Skip to main content

Fundamentals of Epithelial Na+ Absorption

  • Chapter
  • First Online:
Basic Epithelial Ion Transport Principles and Function

Abstract

The maintenance of electrolyte balance is essential for the control of many functions in the human body. Na+, K+, and Cl are key electrolytes that contribute to a variety of processes ranging from the maintenance of cellular membrane potential to the regulation of cell volume and extracellular fluid. Fundamentals of epithelial Cl and K+ transport are discussed in the preceding and following chapters and will be only briefly touched upon here. Na+ absorption occurs across the epithelial barriers of many organs, including the lung, gastrointestinal tract, exocrine glands, and the kidney. Total body Na+ content is the primary determinant of blood volume, and a number of physiological mechanisms that control blood pressure mediate their effects by adjusting Na+ balance in the kidney. This chapter describes the classical understanding of epithelial Na+ absorption and highlights some recently described mechanisms involved in the physiological regulation of Na+ transport in specific epithelia with a particular emphasis on the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre P (2000) Homer W. Smith award lecture Aquaporin water channels in kidney. J Am Soc Nephrol 11:764–777

    CAS  PubMed  Google Scholar 

  • Al-Awqati Q (2013) Cell biology of the intercalated cell in the kidney. FEBS Lett 587:1911–1914

    Article  CAS  PubMed  Google Scholar 

  • Allen GG, Barratt LJ (1985) Origin of positive transepithelial potential difference in early distal segments of rat kidney. Kidney Int 27:622–629

    Article  CAS  PubMed  Google Scholar 

  • Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW (1995) Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int 48:1206–1215

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreoli TE, Schafer JA, Troutman SL (1978) Perfusion rate-dependence of transepithelial osmosis in isolated proximal convoluted tubules: estimation of the hydraulic conductance. Kidney Int 14:263–269

    Article  CAS  PubMed  Google Scholar 

  • Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 301:F1143–F1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ares GR, Haque MZ, Delpire E, Ortiz PA (2012) Hyperphosphorylation of Na-K-2Cl cotransporter in thick ascending limbs of Dahl salt-sensitive rats. Hypertension 60:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Bachmann S, Mutig K (2017) Regulation of renal Na-(K)-Cl cotransporters by vasopressin. Pflugers Arch 469:889–897

    Article  CAS  PubMed  Google Scholar 

  • Barajas L, Powers K, Carretero O, Scicli AG, Inagami T (1986) Immunocytochemical localization of renin and kallikrein in the rat renal cortex. Kidney Int 29:965–970

    Article  CAS  PubMed  Google Scholar 

  • Barratt LJ, Rector FC Jr, Kokko JP, Seldin DW (1974) Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J Clin Invest 53:454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barratt LJ, Rector FC Jr, Kokko JP, Tisher CC, Seldin DW (1975) Transepithelial potential difference profile of the distal tubule of the rat kidney. Kidney Int 8:368–375

    Article  CAS  PubMed  Google Scholar 

  • Bennett CM, Brenner BM, Berliner RW (1968) Micropuncture study of nephron function in the rhesus monkey. J Clin Invest 47:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla V, Hallows KR (2008) Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 19:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13:836–847

    PubMed  Google Scholar 

  • Birkenhager R et al (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    Article  CAS  PubMed  Google Scholar 

  • Bockenhauer D et al (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borensztein P, Froissart M, Laghmani K, Bichara M, Paillard M (1995) RT-PCR analysis of Na+/H+ exchanger mRNAs in rat medullary thick ascending limb. Am J Phys 268:F1224–F1228

    CAS  Google Scholar 

  • Boron WF, Sackin H (1983) Measurement of intracellular ionic composition and activities in renal tubules. Annu Rev Physiol 45:483–496

    Article  CAS  PubMed  Google Scholar 

  • Bostanjoglo M et al (1998) 11Beta-hydroxysteroid dehydrogenase, mineralocorticoid receptor, and thiazide-sensitive Na-Cl cotransporter expression by distal tubules. J Am Soc Nephrol 9:1347–1358

