Skip to main content

Advertisement

Log in

Biohydrogen Production Through Dark Fermentation by a Microbial Consortium Using Whey Permeate as Substrate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nowadays, hydrogen produced globally has been synthesized from fossil fuel with limited source. Therefore, research has been developed in order to explore biological H2 production by dark fermentation. The purpose of this work was to evaluate the effect of initial pH and ferrous sulfate and ammonium sulfate concentrations on the production of biohydrogen by dark fermentation. The process was carried out in batch mode under anaerobic conditions, in the absence of light, and at standard room temperature and pressure. A microbial consortium provided by the effluent treatment plant of a local dairy company was inoculated into a synthetic medium supplemented with cheese whey permeate (20 g/L of lactose) as a carbon source. The influence of three variables was analyzed by a central composite design 2(3), and the optimum results of hydrogen yield (4.13 mol H2/mol lactose) and productivity (86.31 mmol H2/L/day) were achieved at initial pH 7.0 and FeSO4 and (NH4)2SO4 concentrations of 0.6 and 1.5 g/L, respectively. Under these conditions, the kinetic parameters of fermentation were investigated by analyzing the profile of H2 yield and productivity, metabolite concentrations, pH, and concentration of dissolved iron. In the kinetic analysis, the modified Gompertz equation described adequately the fermentative hydrogen production from cheese whey permeate (R 2 = 0.98). The profile of ethanol and volatile organic acids showed that lactic acid and butyric acid were the main metabolites produced, and the sum of both by-products corresponded to about 58 % of the total metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sinha, P., & Pandey, A. (2011). International Journal of Hydrogen Energy, 36, 7460–7478.

    Article  CAS  Google Scholar 

  2. Das, D., & Veziroğlu, T. N. (2001). International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  3. Guo, X. M., Trably, E., Latrille, E., Carrère, H., & Steyer, J. (2010). International Journal of Hydrogen Energy, 35, 10660–10673.

    Article  CAS  Google Scholar 

  4. Kotsopoulos, T. A., Fotidis, I. A., Tsolakis, N., & Martzopoulos, G. G. (2009). Biomass and Bioenergy, 33, 1168–1174.

    Article  CAS  Google Scholar 

  5. Fan, Y., Zhang, Y., Zhang, S., Hou, H., & Ren, B. (2006). Bioresource Technology, 97, 500–505.

    Article  CAS  Google Scholar 

  6. Vijayaraghavan, K., & Ahmad, D. (2006). International Journal of Hydrogen Energy, 31, 1284–1291.

    Article  CAS  Google Scholar 

  7. Yang, P., Zhang, R., McGarvey, J. A., & Benemann, J. R. (2007). International Journal of Hydrogen Energy, 32, 4761–4771.

    Article  CAS  Google Scholar 

  8. Mohan, S. V., Babu, V. L., & Sarma, P. N. (2007). Enzyme and Microbial Technology, 41, 506–515.

    Article  CAS  Google Scholar 

  9. Avcioglu, S. G., Ozgura, E., Eroglua, I., Yucelb, M., & Gunduzb, U. (2011). International Journal of Hydrogen Energy, 36, 11360–11368.

    Article  CAS  Google Scholar 

  10. Amorim, E. L. C., Barros, A. R., Damianovic, M. H. R. Z., & Silva, E. L. (2009). International Journal of Hydrogen Energy, 34, 783–790.

    Article  Google Scholar 

  11. Dhar, B. R., Elbeshbishy, E., & Nakhla, G. (2012). Bioresource Technology, 126, 123–130.

    Article  CAS  Google Scholar 

  12. Wang, J., & Wan, W. (2008). International Journal of Hydrogen Energy, 33, 1215–1220.

    Article  CAS  Google Scholar 

  13. Alalayah, W. M., Kalil, M. S., Kadhum, A. A. H., Jahim, J. M., & Alauj, N. M. (2009). American Journal of Environmental Sciences, 5, 80–86.

