Skip to main content

Fungal Siderophores: Prospects and Applications

  • Chapter
  • First Online:
Fungal Siderophores

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Iron homeostasis is an important process in many living organisms. Siderophores are the secondary metabolites produced by fungi essential to access the cellular components of the host for growth and development. Siderophores are encoded by different genes in the organism and perform different functions like extracellular iron acquisition, intracellular iron storage, conidial iron acquisition, as well as storage during infections. It has been shown that mutations in siderophore-coding gene have definite effect on fungal growth and viability. In recent era, fungal siderophores are highly focused area of research owing to its wide applicability in the field of agricultural sectors, environmental impacts, and health-care sectors. However, because of the limitation in culturing the fungal strains in laboratories, only about 5% of the fungal diversity has been partially exploited. Fungal research would offer an enormous source of novelty if the constraints of their isolation and culturing could be overcome. The potential in the siderophore research is high as there is a lacuna in the understanding of the siderophoric applications in various fields. This chapter aims to highlight the importance of siderophore research and their potential application to be considered for further work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed E, Holmstrom SJM (2014) The effect of soil horizon and mineral type on the distribution of siderophores in soil. Geochimical et Cosmochimica Acta 131:184–195

    Article  CAS  Google Scholar 

  • Albarouki E, Schafferer L, Ye F, von Wirén N, Haas H, Deising HB (2014) Biotrophy-specific downregulation of siderophore biosynthesis in Colletotrichum graminicola is required for modulation of immune responses of maize. Mol Microbiol 92:338–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin SA, Green DH, Al Waheeb D, Gärdes A, Carrano CJ (2012) Iron transport in the genus Marinobacter. Biometals 25:135–147

    Article  CAS  PubMed  Google Scholar 

  • Arantes V, Milagres AMF (2007) The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill. J Hazard Mater 141:273–279

    Article  CAS  PubMed  Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66(11):3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Bach S, Almeida de A, Carniel E (2000) The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183:289–294

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24:1–58

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P (2010) Environmentally friendly production of pulp and paper. Wiley, Hoboken

    Book  Google Scholar 

  • Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, Chevion M, Greenberg EP, Banin E (2008) The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci 105:16761–16766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbeau K, Zhang GP, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379

    Article  CAS  PubMed  Google Scholar 

  • Bills G, Li Y, Chen L, Yue Q, Niu X, An Z (2014) New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. Nat Prod Rep 31:1348–75

    Google Scholar 

  • Boyce KJ, Andrianopoulos A (2015) Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol Rev 39:797–811

    Article  CAS  PubMed  Google Scholar 

  • Bultreys A, Gheysen I, de Hoffmann E (2006) Yersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group. Appl Environ Microbiol 72:3814–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capon RJ, Stewart M, Ratnayake R, Lacey E, Gill JH (2007) Citromycetins and bilains A-C: new aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. J Nat Prod 70:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Caris C, Hordt W, Hawkins HJ, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    Article  CAS  Google Scholar 

  • Carroll CS, Moore MM (2018) Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol 53:356–381

    Google Scholar 

  • Chen C, Pande K, French SD, Tuch BB, Noble SM (2011) An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10:118–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-H, Lin C-H, Chung K-R (2013) A nonribosomal peptide synthetase mediates siderophore production and virulence in the citrus fungal pathogen Alternaria alternata. Mol Plant Pathol 14:497–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Yang SL, Chung KR (2014) Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. Microbiology 160:970–979

    Article  CAS  PubMed  Google Scholar 

  • Chung Chun Lam CKS, Jickells TD, Richardson DJ, Russell DA (2006) Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters. Anal Chem 78:5040–5045

    Article  PubMed  CAS  Google Scholar 

  • Condon BJ, Oide S, Gibson DM, Krasnoff SB, Turgeon BG (2014) Reductive iron assimilation and intracellular siderophores assist extracellular siderophore-driven iron homeostasis and virulence. Mol Plant-Microbe Interact 27(8):793–808