    CAS  PubMed  Google Scholar 

  • Braam B, Mitchell KD, Koomans HA, Navar LG (1993) Relevance of the tubuloglomerular feedback mechanism in pathophysiology. J Am Soc Nephrol 4:1257–1274

    CAS  PubMed  Google Scholar 

  • Butterworth MB, Edinger RS, Frizzell RA, Johnson JP (2009) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296:F10–F24

    Article  CAS  PubMed  Google Scholar 

  • Campean V, Kricke J, Ellison D, Luft FC, Bachmann S (2001) Localization of thiazide-sensitive Na+-Cl- cotransport and associated gene products in mouse DCT. Am J Physiol Renal Physiol 281:F1028–F1035

    Article  CAS  PubMed  Google Scholar 

  • Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    Article  CAS  PubMed  Google Scholar 

  • Capasso G (2007) A new cross-talk pathway between the renal tubule and its own glomerulus. Kidney Int 71:1087–1089

    Article  CAS  PubMed  Google Scholar 

  • Capasso G, Rizzo M, Pica A, Di Maio FS, Moe OW, Alpern RJ, De Santo NG (2002) Bicarbonate reabsorption and NHE-3 expression: abundance and activity are increased in Henle’s loop of remnant rats. Kidney Int 62:2126–2135

    Article  CAS  PubMed  Google Scholar 

  • Carmosino M et al (2011) NKCC2 is activated in Milan hypertensive rats contributing to the maintenance of salt-sensitive hypertension. Pflugers Arch 462:281–291

    Article  CAS  PubMed  Google Scholar 

  • Castrop H, Schnermann J (2008) Isoforms of renal Na-K-2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol 295:F859–F866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Canales M et al (2013) Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens 31:303–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Kleyman TR, Sheng S (2014) Deletion of alpha-subunit exon 11 of the epithelial Na+ channel reveals a regulatory module. Am J Physiol Renal Physiol 306:F561–F567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CJ, Yoon J, Baum M, Huang CL (2015) STE20/SPS1-related proline/alanine-rich kinase (SPAK) is critical for sodium reabsorption in isolated, perfused thick ascending limb. Am J Physiol Renal 308:F437–F443

    Article  CAS  Google Scholar 

  • Chiga M, Rai T, Yang SS, Ohta A, Takizawa T, Sasaki S, Uchida S (2008) Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int 74:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Ciampolillo F, McCoy DE, Green RB, Karlson KH, Dagenais A, Molday RS, Stanton BA (1996) Cell-specific expression of amiloride-sensitive, Na+-conducting ion channels in the kidney. Am J Phys 271:C1303–C1315

    Article  CAS  Google Scholar 

  • Costanzo LS (1984) Comparison of calcium and sodium transport in early and late rat distal tubules: effect of amiloride. Am J Phys 246:F937–F945

    CAS  Google Scholar 

  • Costanzo LS (1985) Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Phys 248:F527–F535

    Article  CAS  Google Scholar 

  • Crane RK (1960) Intestinal absorption of sugars. Physiol Rev 40:789–825

    Article  CAS  PubMed  Google Scholar 

  • Cuevas CA et al (2017) Potassium sensing by renal distal tubules requires Kir4.1. J Am Soc Nephrol 28:1814–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Nicola L, Gabbai FB, Liberti ME, Sagliocca A, Conte G, Minutolo R (2014) Sodium/Glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis 64:16–24

    Article  PubMed  CAS  Google Scholar 

  • Díez-Sampedro A, Eskandari S, Wright EM, Hirayama BA (2001) Na+-to-sugar stoichiometry of SGLT3. Am J Physiol Renal Physiol 280:F278–F282

    Article  PubMed  Google Scholar 

  • Díez-Sampedro A et al (2003) A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A 100:11753–11758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donaldson SH, Boucher RC (2003) Update on pathogenesis of cystic fibrosis lung disease. Curr Opin Pulm Med 9:486–491

    Article  PubMed  Google Scholar 

  • Donaldson SH, Boucher RC (2007) Sodium channels and cystic fibrosis. Chest 132:1631–1636

