Skip to main content

Advertisement

Log in

Iron transport in the genus Marinobacter

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Marinobacter belong to the class of Gammaproteobacteria and these motile, halophilic or halotolerent bacteria are widely distributed throughout the world’s oceans having been isolated from a wide variety of marine environments. They have also been identified as members of the bacterial flora associated with other marine organisms. Here, using a combination of natural products chemistry and genomic analysis, we assess the nature of the siderophores produced by this genus and their potential relationship to phylogeny and lifestyle/ecological niche of this diverse group of organisms. Our analysis shows a wide level of diversity in siderophore based iron uptake systems among this genus with three general strategies: (1) production and utilization of native siderophores in addition to utilization of a variety of exogenous ones, (2) production and utilization of native siderophores only, (3) lack of siderophore production but utilization of exogenous ones. They all share the presence of at least one siderophore-independent iron uptake ABC transport systems of the FbpABC iron metal type and lack the ability for direct transport of ferrous iron. Siderophore production and utilization can be correlated with phylogeny and thus it forms a type of chemotaxonomic marker for this genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abergel RJ, Zawadzka AM, Raymond KN (2008) Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J Am Chem Soc 130:2124–2125

    Article  PubMed  CAS  Google Scholar 

  • Alavi M, Miller T, Erlandson K, Schneider R, Belas R (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3:380–396

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Küpper FC, Green DH, Harris WR, Carrano CJ (2007) Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. J Am Chem Soc 129:478–479

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial–algal mutualism. Proc Natl Acad Sci USA 106:17071–17076

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Green DH, Gärdes A, Romano A, Trimble L, Carrano CJ (2011) Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. BioMetals (submitted)

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Worden AZ (2004) Oceanography: microbes, molecules, and marine ecosystems. Science 303:1622–1624

    Article  PubMed  CAS  Google Scholar 

  • Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413

    Article  PubMed  CAS  Google Scholar 

  • Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379

    Article  PubMed  CAS  Google Scholar 

  • Bell WH, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143:265–277

    Article  Google Scholar 

  • Bell WH, Lang JM, Mitchell R (1974) Selective stimulation of marine bacteria by algal extracellular products. Limnol Oceanogr 19:833–839

    Article  Google Scholar 

  • Boye M, Nishioka Croot PL, Laan P, Timmermans KR, de Baar HJW (2005) Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96:257–271

    Article  CAS  Google Scholar 

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36:1555–1577

    Article  CAS  Google Scholar 

  • Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501

    Article  PubMed  CAS  Google Scholar 

  • Desai P, Angerer A, Genco C (1996) Analysis of Fur binding to operator sequences within the Neisseria gonorrhoeae fbpA promoter. J Bacteriol 178:5020–5023

    PubMed  CAS  Google Scholar 

  • D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Chem Biol 17:254–264

    Article  PubMed  Google Scholar 

  • Duran R (2010) Marinobacter. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 1726–1735

    Google Scholar 

  • Enz S, Braun V, Crosa JH (1995) Transcription of the region encoding the ferric dicitrate-transport system in Escherichia coli: similarity between promoters for fecA and for extracytoplasmic function sigma factors. Gene 163:13–18

    Article  PubMed  CAS  Google Scholar 

  • Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    PubMed  CAS  Google Scholar 

  • Gärdes A, Iverson MH, Grossart HP, Passow U, Ullrich MS (2010) Diatom-Associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J 5(3):436–445

    Article  PubMed  Google Scholar 

  • Giovannoni SJ, Rappé MS (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 47–84

    Google Scholar 

  • Glatz RE, Lepp PW, Ward BB, Francis CA (2006) Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology 4:53–67

    Article  CAS  Google Scholar 

  • Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54

    Article  CAS  Google Scholar 

  • Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47:345–357

    Article  PubMed  CAS  Google Scholar 

  • Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron-limited conditions. Appl Environ Micro 67:1710–1717

    Article  CAS  Google Scholar 

  • Homann VV, Edwards KJ, Webb EA, Butler A (2009) Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Biometals 22:565–571