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani G (2002) Priming in plant-pathogen interactions. TRENDS Plant Sci 7(5):P210–P216

    Article  Google Scholar 

  • Dahlheimer SR, Neal CR, Fein JB (2007) Potential mobilization of platinum group elements by siderophores in surface environments. Environ Sci Technol 41:870–875

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 11:1–13

    CAS  Google Scholar 

  • De Boer M, Bom P, Kindt F, Keurentjes JJB et al (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632

    Article  PubMed  Google Scholar 

  • Dellagi A, Brisset MN, Paulin JP, Expert D (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant Microbe Interact 11:734–742

    Article  CAS  PubMed  Google Scholar 

  • Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C et al (2011) Microbial manipulations to improve fish health and production – a Mediterranean perspective. Fish Shellfish Immunol 30:1–16

    Article  CAS  PubMed  Google Scholar 

  • Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding L-ornithine N-5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol 49:359–375

    Article  CAS  PubMed  Google Scholar 

  • Forester NT, Lane GA, Steringa M, Lamont IL, Johnson LJ (2017) Contrasting roles of fungal siderophores in maintaining iron homeostasis in Epichloe festucae. Fungal Genet Biol 111:60–72

    Article  PubMed  CAS  Google Scholar 

  • Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S (2018) Metals in fungal virulence. FEMS Microbiol Rev 42:1–21

    Article  CAS  Google Scholar 

  • Greenshields DL, Liu GS, Feng J, Selvaraj G, Wei YD (2007) The siderophore biosynthetic geneSID1, but not the ferroxidase gene FET3, is required for full Fusarium graminearum virulence. Mol Plant Pathol 8:411–421

    Article  CAS  PubMed  Google Scholar 

  • Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31:1266–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187

    Article  CAS  PubMed  Google Scholar 

  • Haas H, Petrik M, Decristoforo C (2015) An iron-mimicking, Trojan horse-entering fungi--has the time come for molecular imaging of fungal infections? PLoS Pathog 11(1):e1004568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilty J, Smulian AG, Newman SL (2008) The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages and virulence in a murine model of histoplasmosis. Mol Microbiol 70:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM (2005) The Aspergillus fumigatus siderophore biosynthetic gene SIDA, encoding 1-ornithine N5- oxygenase, is required for virulence. Infect Immun 73:5493–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hof C, Eisfeld K, Antelo L, Foster AJ, Anke H (2009) Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet Biol 46:321–332

    Article  CAS  PubMed  Google Scholar 

  • Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 108:2030–2040

    CAS  PubMed  Google Scholar 

  • Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutation Res/Fundamental and Mol Mechanisms of Mutagenesis 533(1–2):153–171

    Article  CAS  Google Scholar 

  • Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N et al (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 9:e1003332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan CD, Kaplan J (2009) Iron acquisition and transcriptional regulation. Chem Rev 109:4536–4552

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Singh P, Srivastava A (2017) Synthesis, nature and utility of universal iron chelator- siderophore: a review. Microbiol Res 212-213:103–111

    Article  PubMed  CAS  Google Scholar 

  • Kontoghiorghe CN, Kontoghiorghes GJ (2016) Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des Devel Ther 10:465–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraemer D, Tepe N, Pourret O, Bau M (2016) Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores. Geochimica et Cosmochimica Acta 196:197–208

    Google Scholar 

  • Krasnoff SB, Keresztes I, Donzelli BGG, Gibson DM (2014) Metachelins, mannosylated and N-oxidized coprogen-type siderophores from Metarhizium robertsii. J Nat Prod 77:1685–1692