    Article  CAS  PubMed  Google Scholar 

  • Donowitz M, Li X (2007) Regulatory Binding Partners and Complexes of NHE3. Physiol Rev 87:825–872

    Article  CAS  PubMed  Google Scholar 

  • Dorup J, Morsing P, Rasch R (1992) Tubule-tubule and tubule-arteriole contacts in rat kidney distal nephrons. A morphologic study based on computer-assisted three-dimensional reconstructions. Lab Investig 67:761–769

    CAS  PubMed  Google Scholar 

  • Doucet A (1988) Function and control of Na-K-ATPase in single nephron segments of the mammalian kidney. Kidney Int 34:749–760

    Article  CAS  PubMed  Google Scholar 

  • Eaton DC, Helms MN, Koval M, Bao HF, Jain L (2009) The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol 71:403–423

    Article  CAS  PubMed  Google Scholar 

  • Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes Metab Res Rev 21:31–38

    Article  CAS  PubMed  Google Scholar 

  • Eladari D, Chambrey R, Picard N, Hadchouel J (2014) Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci 71:2879–2895

    Article  CAS  PubMed  Google Scholar 

  • Ellison DH, Velazquez H, Wright FS (1987) Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Phys 253:F546–F554

    CAS  Google Scholar 

  • Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414:558–561

    Article  CAS  PubMed  Google Scholar 

  • Fahlke C, Fischer M (2010) Physiology and pathophysiology of ClC-K/barttin channels. Front Physiol 1:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton RA, Poulsen SB, de la Mora CS, Soleimani M, Dominguez Rieg JA, Rieg T (2017) Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int 92:397–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81:345–418

    Article  CAS  PubMed  Google Scholar 

  • Fliser D, Schroter M, Neubeck M, Ritz E (1994) Coadministration of thiazides increases the efficacy of loop diuretics even in patients with advanced renal failure. Kidney Int 46:482–488

    Article  CAS  PubMed  Google Scholar 

  • Franco M, Bell PD, Navar LG (1988) Evaluation of prostaglandins as mediators of tubuloglomerular feedback. Am J Phys 254:F642–F649

    CAS  Google Scholar 

  • Frindt G, Houde V, Palmer LG (2011) Conservation of Na+ versus K+ by the rat cortical collecting duct. Am J Physiol Renal Physiol 301:F14–F20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  CAS  PubMed  Google Scholar 

  • Gailly P et al (2014) P2Y receptor activation inhibits the expression of the sodium-chloride cotransporter NCC in distal convoluted tubule cells. Pflugers Arch 466(11):2035–2047

    Article  CAS  PubMed  Google Scholar 

  • Gamba G (2001) Alternative splicing and diversity of renal transporters. Am J Physiol Renal Physiol 281:F781–F794

    Article  CAS  PubMed  Google Scholar 

  • Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85:423–493

    Article  CAS  PubMed  Google Scholar 

  • Gamba G (2012) Regulation of the renal Na+-Cl- cotransporter by phosphorylation and ubiquitylation. Am J Physiol Renal Physiol 303:F1573–F1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722

    CAS  PubMed  Google Scholar 

  • Giebisch G (2001) Renal potassium channels: function, regulation, and structure. Kidney Int 60:436–445

    Article  CAS  PubMed  Google Scholar 

  • Giebisch G, Klose RM, Malnic G, Sullivan WJ, Windhager EE (1964) Sodium movement across single perfused proximal tubules of rat kidneys. J Gen Physiol 47:1175–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27:37–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL (2019) Thick ascending limb sodium transport in the pathogenesis of hypertension. Physiol Rev 99:235–309

    Article  CAS  PubMed  Google Scholar 

  • Grahammer F et al (2006) Intestinal function of gene-targeted mice lacking serum- and glucocorticoid-inducible kinase 1. Am J Physiol Gastrointest Liver Physiol 290:G1114–G1123

    Article  CAS  PubMed  Google Scholar 

  • Greger R (1981) Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch 390:38–43

    Article  CAS  PubMed  Google Scholar 

  • Greig ER, Boot-Handford RP, Mani V, Sandle GI (2004) Decreased expression of apical Na+ channels and basolateral Na+, K+-ATPase in ulcerative colitis. J Pathol 204:84-92.

