Skip to main content
Log in

Characterization and Fungal Inhibition Activity of Siderophore from Wheat Rhizosphere Associated Acinetobacter calcoaceticus Strain HIRFA32

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter calcoaceticus HIRFA32 from wheat rhizosphere produced catecholate type of siderophore with optimum siderophore (ca. 92 % siderophore units) in succinic acid medium without FeSO4 at 28 °C and 24 h of incubation. HPLC purified siderophore appeared as pale yellow crystals with molecular weight [M+1] m/z 347.18 estimated by LCMS. The structure elucidated by 1H NMR, 13C NMR, HMQC, HMBC, NOESY and decoupling studies, revealed that siderophore composed of 2,3-dihydroxybenzoic acid with hydroxyhistamine and threonine as amino acid subunits. In vitro study demonstrated siderophore mediated mycelium growth inhibition (ca. 46.87 ± 0.5 %) of Fusarium oxysporum. This study accounts to first report on biosynthesis of acinetobactin-like siderophore by the rhizospheric strain of A. calcoaceticus and its significance in inhibition of F. oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huddedar SB, Shete AM, Tilekar JN, Gore SD, Dhavale DD, Chopade BA (2002) Isolation, characterization and plasmid pUPI126 mediated indole 3 acetic acid (IAA) production in Acinetobacter strains from rhizosphere of wheat. Appl Biochem Biotechnol 102:21–29

    Article  PubMed  Google Scholar 

  2. Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde SS, Dhakephalkar PK, Chopade BA (2011) Characterization of plant growth promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotech 21:556–566

    Google Scholar 

  3. Sachdev D, Nema P, Dhakephalkar P, Zinjarde S, Chopade B (2010) Assessment of 16S rRNA gene based phylogenetic diversity of Acinetobacter community from the rhizosphere of wheat. Microbiol Res 165:627–638

    Article  CAS  PubMed  Google Scholar 

  4. Sorensen J, Van Elsas JD, Trevors JT, Wellington EMH (1997) The rhizosphere as a habitat for soil microorganisms. Modern soil microbiology. Marcel Dekker, New York, pp 21–45

    Google Scholar 

  5. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  6. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  7. Sturz A, Christie VBR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72:107–123

    Article  Google Scholar 

  8. Bakker PAHM, Ran LX, Pieterse CMJ, van Loon LC (2003) Understanding the involvement of rhizobacteria mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Article  Google Scholar 

  9. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  10. Carson KC, Glenn AR, Dilworth MJ (1994) Specificity of siderophore—mediated transport of iron in rhizobia. Arch Microbiol 161:333–339

    Article  CAS  Google Scholar 

  11. Cornish AS, Page WJ (1995) Production of the tricatecholate siderophore protochelin by Azotobacter vinelandii. Biometals 8:332–338

    Article  CAS  Google Scholar 

  12. Dilworth MJ, Carson KC, Giles RGF, Byrne LT, Glenn AR (1998) Rhizobium leguminosarum bv. viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. Microbiology 144:781–791

    Article  CAS  Google Scholar 

  13. Storey EP, Boghozian R, Little JL, Lowman DW, Chakraborty R (2006) Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals 19:637–649

    Article  CAS  PubMed  Google Scholar 

  14. Dhakephalkar PK, Chopade BA (1994) High levels of multiple metal resistance and its correlation to antibiotic resistance in environment isolates of Acinetobacter. Biometals 7:67–74

    Article  CAS  PubMed  Google Scholar 

  15. Philippe J, Bouvet Patrick M, Grimont AD (1986) Taxonomy of the genus Acinetobacter with the Recognition of Acinetobacter baumannii sp. nov. Acinetobacter haemolyticus sp. nov. Acinetobacter johnsonii sp. nov. and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36:228–240

    Article  Google Scholar 

  16. Chopade BA, Huddedar SB, Shete AM, Tilekar JN, Gore SD, Dhavale DD (2008) Plasmid encoding IAA and method thereof. US Pat 7:341–868

    Google Scholar 

  17. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 1:1–9

    Google Scholar 

  18. Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamond back moth Plutella xylostella (lepidoptera: plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  19. Liu CH, Chen X, Liu TT, Lian B, Yucheng Gu, Caer V, Xue YR, Wang BT (2007) Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl Microbiol Biotechnol 76:459–466

    Article  CAS  PubMed  Google Scholar 

  20. Luo M, Fadeev EA, Groves JT (2005) Membrane dynamics of the amphiphilic siderophore, acinetoferrin. J Am Chem Soc 127:1726–1736

    Article  CAS  PubMed  Google Scholar 

  21. Okujo N, Sakakibara Y, Yoshida T, Yamamoto S (1994) Structure of acinetoferrin, a new citrate-based dihydroxamate siderophore from Acinetobacter haemolyticus. Biometals 7:170–176

    CAS  PubMed  Google Scholar 

  22. Yamamoto S, Okujo N, Sakakibara Y (1994) Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch Microbiol 162:249–252