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Kroken S, Chou DYT, Robbertse B, Yoder OC et al (2005) Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryot Cell 4:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Pantapalangkoor P, Tan B, Bruhn K, Ho T, Nielsen T, Skaar EP, Zhang Y, Bai R, Wang A, Doherty TM, Spellberg B (2014) Transferring iron starvation therapy for lethal bacterial and fungal infections. JID 210:254–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maindad DV, Kasture VM, Chaudhari H, Dhavale DD, Chopade BA, Sachdev DP (2014) Characterization and fungal inhibition activity of siderophore from wheat rhizosphere associated Acinetobacter calcoaceticus strain HIRFA32. India J Microbiol 54(3):315–322

    Article  CAS  Google Scholar 

  • Masalha J, Kosegarten H, ElmaciO MK (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Mascuch SJ, Moree WJ, Hsu CC, Turner GG, Cheng TL, Blehert DS et al (2015) Direct detection of fungal siderophores on bats with white-nose syndrome via fluorescence microscopy-guided ambient ionization mass spectrometry. PLoS One 10(3):e0119668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial Iron chelates. CRC Press, Boca Raton, pp 15–64

    Google Scholar 

  • Mei BG, Budde AD, Leong SA (1993) Sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci U S A 90:903–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengel K (1995) Iron availability in plant tissues – iron chlorosis on calcareous soils. In: Abadia J (ed) Iron nutrition in soils and plants. Kluwer, Dordrecht, pp 389–397

    Chapter  Google Scholar 

  • Meyer JM (2010) Pyoverdine siderophores as taxonomic and phylogenic markers molecular microbiology, infection and biodiversity. In: Ramos JL, Filloux A (eds) Pseudomonas, vol 6. Springer, London, pp 201–233

    Chapter  Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68(6):2745–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milagres AMF, Arantes V, Medeiros CL, Machuca A (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme MicrobTechnol 30:562–565

    Article  CAS  Google Scholar 

  • Mohanty SK, Gonneau C, Salamatipour A, Pietrofesa RA, Casper B, Christofidou-Solomidou M, Willenbring JW (2017) Siderophore-mediated iron removal from chrysotile: implications for asbestos toxicity reduction and bioremediation. J Hazard Mater 341:290–296

    Google Scholar 

  • Neubauer U, Nowak B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755

    Article  CAS  Google Scholar 

  • Nevitt T, Thiele DJ (2011) Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog 7:e1001322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberegger H, Schoeser M, Zadra I et al (2001) SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oide S, Berthiller F, Wiesenberger G, Adam G, Turgeon BG (2015) Individual and combined roles of malonichrome, ferricrocin, and TAFC siderophores in Fusarium graminearum pathogenic and sexual development. Front Miocrobiol 5(759):1–15

    Google Scholar 

  • Pal KK, Tilak KV, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  CAS  PubMed  Google Scholar 

  • Petrick M, Zhai C, Hubertus H, Decristoforo C (2017) Siderophores for molecular imaging applications. Clin Transl Imaging 5:15–27

    Article  Google Scholar 

  • Potrykus J, Ballou ER, Childers DS, Brown AJP (2014) Conflicting interests in the pathogen-host tug of war: fungal micronutrient scavenging versus mammalian nutritional immunity. PLoS Pathog 10(3):1–4

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol l28:142–149

    Article  CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungalsiderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    Article  PubMed  Google Scholar 

  • Schafferer L, Beckmann N, Binder U, Brosch G, Hass H (2015) AmcA- a putative mitochondrial ornithine transporter supporting fungal siderophore biosynthesis. Front Microbiol 6(252):1–2

    Google Scholar 

  • Scharf DH, Heinekamp T, Brakhage AA (2014) Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog 10(1):1–3

    Article  CAS  Google Scholar 

  • Schippers B, Lugtenberg B, Weisbeek PJ (1987) Plant growth control by fluorescent pseudomonads. In: Chet J (ed) Innovative approaches to plant disease control. Wiley, New York, pp 19–36

    Google Scholar 

  • Schrettl M, Haas H (2011) Iron homeostasis-Achilles’ heel of Aspergillus fumigatus? Curr Opin Microbiol 14:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN et al (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200:1213–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Sabiha Y, Loss O, Eisendle M et al (2007) Distinct roles for intra and extracellular siderophores during Aspergillus fumigatus infection. PLoS Pathog 3:1195–1207