    Google Scholar 

  • Guggino SE, Guggino WB, Green N, Sacktor B (1987) Ca2+-activated K+ channels in cultured medullary thick ascending limb cells. Am J Phys 252:C121–C127

    Article  CAS  Google Scholar 

  • Halperin ML, Kamel KS, Oh MS (2008) Mechanisms to concentrate the urine: an opinion. Curr Opin Nephrol Hypertens 17:416–422

    Article  CAS  PubMed  Google Scholar 

  • Hamilton KL (2011) Ussing’s “little chamber”: 60 years+ old and counting. Front Physiol 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton KL, Devor DC (2012) Basolateral membrane K+ channels in renal epithelial cells. Am J Physiol Renal Physiol 302:F1069–F1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanukoglu I, Hanukoglu A (2016) Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579:95–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque MZ, Ares GR, Caceres PS, Ortiz PA (2011) High salt differentially regulates surface NKCC2 expression in thick ascending limbs of Dahl salt-sensitive and salt-resistant rats. Am J Physiol Renal Physiol 300:F1096–F1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey BJ, Alzamora R, Stubbs AK, Irnaten M, McEneaney V, Thomas W (2008) Rapid responses to aldosterone in the kidney and colon. J Steroid Biochem Mol Biol 108:310–317

    Article  CAS  PubMed  Google Scholar 

  • Hayslett JP, Boulpaep EL, Kashgarian M, Giebisch GH (1977) Electrical characteristics of the mammalian distal tubule: comparison of Ling-Gerard and macroelectrodes. Kidney Int 12:324–331

    Article  CAS  PubMed  Google Scholar 

  • Hebert SC (1986) Hypertonic cell volume regulation in mouse thick limbs. II. Na+-H+ and Cl(-)-HCO3- exchange in basolateral membranes. Am J Phys 250:C920–C931

    Article  CAS  Google Scholar 

  • Hebert SC, Desir G, Giebisch G, Wang W (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev 85:319–371

    Article  CAS  PubMed  Google Scholar 

  • Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

    Article  CAS  PubMed  Google Scholar 

  • Hierholzer K, Wiederholt M (1976) Some aspects of distal tubular solute and water transport. Kidney Int 9:198–213

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108:37–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011:174306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoy WE, Hughson MD, Bertram JF, Douglas-Denton R, Amann K (2005) Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol 16:2557–2564

    Article  PubMed  Google Scholar 

  • Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM (2011) Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physol Cell Physiol 300:C14–C21

    Article  CAS  Google Scholar 

  • Igarashi P, Vanden Heuvel GB, Payne JA, Forbush B 3rd (1995) Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter. Am J Phys 269:F405–F418

    CAS  Google Scholar 

  • Imai M, Kokko JP (1974) Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest 53:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imbrici P, Liantonio A, Gradogna A, Pusch M, Camerino DC (2014) Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes. Biochim Biophys Acta 1838:2484–2491

    Article  CAS  PubMed  Google Scholar 

  • Isozaki T, Lea JP, Tumlin JA, Sands JM (1994) Sodium-dependent net urea transport in rat initial inner medullary collecting ducts. J Clin Invest 94:1513–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson HR (1982) Transport characteristics of in vitro perfused proximal convoluted tubules. Kidney Int 22:425–433

    Article  CAS  PubMed  Google Scholar 

  • Jentzer JC, DeWald TA, Hernandez AF (2010) Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol 56:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Romero MF (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 73:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keszler M, Sivasubramanian KN (1983) Pseudohypoaldosteronism. Am J Dis Child 137:738–740

    Article  CAS  PubMed  Google Scholar 

  • Khuri RN, Strieder N, Wiederholt M, Giebisch G (1975) Effects of graded solute diuresis on renal tubular sodium transport in the rat. Am J Phys 228:1262–1268