    Article  CAS  Google Scholar 

  14. Alshiyab, H., Kalil, M. S., Hamid, A. A., & Yusoff, W. M. W. (2008). Journal of Biology and Sciences, 8(1), 1–9.

    Article  CAS  Google Scholar 

  15. Zhang, Y., & Shen, J. (2006). International Journal of Hydrogen Energy, 31, 441–446.

    Article  CAS  Google Scholar 

  16. Chong, M. L., Sabaratnam, V., Shirai, Y., & Hassan, M. A. (2009). International Journal of Hydrogen Energy, 34, 3277–3287.

    Article  CAS  Google Scholar 

  17. Belokopytov, B. F., Laurinavichius, K. S., Laurinavichene, T. V., Ghirardi, M. L., Seibert, M., & Tsygankov, A. A. (2009). International Journal of Hydrogen Energy, 34, 3324–3332.

    Article  CAS  Google Scholar 

  18. Wang, B., Wan, W., & Wang, J. (2009). Bioresource Technology, 100, 1211–1213.

    Article  CAS  Google Scholar 

  19. Hu, B., & Chen, S. L. (2007). International Journal of Hydrogen Energy, 32, 3266–3273.

    Article  CAS  Google Scholar 

  20. Yang, H., & Shen, J. (2006). International Journal of Hydrogen Energy, 31, 2137–2146.

    Article  CAS  Google Scholar 

  21. Lin, C. Y., & Lay, C. H. (2005). International Journal of Hydrogen Energy, 30, 285–292.

    Article  CAS  Google Scholar 

  22. Weenk, G. H., Brink, J. A., Struijk, C. B., & Mossel, D. A. A. (1995). International Journal of Food Microbiology, 27, 185–200.

    Article  CAS  Google Scholar 

  23. Vieira, P. A., Vieira, R. B., França, F. P., & Cardoso, V. L. (2007). Journal of Hazardous Materials, 140, 52–59.

    Article  CAS  Google Scholar 

  24. Davila-Vazquez, G., León-Rodríguez, A., Alatriste-Mondragón, F., & Razo-Flores, E. (2011). Biomass and Bioenergy, 35, 3174–3181.

    Article  CAS  Google Scholar 

  25. Chong, M. L., Rahman, N. A., Yee, P. L., Aziz, S. A., Rahim, R. A., Shirai, Y., et al. (2009). International Journal of Hydrogen Energy, 34, 8859–8865.

    Article  CAS  Google Scholar 

  26. Ferchichi, M., Crabbe, E., Gil, G. H., Hintz, W., & Almadidy, A. (2005). Journal of Biotechnology, 120, 402–409.

    Article  CAS  Google Scholar 

  27. Castelló, E., García, Y., Santos, C., Iglesias, T., Paolino, G., Wenzel, J., et al. (2009). International Journal of Hydrogen Energy, 34, 5674–5682.

    Article  CAS  Google Scholar 

  28. Davila-Vazquez, G., Cota-Navarro, C. B., Rosales-Colunga, L. M., Leon-Rodriguez, A., & Razo-Flores, E. (2009). International Journal of Hydrogen Energy, 34, 4296–4304.

    Article  CAS  Google Scholar 

  29. Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., & Lyberatos, G. (2009). Bioresource Technology, 100, 3713–3717.

    Article  CAS  Google Scholar 

  30. Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). Catalysis Today, 139, 244–260.

    Article  CAS  Google Scholar 

  31. Das, D., Khanna, N., & Veziroğlu, T. N. (2008). Chemical Industry and Chemical Engineering Quarterly, 14(2), 57–67.

    Article  CAS  Google Scholar 

  32. Davila-Vazquez, G., Alatriste-Mondragón, F., León-Rodríguez, A., & Razo-Flores, E. (2008). International Journal of Hydrogen Energy, 33, 4989–4997.

    Article  CAS  Google Scholar 

  33. Hwang, J. H., Choi, J. A., Abou-Shanab, R. A. I., Bhatnagar, A., Min, B., Song, H., et al. (2009). International Journal of Hydrogen Energy, 34, 9702–9710.