    Article  CAS  PubMed  Google Scholar 

  • Schrettl M, Ibrahim-Granet O, Droin S, Huerre M, Latgé J, Haas H (2010) The crucial role of the Aspergillus fumigatus siderophore system in interaction with alveolar macrophages. Microbes Infect 12(12–13):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Gohil NK (2010) Optical features of the fluorophore azotobactin: applications for iron sensing in biological fluids. Eng Life Sci 10(4):304–310

    Article  CAS  Google Scholar 

  • Sorensen JL, Knudsen M, Hansen FT, Olesen C, Fuertes PR, Lee TV, Sondergaard TE, Pedersen CNS, Brodersen DE, Giese H (2014) Fungal NRPS-dependent siderophores: from function to prediction. In: Biosynthesis and molecular genetics of fungal secondary metabolites, fungal biology. Springer, New York

    Google Scholar 

  • Sulochana MB, Jayachandra SY, Anil Kumar SK, Dayanand A (2014) Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol 54:418–424

    Article  CAS  PubMed  Google Scholar 

  • Tamayo E, Gomez-Gallego T, Azcon-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5(547):1–13

    Google Scholar 

  • Taylor RJ, May I, Wallwork AL, Denniss IS, Hill NJ, Galkin BY et al (1998) The applications of formo- and aceto-hydroxamic acids in nuclear fuel reprocessing. J Alloy Compd 271–273:534–537

    Article  Google Scholar 

  • Thomashow L, Bakker PAHM (2015) Microbial control of root-pathogenic fungi and oomycetes. In: Principles of plant-microbe interactions. Springer, Cham, pp 165–173

    Chapter  Google Scholar 

  • Turgeon BG, Oide S, Bushley K (2008) Creating and screening Cochliobolus heterostrophus nonribosomal peptide synthetase mutants. Mycol Res 112:200–206

    Article  CAS  PubMed  Google Scholar 

  • Van Scholl L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton FJ, Idnurm A, Heitman J (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57:1381–1396

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yan W, Chen J, Huang F, Gao P (2008) Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation. Sci China C Life Sci 51:214–221

    Article  CAS  PubMed  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2013) Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess 185:2585–2593

    Article  PubMed  Google Scholar 

  • Weinberg ED (2009) Iron availability and infection. Biochim Biophys Acta 1790:600–605

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  CAS  PubMed  Google Scholar 

  • Winkelstroter LK, Dolan SK, Fernanda Dos Reis T, Bom VL, Alves de Castro P, Hagiwara D, Goldman GH (2015) Systematic global analysis of genes encoding protein phosphatases in Aspergillus fumigatus. G3 (Bethesda, Md.) 5(7):1525–1539

    Article  CAS  Google Scholar 

  • Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87:43–57

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    Article  CAS  PubMed  Google Scholar 

  • Yamada O, Nan SN, Akao T, Tominaga M, Watanabe H, Satoh T et al (2003) dffA gene from Aspergillus oryzae encodes L-ornithine N-5-oxygenase and is indispensable for deferriferrichrysin biosynthesis. J Bio Sci Bioeng 95:82–88

    Article  CAS  Google Scholar 

  • Yano T (1996) The nonspecific immune system: humoral defense. In: Iwama G, Nakanishi T (eds) The fish immune system: organism, pathogen, and environment. Academic Press, San Diego, pp 105–157

    Chapter  Google Scholar 

  • Yoder MF, Kisaalita WS (2011) Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass. J Biol Eng 5(4):1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manoharan, S., Ramalakshmi, O.I., Ramasamy, S. (2021). Fungal Siderophores: Prospects and Applications. In: Dhusia, K., Raja, K., Ramteke, P. (eds) Fungal Siderophores. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-53077-8_9

Download citation

Publish with us

Policies and ethics