    CAS  PubMed  Google Scholar 

  23. Yavankar SP, Pardesi KR, Chopade BA (2007) Species distribution and physiological characterization of Acinetobacter genospecies from healthy human skin of tribal population in India. Indian J Med Microbiol 25:336–345

    Article  CAS  PubMed  Google Scholar 

  24. Rawlings DE (1995) Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez CA, Vargas T, Toledo H, Wiertz JV (eds) Biohydrometallurgical processing. University of Chile Press, Santiago, pp 9–17

    Google Scholar 

  25. Tamaoka J, Kamagata K (1984) Determination of DNA base composition by reversed phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  26. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  27. Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  CAS  PubMed  Google Scholar 

  28. De Lay JH, Cattior ReynaertsA (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  Google Scholar 

  29. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  30. Schwyn BJ, Neilands B (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  31. Machuca A, Milagres AMF (2003) Use of CAS agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177–181

    Article  CAS  PubMed  Google Scholar 

  32. Payne SM (1994) Detection, isolation and characterization of siderophores. Methods Enzymol 235:329–344

    Article  CAS  PubMed  Google Scholar 

  33. Hathway DE (1969) Plant phenols and tannins. In: Smith I (ed) Chromatographic and electrophoretic techniques, 3rd edn. Interscience Publishers Inc., New York, pp 390–436

    Google Scholar 

  34. Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physiochemical properties. J Gen Microbiol 107:319–328

    Article  CAS  Google Scholar 

  35. Sridevi M, Mallaiah KV (2008) Production of hydroxamate-type of siderophores by Rhizobium strains from Sesbania sesban (L.). Merr. Int J Soil Sci 3:24–28

    Google Scholar 

  36. Jalal MAF, Helm VD (1991) Isolation and spectroscopic identification of fungal siderophores. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, pp 235–236

    Google Scholar 

  37. Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescence. Curr Sci 82:1463–1466

    CAS  Google Scholar 

  38. Postle K (1990) Aerobic regulation of the Escherichia coli tonB genes by changes in iron availability and the fur locus. J Bacteriol 172:2287–2293

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Moon CD, Zhang X, Matthijs S, Schäfer M, Budzikiewicz H, Rainey PB (2008) Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiol 8:7

    Article  PubMed Central  PubMed  Google Scholar 

  40. De Rijk P, Van de Peer Y, Chapelle S, De Wachter R (1994) Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res 22:3495–3501

    Article  PubMed Central  PubMed  Google Scholar 

  41. Maidak BL, Larsen N, McCaughey MJR, OverbeekOlsen GJ, Fogel K, Blandy J, Woese CR (1994) The ribosomal database project. Nucleic Acids Res 22:3485–3487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Van de Peer Y, Van den Broeck I, De Rijk P, De Wachter R (1996) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494

    Article  Google Scholar 

  43. Stackebrandt EB, Goebel M (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  44. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  45. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  46. Biomerieux Vitek, Inc. (1992) 20e Analytical profile index, 10th edn. Biomerieux Vitek Inc, Hazelwood

    Google Scholar 

  47. Bergan T, Sorheim K (1984) Gas–liquid chromatography for the assay of fatty acid composition in Gram-negative bacilli as an aid to classification. Methods Microbiol 15:345–362

    Article  CAS  Google Scholar 

  48. Carr EL, Kampfer P, Patel BK, Gurtler V, Seviour RJ (2003) Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53:953–963

    Article  CAS  PubMed  Google Scholar 

  49. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches of bacterial systemic. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  50. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  51. Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  52. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sayyed RZ, Badgujar MD, Sonawane HM, Mhaaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent Pseudomonas. Indian J Biotechnol 4:484–490

    CAS  Google Scholar 

  54. Sayyed RZ, Chincholkar SB (2006) Purification of siderophores of Alcaligenes faecalis on Amberlite XAD. Bioresource Technol 97:1026–1029

    Article  CAS  Google Scholar 

  55. Patel AK, Deshattiwar MK, Chaudhari BL, Chincholkar SB (2008) Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresour Technol 100:368–373

    Article  PubMed  Google Scholar 

  56. Dorsey CW, Tomaras AP, Connerly PL, Tolmasky ME, Crosa JH, Actis LA (2004) The siderophore-mediated iron acquisition systems of Acinetobacter baumannii ATCC 19606 and Vibrio anguillarum 775 are structurally and functionally related. Microbiol 150:3657–3667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Department of Biotechnology (DBT), Govt. of India, New Delhi (Project Sanction No. BT/PR6454/AGR/05/302/2005) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sachdev.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maindad, D.V., Kasture, V.M., Chaudhari, H. et al. Characterization and Fungal Inhibition Activity of Siderophore from Wheat Rhizosphere Associated Acinetobacter calcoaceticus Strain HIRFA32. Indian J Microbiol 54, 315–322 (2014). https://doi.org/10.1007/s12088-014-0446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0446-z

Keywords

Navigation