    Article  CAS  Google Scholar 

  34. Infantes, D., Campo, A. G., Villaseñor, J., & Fernández, F. J. (2011). International Journal of Hydrogen Energy, 36, 15595–15601.

    Article  CAS  Google Scholar 

  35. Ghosh, D., & Hallenbeck, P. C. (2009). International Journal of Hydrogen Energy, 34, 7979–7982.

    Article  CAS  Google Scholar 

  36. Azbar, N., Dokgoz, F. T. C., & Peker, Z. (2009). International Journal Green Energy, 6, 371–380.

    Article  CAS  Google Scholar 

  37. Zhang, Y., Liu, G., & Shen, J. (2005). International Journal of Hydrogen Energy, 30, 855–860.

    Article  CAS  Google Scholar 

  38. Salerno, M. B., Park, W., & Zuo, Y. (2006). Water Research, 40, 1167–1172.

    Article  CAS  Google Scholar 

  39. Chen, S. D., Lo, Y. C., Lee, K. S., & Huang, T. I. (2009). International Journal of Hydrogen Energy, 34, 8549–8557.

    Article  CAS  Google Scholar 

  40. Khanal, S. K., Chen, W., Li, L., & Sung, S. (2004). International Journal of Hydrogen Energy, 29, 1123–1131.

    CAS  Google Scholar 

  41. George, H. A., & Chen, J. S. (1983). Applied and Environmental Microbiology, 46, 321–327.

    CAS  Google Scholar 

  42. Adams, M. W. W., & Mortenson, L. E. (1984). International Journal of Biology Chemistry, 259, 7045–7055.

    CAS  Google Scholar 

  43. Zhu, H., Parker, W., Basnar, R., Proracki, A., Falletta, P., Béland, M., et al. (2009). Bioresource Technology, 100, 5097–5102.

    Article  CAS  Google Scholar 

  44. Châtellier, X., & Fortin, D. (2004). Chemical Geology, 212, 209–228.

    Article  CAS  Google Scholar 

  45. Fowle, D. A., & Fein, J. B. (2000). Chemical Geology, 168, 27–36.

    Article  CAS  Google Scholar 

  46. Napoli, F., Olivieri, G., Russo, M. E., Marzocchella, A., & Salatino, P. (2012). Enzyme and Microbial Technology, 50, 165–172.

    Article  CAS  Google Scholar 

  47. Ren, N., Wang, B., & Huang, J. C. (1997). Biotechnology and Bioengineering, 54(4), 428–433.

    Article  CAS  Google Scholar 

  48. Collet, C., Adler, N., Schwitzguebel, J. P., & Peringer, P. (2004). International Journal of Hydrogen Energy, 29, 1479–1485.

    Article  CAS  Google Scholar 

  49. Calli, B., Schoenmaekers, K., Vanbroekhoven, K., & Diels, L. (2008). International Journal of Hydrogen Energy, 33, 522–530.

    Article  CAS  Google Scholar 

  50. Hwang, M. H., Jang, N. J., Hyun, S. H., & Kim, I. S. (2004). Journal of Biotechnology, 111, 297–309.

    Article  CAS  Google Scholar 

  51. Rosales-Colunga, L. M., Razo-Flores, E., & Rodríguez, A. L. (2012). Bioresource Technology, 111, 180–184.

    Article  CAS  Google Scholar 

  52. Stamatelatou, K., Antonopoulou, G., Tremouli, A., & Lyberatos, G. (2011). Industrial and Engineering Chemistry Research, 50, 639–644.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from FAPEMIG, Vale S.A., CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Romão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romão, B.B., Batista, F.R.X., Ferreira, J.S. et al. Biohydrogen Production Through Dark Fermentation by a Microbial Consortium Using Whey Permeate as Substrate. Appl Biochem Biotechnol 172, 3670–3685 (2014). https://doi.org/10.1007/s12010-014-0778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0778-5

Keywords

Navigation