    Article  CAS  Google Scholar 

  • Kishore BK, Ecelbarger CM (2013) Lithium: a versatile tool for understanding renal physiology. Am J Physiol Renal Physiol 304(9):F1139–F1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitada K et al (2017) High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 127:1944–1959

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    CAS  PubMed  Google Scholar 

  • Klein JD, Sands JM (2016) Urea transport and clinical potential of urearetics. Curr Opin Nephrol Hypertens 25:444–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein JD, Blount MA, Sands JM (2011) Urea transport in the kidney. Compr Physiol 1:699–729

    PubMed  Google Scholar 

  • Klein JD, Blount MA, Sands JM (2012) Molecular mechanisms of urea transport in health and disease. Pflugers Arch 464:561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  CAS  PubMed  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  CAS  PubMed  Google Scholar 

  • Koenig B, Ricapito S, Kinne R (1983) Chloride transport in the thick ascending limb of Henle’s loop: potassium dependence and stoichiometry of the NaCl cotransport system in plasma membrane vesicles. Pflugers Arch 399:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kokko JP (1970) Sodium chloride and water transport in the descending limb of Henle. J Clin Invest 49:1838–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokko JP, Rector FC Jr (1972) Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2:214–223

    Article  CAS  PubMed  Google Scholar 

  • Komlosi P, Fintha A, Bell PD (2006) Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality. Kidney Int 70:865–871

    Article  CAS  PubMed  Google Scholar 

  • Komlosi P, Bell PD, Zhang ZR (2009) Tubuloglomerular feedback mechanisms in nephron segments beyond the macula densa. Curr Opin Nephrol Hypertens 18:57–62

    Article  PubMed  Google Scholar 

  • Kortenoeven ML, Li Y, Shaw S, Gaeggeler HP, Rossier BC, Wetzels JF, Deen PM (2009) Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 76:44–53

    Article  CAS  PubMed  Google Scholar 

  • Kotchen TA, Cowley AW Jr, Frohlich ED (2013) Salt in health and disease-a delicate balance. N Engl J Med 368:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Krappitz M, Korbmacher C, Haerteis S (2014) Demonstration of proteolytic activation of the epithelial sodium channel (ENaC) by combining current measurements with detection of cleavage fragments. J Vis Exp 89:51582

    Google Scholar 

  • Kunchaparty S et al (1999) Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman’s syndrome. Am J Phys 277:F643–F649

    CAS  Google Scholar 

  • Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82:245–289

    Article  CAS  PubMed  Google Scholar 

  • Laghmani K et al (1997) Chronic metabolic acidosis enhances NHE-3 protein abundance and transport activity in the rat thick ascending limb by increasing NHE-3 mRNA. J Clin Invest 99:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagnaz D et al (2014) WNK3 abrogates the NEDD4-2-mediated inhibition of the renal Na+:Cl- Cotransporter. Am J Physiol Renal Physiol 307(3):F275–F286

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Shumilina E (2013) Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J 27:3–12

    Article  CAS  PubMed  Google Scholar 

  • Law PY, Edelman IS (1978) Induction of citrate synthase by aldosterone in the rat kidney. J Membr Biol 41:41–64

    Article  CAS  PubMed  Google Scholar 

  • Lee DH et al (2013) Effects of ACE inhibition and ANG II stimulation on renal Na-Cl cotransporter distribution, phosphorylation, and membrane complex properties. Am J Physiol Cell Physiol 304:C147–C163

    Article  CAS  PubMed  Google Scholar 

  • Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87:198–210

    Article  CAS  PubMed  Google Scholar 

  • Li XC et al (2018) Proximal Tubule-Specific Deletion of the NHE3 (Na+/H+ Exchanger 3) Promotes the Pressure-Natriuresis Response and Lowers Blood Pressure in Mice. Hypertension 72:1328–1336

    Article  CAS  PubMed  Google Scholar 

  • Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  CAS  PubMed  Google Scholar 

  • Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458:111–135

    Article  CAS  PubMed  Google Scholar 

  • Loffing J et al (2000) Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. Am J Physiol Renal Physiol 279:F252–F258

    Article  CAS  PubMed  Google Scholar 

  • Loffing J et al (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–F1027

    Article  CAS  PubMed  Google Scholar 

  • Loo DDF, Hirayama BA, Meinild A-K, Chandy G, Zeuthen T, Wright EM (1999) Passive water and ion transport by cotransporters. J Physiol 518:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourdel S et al (2002) An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels. J Physiol 538:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourdel S, Paulais M, Marvao P, Nissant A, Teulon J (2003) A chloride channel at the basolateral membrane of the distal-convoluted tubule: a candidate ClC-K channel. J Gen Physiol 121:287–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagon-Rogers M (1999) A patient with pseudohypoaldosteronism type 1 and respiratory distress syndrome. Pediatr Nephrol 13:484–486

    Article  CAS  PubMed  Google Scholar 

  • Malik B, Yue Q, Yue G, Chen XJ, Price SR, Mitch WE, Eaton DC (2005) Role of Nedd4-2 and polyubiquitination in epithelial sodium channel degradation in untransfected renal A6 cells expressing endogenous ENaC subunits. Am J Physiol Renal Physiol 289:F107–F116

    Article  CAS  PubMed  Google Scholar 

  • Mall M, Grubb BR, Harkema JR, O’Neal WK, Boucher RC (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493

    Article  CAS  PubMed  Google Scholar 

  • Markadieu N, Delpire E (2014) Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch 466:91–105

    Article  CAS  PubMed  Google Scholar 

  • Mastroianni N et al (1996) Molecular cloning, expression pattern, and chromosomal localization of the human Na-Cl thiazide-sensitive cotransporter (SLC12A3). Genomics 35:486–493

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y et al (1999) Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet 21:95–98

    Article  CAS  PubMed  Google Scholar 

  • Matthay MA, Robriquet L, Fang X (2005) Alveolar epithelium: role in lung fluid balance and acute lung injury. Proc Am Thorac Soc 2:206–213

    Article  CAS  PubMed  Google Scholar 

  • McDonough AA, Leong PKK, Yang LE (2003) Mechanisms of Pressure Natriuresis. Ann N Y Acad Sci 986:669–677

    Article  CAS  PubMed  Google Scholar 

  • McDonough AA, Veiras LC, Guevara CA, Ralph DL (2017) Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab 312:E348–E356

    Article  PubMed  PubMed Central  Google Scholar 

  • McKinney TD (1984) Further studies of organic base secretion by rabbit proximal tubules. Am J Phys 246:F282–F289

    CAS  Google Scholar 

  • Mironova E, Bugay V, Pochynyuk O, Staruschenko A, Stockand JD (2013) Recording ion channels in isolated, split-opened tubules. Methods Mol Biol 998:341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry AC et al (2016) The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochem J 473:3237–3252

    Article  CAS  PubMed  Google Scholar 

  • Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ (2014) The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch 466:107–118

    Article  CAS  PubMed  Google Scholar 

  • Monette MY, Rinehart J, Lifton RP, Forbush B (2011) Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. Am J Physiol Renal Physiol 300:F840–F847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroy A, Plata C, Hebert SC, Gamba G (2000) Characterization of the thiazide-sensitive Na(+)-Cl(-) cotransporter: a new model for ions and diuretics interaction. Am J Physiol Renal Physiol 279:F161–F169

    Article  CAS  PubMed  Google Scholar 

  • Mount DB et al (1999) Isoforms of the Na-K-2Cl cotransporter in murine TAL I. Molecular characterization and intrarenal localization. Am J Phys 276:F347–F358

    CAS  Google Scholar 

  • Mutchler SM, Kleyman TR (2019) New insights regarding epithelial Na+ channel regulation and its role in the kidney, immune system and vasculature. Curr Opin Nephrol Hypertens 28:113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutig K et al (2010) Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Renal Physiol 298:F502–F509

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni GN et al (2017) Acute kidney injury in patients on SGLT2 inhibitors: a propensity-matched analysis. Diabetes Care 40:1479–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawata CM, Pannabecker TL (2018) Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J Comp Physiol B 188:899–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nespoux J, Vallon V (2018) SGLT2 inhibition and kidney protection. Clin Sci 132:1329–1339

    Article  CAS  Google Scholar 

  • Nesterov V, Dahlmann A, Krueger B, Bertog M, Loffing J, Korbmacher C (2012) Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. Am J Physiol Renal Physiol 303:F1289–F1299

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P (1993) CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol 120:371–383

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    Article  CAS  PubMed  Google Scholar 

  • Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I (2018) Structure of the human epithelial sodium channel by cryo-electron microscopy. Elife 7:e39340

    Article  PubMed  PubMed Central  Google Scholar 

  • Olinger E, Houillier P, Devuyst O (2018) Claudins: a tale of interactions in the thick ascending limb. Kidney Int 93:535–537

    Article  CAS  PubMed  Google Scholar 

  • Oliva RV, Bakris GL (2014) Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens 8:330–339

    Article  CAS  PubMed  Google Scholar 

  • Ookata K, Tojo A, Suzuki Y, Nakamura N, Kimura K, Wilcox CS, Hirose S (2000) Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct. J Am Soc Nephrol 11:1987–1994

    CAS  PubMed  Google Scholar 

  • Ostrosky-Frid M, Castañeda-Bueno M, Gamba G (2019) Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: lessons learned from genetically altered animals. Am J Physiol Renal Physiol 316:F146–F158

    Article  CAS  PubMed  Google Scholar 

  • Palmer LG, Andersen OS (2008) The two-membrane model of epithelial transport: Koefoed-Johnsen and Ussing (1958). J Gen Physiol 132:607–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palygin O et al (2017a) Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI. Insight 2:e92331

    Google Scholar 

  • Palygin O, Pochynyuk O, Staruschenko A (2017b) Role and mechanisms of regulation of the basolateral Kir4.1/Kir5.1 K+ channels in the distal tubules. Acta Physiol 219:260–273

    Article  CAS  Google Scholar 

  • Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulais M et al (2011) Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. Proc Natl Acad Sci U S A 108:10361–10366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov TS, Staruschenko A (2017) Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Renal Physiol 313:F135–F140

    Article  CAS  PubMed  Google Scholar 

  • Payne JA, Forbush B 3rd (1994) Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci U S A 91:4544–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei L et al (2016) Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J Clin Invest 126:2509–2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Peti-Peterdi J (2006) Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol 291:F473–F480

    Article  CAS  PubMed  Google Scholar 

  • Plain A, Alexander RT (2018) Claudins and nephrolithiasis. Curr Opin Nephrol Hypertens 27:268–276

    Article  CAS  PubMed  Google Scholar 

  • Plata C, Meade P, Hall A, Welch RC, Vazquez N, Hebert SC, Gamba G (2001) Alternatively spliced isoform of apical Na+-K+-Cl- cotransporter gene encodes a furosemide-sensitive Na+-Cl-cotransporter. Am J Physiol Renal Physiol 280:F574–F582

    Article  CAS  PubMed  Google Scholar 

  • Plata C, Meade P, Vazquez N, Hebert SC, Gamba G (2002) Functional properties of the apical Na+-K+-2Cl-—cotransporter isoforms. J Biol Chem 277:11004–11012

    Article  CAS  PubMed  Google Scholar 

  • Rakova N et al (2017) Increased salt consumption induces body water conservation and decreases fluid intake. J Clin Invest 127:1932–1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeves WB, Winters CJ, Andreoli TE (2001) Chloride channels in the loop of Henle. Annu Rev Physiol 63:631–645