    Article  PubMed  CAS  Google Scholar 

  • Hutchins DA, Frank VM, Brzezinski MA, Bruland KW (1999) Inducing phytoplankton iron limitation in iron-replete coastal waters with a strong chelating ligand. Limnol Oceanogr 44:1009–1018

    Article  CAS  Google Scholar 

  • Kaeppel EC, Gärdes A, Seebah S, Grossart HP, Ullrich MS (2011) Marinobacter adhaerens sp. nov., prominent in aggregate formation with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.030189-0

  • Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219

    PubMed  CAS  Google Scholar 

  • Kaye JZ, Sylvan JB, Edwards KJ, Baross JA (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 75:123–133

    Article  PubMed  CAS  Google Scholar 

  • Köster W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301

    Article  PubMed  Google Scholar 

  • Küpper FC, Carrano CJ, Kuhn JU, Butler A (2006) Photoreactivity of iron(III)-aerobactin: photoproduct structure and iron(III) coordination. Inorg Chem 45:6028–6033

    Article  PubMed  Google Scholar 

  • Lee JY, Janes BK, Passalacqua KD, Pfleger BF, Bergman NH, Liu H, Hakansson K, Somu RV, Aldrich CC, Cendrowski S, Hanna PC, Sherman DH (2007) Biosynthetic analysis of the petrobactin biosynthetic pathway from Bacillus anthracis. J Bact 189:1698–1710

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Martin JS, Butler A (2007) Marine amphiplilic siderophores: marinobactin structure, uptake and microbial portioning. J Inorg Biochem 101:1692–1698

    Article  Google Scholar 

  • Martinez JS, Haygood MG, Butler A (2001) Identification of a natural desferrioxamine siderophore produced by a marine bacterium. Limnol Oceanogr 46:420–424

    Google Scholar 

  • Martinez JS, Carter-Franklin JS, Mann EL, Martin JD, Haygood MG, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci USA 100:3754–3759

    Article  PubMed  CAS  Google Scholar 

  • Mawji E, Gledhill M, Milton JA, Zubkov MV, Thompson A, Wolff GA, Achterberg EP (2011) Production of siderophore type chelates in Atlantic Ocean waters enriched with different carbon and nitrogen sources. Mar Chem 124:90–99

    Article  CAS  Google Scholar 

  • Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM (2005) Iron and Fur regulation in Vibrio cholerae and the role of Fur in virulence. Infect Immun 73:8167–8178

    Article  PubMed  CAS  Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138

    Article  CAS  Google Scholar 

  • Rue EL, Bruland KW (1997) The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol Oceanogr 42:901–910

    Article  CAS  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Seibold A, Wichels A, Schütt C (2001) Diversity of endocytic bacteria in the dinoflagellate Noctiluca scintillans. Aquat Microb Ecol 25:229–235

    Article  Google Scholar 

  • Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, Edwards KJ (2011) Genomic Potential of Marinobacter aquaeolei, a biogeochemical opportunitroph. Appl Envi Micro 77:2763–2771

    Article  CAS  Google Scholar 

  • Tang YZ, Koch F, Gobler CJ (2010) Most HAB species are vitamin B1 and B12 auxotrophs. Proc Nat Acad Sci USA 107:20756–20761

    Article  PubMed  CAS  Google Scholar 

  • Tortell PD, Maldonado MM, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29:1–11

    Article  CAS  Google Scholar 

  • Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63

    Article  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthrasis, cereus, and thuringiensis. Biochem Biophys Res Comm 384:320–325

    Article  Google Scholar 

  • Wu J, Luther GW (1995) Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar Chem 50:159–177

    Article  CAS  Google Scholar 

  • Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM (2006) Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bact 188:6515–6523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NOAA Grants #NA04OAR4170038 and NA08OAR4170669, California Sea Grant College Program Project numbers R/CZ-198 and R/CONT-205 and NSF grant CHE-0924313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Carrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, S.A., Green, D.H., Al Waheeb, D. et al. Iron transport in the genus Marinobacter . Biometals 25, 135–147 (2012). https://doi.org/10.1007/s10534-011-9491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9491-9

Keywords

Navigation