methane production using mixed microbial consortia

    Google Scholar 

  231. Han W, Wang ZQ, Chen H, Yao X, Li YF (2011) Simultaneous biohydrogen and bioethanol production from anaerobic fermentation with immobilized sludge. J Biomed Biotechnol 2011:343791

    Article  CAS  Google Scholar 

  232. Spagni A, Casu S, Farina R (2010) Effect of the organic loading rate on biogas composition in continuous fermentative hydrogen production. J Environ Sci Health Part A-Toxic/Hazardous Substances & Environmental Engineering 45(12):1475–1481

    CAS  Google Scholar 

  233. Bhaskar YV, Mohan SV, Sarma PN (2008) Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor. Bioresour Technol 99(15):6941–6948

    Article  CAS  Google Scholar 

  234. Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105(5):899–908

    CAS  Google Scholar 

  235. Zhang K, Ren NQ, Guo CH, Wang AJ, Cao GL (2011) Effects of various pretreatment methods on mixed microflora to enhance biohydrogen production from corn stover hydrolysate. J Environ Sci 23(12):1929–1936

    Article  CAS  Google Scholar 

  236. Mohammadi P, Ibrahim S, Annuar MSM (2012) Comparative study on the effect of various pretreatment methods on the enrichment of hydrogen producing bacteria in anaerobic granulated sludge from brewery wastewater. Korean J Chem Eng 29(10):1347–1351

    Article  CAS  Google Scholar 

  237. Rossi DM, da Costa JB, de Souza EA, Peralba MDR, Samios D, Ayub MAZ (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrog Energy 36(8):4814–4819

    Article  CAS  Google Scholar 

  238. Hu B, Chen SL (2007) Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrog Energy 32(15):3266–3273

    Article  CAS  Google Scholar 

  239. Mu Y, Yu HQ, Wang Y (2006) The role of pH in the fermentative H2 production from an acidogenic granule-based reactor. Chemosphere 64(3):350–358

    Article  CAS  Google Scholar 

  240. Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34(17):7349–7357

    Article  CAS  Google Scholar 

  241. Hay JXW, Wu TY, Juan JC, Jahim JM (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 7(3):334–352

    Article  CAS  Google Scholar 

  242. Ljunggren M, Wallberg O, Zacchi G (2011) Techno-economic comparison of a biological hydrogen process and a 2nd generation ethanol process using barley straw as feedstock. Bioresour Technol 102(20):9524–9531

    Article  CAS  Google Scholar 

  243. Chang PL, Hsu CW (2012) Value analysis for commercialization of fermentative hydrogen production from biomass. Int J Hydrog Energy 37(20):15746–15752

    Article  CAS  Google Scholar 

  244. Li YC, Liu YF, Chu CY, Chang PL, Hsu CW, Lin PJ, Wu SY (2012) Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. Int J Hydrog Energy 37(20):15704–15710

    Article  CAS  Google Scholar 

  245. Shi Y, Zhao XT, Cao P, Hu YY, Zhang L, Jia Y, Lu ZQ (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 31(9):1327–1333

    Article  CAS  Google Scholar 

  246. Sen U, Shakdwipee M, Banerjee R (2008) Status of biological hydrogen production. J Sci Ind Res 67(11):980–993

    CAS  Google Scholar 

  247. Pandu K, Joseph S (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Tech 2(1):342

    Google Scholar 

  248. Mohan SV, Reddy MV, Subhash GV, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly(beta-oh) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101(23):9382–9386

    Article  CAS  Google Scholar 

  249. Mohan SV, Devi MP (2012) Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour Technol 123:627–635

    Article  CAS  Google Scholar 

  250. Kumar G, Cho SK, Sivagurunathan P, Anburajan P, Mahapatra DM, Park JH, Pugazhendhi A (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrog Energy 43(43):19885–19901

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noori M. Cata Saady .

Editor information

Editors and Affiliations

Glossary

Glossary

Anaerobic Digestion :

Series of biological processes in which microorganisms break down biodegradable material in the absence of oxygen

Biohydrogen Production :

Production of hydrogen via fermentation of a broad range of organic feedstocks by bacteria.

Dark Fermentation :

The fermentative conversion of organic substrate to biohydrogen.

Industrial Waste :

Waste generated by manufacturing or industrial processes.

Mixed Culture :

Mixed culture contains more than one type of organism growing in a medium.

Organic Loading Rate :

The amount of organics to be fed into the anaerobic digester each day.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajizadeh, A., Saady, N.M.C., Zendehboudi, S., Rajagopal, R., Hung, YT. (2021). Biohydrogen Production Through Mixed Culture Dark Anaerobic Fermentation of Industrial Waste. In: Wang, L.K., Wang, MH.S., Hung, YT., Shammas, N.K. (eds) Integrated Natural Resources Management. Handbook of Environmental Engineering, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-55172-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55172-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55171-1

  • Online ISBN: 978-3-030-55172-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics