Skip to main content
Log in

Ecology of siderophores with special reference to the fungi

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Ecology of siderophores, as described in the present review, analyzes the factors that allow the production and function of siderophores under various environmental conditions. Microorganisms that excrete siderophores are able to grow in natural low-iron environments by extracting residual iron from insoluble iron hydroxides, protein-bound iron or from other iron chelates. Compared to the predominantly mobile bacteria, the fungi represent mostly immobile microorganisms that rely on local nutrient concentrations. Feeding the immobile is a general strategy of fungi and plants, which depend on the local nutrient resources. This also applies to iron nutrition, which can be improved by excretion of siderophores. Most fungi produce a variety of different siderophores, which cover a wide range of physico-chemical properties in order to overcome adverse local conditions of iron solubility. Resource zones will be temporally and spatially dynamic which eventually results in conidiospore production, transport to new places and outgrow of mycelia from conidiospores. Typically, extracellular and intracellular siderophores exist in fungi which function either in transport or storage of ferric iron. Consequently, extracelluar and intracellular reduction of siderophores may occur depending on the fungal strain, although in most fungi transport of the intact siderophore iron complex has been observed. Regulation of siderophore biosynthesis is essential in fungi and allows an economic use of siderophores and metabolic resources. Finally, the chemical stability of fungal siderophores is an important aspect of microbial life in soil and in the rhizosphere. Thus, insolubility of iron in the environment is counteracted by dissolution and chelation through organic acids and siderophores by various fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An Z, Mei B, Yuan WM, Leong SA (1997) The distal GATA sequences of the sid1 promotor of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. Embo J 16:1742–1750

    Article  PubMed  CAS  Google Scholar 

  • Anke H, Kinn J, Bergquist K-E, Sterner O (1992) Production of siderophores by strains of the genus Trichoderma. BioMetals 4:176–180

    Google Scholar 

  • Ardon O, Nudelman R, Caris C, Libman J, Shanzer A, Chen Y, Hadar Y (1998) Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180:2021–2026

    PubMed  CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Römheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100:451–456

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann W, Maas-Kantel K, Mog PR (1993) Iron uptake by leaf mesophyll cell: The role of the plasma membrane-bound ferric chelate reductase. Planta 190:151–155

    Article  Google Scholar 

  • Butler A (2005) Marine siderophores and microbial iron metabolism. BioMetals 18:369–374

    Article  PubMed  CAS  Google Scholar 

  • Charlang G, Bradford NG, Horowitz NH, Horowitz RM (1981) Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol Cell Biol 1:94–100

    PubMed  CAS  Google Scholar 

  • Cline GR, Reid CPP, Powell P, Szaniszlo PJ (1984) Effects of a hydroxamate siderophore on iron absorption by Sunflower and Sorghum. Plant Physiol 76:36–39

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen CN, Sparling PF (2004) Neisseria. In: Crosa JH, Mei AR, Payne SM, (eds) Iron Transport in Bacteria. ASM Press, Washington DC, pp 256–272

    Google Scholar 

  • Crosa JH, Mey AR, Payne SM (eds) (2004) Iron transport in bacteria. ASM Press Washington DC

  • Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci (USA) 89:3869–3873

    Article  CAS  Google Scholar 

  • De Lorenzo V, Martin JP, Escolar L, Pesole G, Bertoni G (2004) Mode of binding of the Fur protein to target DNA: Negative regulation of iron-controled gene expression. In: Crosa JH, Mei AR, Payne SM (eds) Iron Transport in Bacteria. ASM Press, Washington DC, pp 185–196

    Google Scholar 

  • Diekmann H, Krezdorn E (1975) Stoffwechselprodukte von Mikroorganismen. 150 Mitteilung. Ferricrocin, Triacetylfusigen und andere Sideramine aus Pilzen der Gattung Aspergillus, Gruppe Fumigatus. Arch Microbiol 106:191–194

    Article  PubMed  CAS  Google Scholar 

  • Drechsel H, Winkelmann G (1997) Iron chelation and siderophores. In: Winkelmann G, Carrano CJ (eds), Transition Metals in Microbial Metabolism. Harwood Acadmic Publishers, Amsterdam, pp 1–49

    Google Scholar 

  • Ecker DJ, Lancaster JR, Emery T (1982) Siderophore iron transport followed by electron paramagnetic resonance spectroscopy. J Biol Chem 257:8623–8626

    PubMed  CAS  Google Scholar 

  • Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharmyces cerevisiae. Genome Biology 6, R77 Open Access

  • Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding L-ornithine-N 5-monooxigenase (SidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol 49:359–375

    Article  PubMed  CAS  Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3:561–563

    Article  PubMed  CAS  Google Scholar 

  • Emery T (1987) Reductive mechanisms of iron assimilation. In Winkelmann G, van der Helm D, Neilands JB (eds), Iron Transport in Microbes, Plants and Animals. VCH Verlagsgesellschaft, Weinheim, pp 235–250

    Google Scholar 

  • Ernst JF, Bennet RL, Rothfield LI (1978) Cunstitutive expression if the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J Bacteriol 135:928–934

    PubMed  CAS  Google Scholar 

  • Essén SA, Bylund D, Holmström SJM, Moberg M, Lundström US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. BioMetals 19:269–282

    Article  PubMed  CAS  Google Scholar 

  • Fernandéz V, Winkelmann G, Ebert G (2004) Iron supply to tabacco plants through foliar application of iron citrate and ferric dimerum acid. Physiologia Plantarum 122:380–385

    Article  CAS  Google Scholar 

  • Fernandéz V, Ebert G, Winkelmann G 2005. The use of microbial siderophores for foliar iron application studies. Plant Soil 272:245–252

    Article  CAS  Google Scholar 

  • Haas H, Angermayr K, Stoffler G (1997) Molecular analyis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 184:33–37

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Zadra I, Stöffler G, Angermeyer K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1984) Cloning of the repressor protein gene of iron regulated systems in E. coli K12. Mol Gen Genet 197:337–341

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Dobernigg B, Beck W, Jung G, Cansier A, Winkelmann G (1992) Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. BioMetals 5:51–56

    Article  CAS  Google Scholar 

  • Haselwandter K, Winkelmann G (1998) Identification and characterization of siderophores of mycorrhizal fungi. In: Varma A (ed) Mycorrhiza Manual. Berlin, Springer-Verlag, pp 243–254

    Google Scholar 

  • Haselwandter K, Winkelmann G (2002) Ferricrocin—an ectomycorrhizal siderophore of Cenococcum geophilum. BioMetals 15:73–77

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Passler V, Reiter S, Schmid DG, Nicholson G, Hentschel P, Albert K, Winkelmann G (2006) Basidiochrome—a novel siderophore of the orchidaceous mycorrhizal fungi Ceratobasidium and Rhizoctonia spp. BioMetals 19:335–343

    Article  PubMed  CAS  Google Scholar 

  • Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings BL, Williams JH (1952) Coprogen, e new groth factor for coprophilic fungi. J Am Chem Soc 74:1362–1363

    Article  CAS  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G.(1999) Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. BioMetals 12:301–306

    Article  PubMed  CAS  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000a) A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. BioMetals 13:65–72

    Article  CAS  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000b) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 186:221–227

    Article  CAS  Google Scholar 

  • Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst J (2002) The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelical invasion. Infect Immun 70:5246–5255

    Article  PubMed  CAS  Google Scholar 

  • Hoe KL, Won MS, Yoo OJ, Yoo HS (1996) Molecular cloning of GAF2, a Schizosaccharomyces pombe GATA factor, which has two zinc-finger sequences. Biochem Mol Biol Int 39:127–135

    PubMed  CAS  Google Scholar 

  • Hördt W, Römheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilisation by strategy I and strategy II plants. BioMetals 13:37–46

    Article  PubMed  Google Scholar 

  • Horowitz NH, Charlang G, Horn G, Williams NP (1976) Isolation and identification of the conidial germination factor of Neurospora crassa. J Bacteriol 127:135–140

    PubMed  CAS  Google Scholar 

  • Hu CJ, Bai C, Zheng XD, Wang YM (2002) Characterization and functional analysis of the siderophore-fe transporter CaArn1p in Candida albicans. J Biol Chem 11:11

    Google Scholar 

  • Jalal MAF, van der Helm D (1981) Isolation and spectroscopic identification of fungal siderophores. In: Winkelmann G (ed), Handbook of Microbial Iron Chelates. Bocca Raton, CRC Press, pp 235–269

    Google Scholar 

  • Jalal MAF, Morcharla R, Barnes CL, Hossain MB, Powell DR, Eng-Wilmot DL, Grayson SL, Benson BA, van der Helm D (1984) Extracellular siderophores from Aspergillus ochreaceous. J Bacteriol 158:683–688

    PubMed  CAS  Google Scholar 

  • Jalal MAF, Love SK, van der Helm (1986) Siderophore-mediated iron(III) uptake in Gliocladium virens, 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes. J Inorg Chem 28:417–430

    CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Konetschny-Rapp S, Jung G, Huschka H.-G, Winkelmann G (1988) Isolation and identification of the principal siderophore of the plant pathogenic fungus Botrytis cinerea. BioMetals 1:90–98

    CAS  Google Scholar 

  • Lesuisse E, Raguzzi F, Crichton RR (1987) Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol 133:3229

    PubMed  CAS  Google Scholar 

  • Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–3462

    Article  PubMed  CAS  Google Scholar 

  • Leong SA, Winkelmann G (1998) Molecular biology of iron transport in fungi. Met Ions Biol Syst 35:147–186

    PubMed  CAS  Google Scholar 

  • Mac Arthur JV (ed) (2006) Microbial ecology. An evolutionary approach. Elsevier, Academic Press Publ. Amsterdam, New York

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J Bacteriol 169:5873–5876

    PubMed  CAS  Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. BioMetals 1:18–25

    CAS  Google Scholar 

  • Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: Molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907

    Article  PubMed  CAS  Google Scholar 

  • Mies KA, Wirgau JL, Crumbliss AL (2006) Ternary complex formation facilitates a redoxmechanism for iron release from a siderophore. BioMetals 19:115–126

    Article  PubMed  CAS  Google Scholar 

  • Monzyk B, Crumbliss AL (1983) Factors that influence siderophore-mediated iron bioavailability: Catalysis of interligand iron(III) transfer from ferrioxamine B to EDTA by hydroxamic acids. I Inorg Biochem 19:19–39

    Article  CAS  Google Scholar 

  • Mor H, Kashman Y, Winkelmann G, Barash I (1992) Characterization of siderophores produced by different species of the dermatophytic fungi Microsporum and Trichophyton. BioMetals 5:213–216

    Article  CAS  Google Scholar 

  • Neilands JB (1952) A crystalline organo iron compound from a rust fungus Ustilago spaerogena . J Am Chem Soc 74:4846–4847

    Article  CAS  Google Scholar 

  • Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthsis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089

    Article  PubMed  CAS  Google Scholar 

  • Ong SA, Neilands JB (1979) Siderophores in microbially processed cheese. J Agr Food Chem 27:990–995

    Article  CAS  Google Scholar 

  • Pelletier B, Beaudoin J, Philpott CC, Labbé S (2003) Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophore-iron transport system. Nucleic Acids Res 31:4332–4344

    Article  PubMed  CAS  Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron in soils. Nature 287:833–834

    Article  CAS  Google Scholar 

  • Powell PE, Szaniszlo PJ, Cline GR, Reid CPP (1982) Hydroxamate siderophores in the iron nutrition of plants. J Plant Nutr 5:653–673

    Article  CAS  Google Scholar 

  • Prabhu V, Biolchini PF, Boyer GL (1996) Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. BioMetals 9:229–234

    Article  CAS  Google Scholar 

  • Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, Philpott CC (2001) Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276:49244–49250

    Article  PubMed  CAS  Google Scholar 

  • Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:126–131

    Article  PubMed  CAS  Google Scholar 

  • Schrettl M, Winkelmann G, Haas H (2004a) Ferrichrome in Schizosaccharomyces pombe - an iron transport and iron storage compound. BioMetals 17:647–654

    Article  CAS  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr., Haynes K, Haas H (2004b) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200:1213–1219

    Article  CAS  Google Scholar 

  • Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73:1158–1174

    Article  CAS  Google Scholar 

  • Valdebenito M, Bister B, Reissbrodt R, Hantke K, Winkelmann G (2005) The detecction of salmochelin and yersiniabactin in uropathogenic Escherichia coli strains by a novel hydrolysis–fluorescens-detection method. Int J Med Microbiol 295:99–107

    Article  PubMed  CAS  Google Scholar 

  • Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle. Int J Med Microbiol (in press)

  • van der Helm D, Baker JR, Eng-Wilmot DL, Hossain MB, Loghry RA (1980) Crystal structure of ferrichrome and a comparison with the structure of ferrichrome A. J Am Chem Soc 102:4224–4231

    Article  Google Scholar 

  • Van der Walt JP, Botha A, Eiker A (1990) Ferrichrome production by Lipomycetaceae. Syst Appl Microbiol 13:131–135

    Google Scholar 

  • Van Hees PA, Rosling A, Essén S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytologist 169:367–378

    Article  PubMed  CAS  Google Scholar 

  • Villavicenio M, Neilands JB (1965) An inducible ferrichrome A-degrading peptidase from pseudomonas FC-1. Biochemistry 4:1092–1097

    Article  Google Scholar 

  • Voisard C, Wang J, McEvoy JL, Xu P, Leong SA (1993) Urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 13:7091–7100

    PubMed  CAS  Google Scholar 

  • Wang J, Budde AD, Leong SA (1989) Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N 5-oxygenase gene. J Bacteriol 171:2811–2818

    PubMed  CAS  Google Scholar 

  • Warren RAJ, Neilands JB (1965) Mechanisms of microbial catabolism of ferrichrome A. J Biol Chem 240:2055–2058

    PubMed  CAS  Google Scholar 

  • Wiebe C, Winkelmann G (1975) Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. J Bacteriol 123:837–842

    PubMed  CAS  Google Scholar 

  • Winkelmann G, Zähner H 1973. Stoffwechselprodukte von Mikroorganismen. 115. Mitteilung. Eisenaufnahme bei Neurospora crassa I. Zur Spezifität des Eisentransportes. Arch Mikrobiol 88:49–60

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G (1974) Stoffwechselprodukte von Mikroorganismen. 132. Mitteilung. Uptake of iron by Neurospora crassa. III Iron transport studies with ferrichrome-type compounds. Arch Microbiol 98:39–50

    Article  CAS  Google Scholar 

  • Winkelmann G (1979) Surface iron polymers and hydroxy acids. A model of iron supply in sideramine-free fungi. Arch Microbiol 121:43–51

    Article  CAS  Google Scholar 

  • Winkelmann G (1986) Iron Complex Products. In: Rehm HJ, Reed G (eds) Biotechnology 4:215–243

  • Winkelmann G, Schmidtkunz K, Rainey FA (1996) Characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores. BioMetals 9:78–83

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Busch B, Hartmann A, Kirchhof G, Süßmuth R, Jung G (1999) Degradation of desferrioxamines by Azospirillum irakense: Assignment of metabolites by HPLC/electrospray mass spectrometry. BioMetals 12:255–264

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Winge DR (eds) 1994. Metal Ions in Fungi. Marcel Dekker, Inc. Ney York-Basel Hong Kong

  • Winkelmann G (2001) Siderophore transport in fungi. In: Winkelmann G (ed), Microbial Transport Systems. Weinheim, Wiley-VCH, pp 463–480

    Chapter  Google Scholar 

  • Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G (2004) Ecology of Siderophores. In: Crosa JH, Mey AR, Payne SM (eds), Iron Transport in Bacteria. ASM Press, Washington DC, pp 437–450

    Google Scholar 

  • Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14:1231–1239

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15:3377–3384

    PubMed  CAS  Google Scholar 

  • Yehuda Z, Shenker M, Römheld V, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophore by grammineous plants. Plant Physiol 112:1273–1280

    PubMed  CAS  Google Scholar 

  • Yun CW, Tiedeman JS, Moore RE, Philpott CC (2000) Siderophore-iron uptake in Saccharomyces cerevisiae. J Biol Chem 275:16354–16359

    Article  PubMed  CAS  Google Scholar 

  • Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223

    Article  PubMed  CAS  Google Scholar 

  • Zähner H, Keller-Schierlein W, Hütter R, Hess-Leisinger K, Deér A (1963) Stoffwechselprodukte von Mikroorganismen 40. Mitteilung. Sideramine aus Aspergillaceen. Arch Microbiol 45:119–135

    Google Scholar 

  • Zhou LW, Haas H, Marzluf GA (1998) Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa. Mol Gen Genet 259:532–540

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Winkelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkelmann, G. Ecology of siderophores with special reference to the fungi. Biometals 20, 379–392 (2007). https://doi.org/10.1007/s10534-006-9076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9076-1

Keywords

Navigation