    Article  CAS  PubMed  Google Scholar 

  • Reichold M et al (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci U S A 107:14490–14495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Garvin JL, Liu R, Carretero OA (2007) Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation. Kidney Int 71:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, D’Ambrosio MA, Garvin JL, Wang H, Carretero OA (2013) Prostaglandin E2 mediates connecting tubule glomerular feedback. Hypertension 62:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Ren Y et al (2014) Aldosterone sensitizes connecting tubule glomerular feedback via the aldosterone receptor GPR30. Am J Physiol Renal Physiol 307(4):F427–F434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renfro JL (1975) Water and ion transport by the urinary bladder of the teleost Pseudopleuronectes americanus. Am J Phys 228:52–61

    Article  CAS  Google Scholar 

  • Renfro JL (1977) Interdependence of Active Na+ and Cl- transport by the isolated urinary bladder of the teleost, Pseudopleuronectes americanus. J Exp Zool 199:383–390

    Article  CAS  PubMed  Google Scholar 

  • Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML (2014) A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem 289:11791–11806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieg T, Vallon V (2018) Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:2079–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V (2013) Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol 182:96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riser Taylor S, Harris KB (2013) The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus. Pharmacotherapy 33:984–999

    Article  CAS  PubMed  Google Scholar 

  • Rock JR, O’Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR (2009) Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl- secretory channel in mouse airways. J Biol Chem 284:14875–14880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero CA, Carretero OA (2019) A novel mechanism of renal microcirculation regulation: connecting tubule-glomerular feedback. Curr Hypertens Rep 21:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossier BC (2014) Epithelial sodium channel (ENaC) and the control of blood pressure. Curr Opin Pharmacol 15:33–46

    Article  CAS  PubMed  Google Scholar 

  • Rubera I et al (2003) Collecting duct-specific gene inactivation of {alpha}ENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112:554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubera I, Hummler E, Beermann F (2009) Transgenic mice and their impact on kidney research. Pflugers Arch 458:211–222

    Article  CAS  PubMed  Google Scholar 

  • Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    Article  CAS  PubMed  Google Scholar 

  • Sandle GI (2005) Pathogenesis of diarrhea in ulcerative colitis: new views on an old problem. J Clin Gastroenterol 39:S49–S52

    Article  PubMed  Google Scholar 

  • Sands JM, Martial S, Isozaki T (1996) Active urea transport in the rat inner medullary collecting duct: functional characterization and initial expression cloning. Kidney Int 49:1611–1614

    Article  CAS  PubMed  Google Scholar 

  • Saritas T et al (2013) SPAK differentially mediates vasopressin effects on sodium cotransporters. J Am Soc Nephrol 24:407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer JA, Patlak CS, Andreoli TE (1975) A component of fluid absorption linked to passive ion flows in the superficial pars recta. J Gen Physiol 66:445–471

    Article  CAS  PubMed  Google Scholar 

  • Scherrer U, Sartori C, Lepori M, Allemann Y, Duplain H, Trueb L, Nicod P (1999) High-altitude pulmonary edema: from exaggerated pulmonary hypertension to a defect in transepithelial sodium transport. Adv Exp Med Biol 474:93–107

    Article  CAS  PubMed  Google Scholar 

  • Schmitt R et al (1999) Developmental expression of sodium entry pathways in rat nephron. Am J Phys 276:F367–F381

    CAS  Google Scholar 

  • Schnermann J (2011) Maintained tubuloglomerular feedback responses during acute inhibition of P2 purinergic receptors in mice. Am J Physiol Renal Physiol 300:F339–F344

    Article  CAS  PubMed  Google Scholar 

  • Schnermann J, Marver D (1986) ATPase activity in macula densa cells of the rabbit kidney. Pflugers Arch 407:82–86

    Article  CAS  PubMed  Google Scholar 

  • Schnermann J, Briggs J, Schubert G (1982) In situ studies of the distal convoluted tubule in the rat. I. Evidence for NaCl secretion. Am J Phys 243:F160–F166

    CAS  Google Scholar 

  • Shimizu T, Yoshitomi K, Taniguchi J, Imai M (1989) Effect of high NaCl intake on Na+ and K+ transport in the rabbit distal convoluted tubule. Pflugers Arch 414:500–508

    Article  CAS  PubMed  Google Scholar 

  • Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP (1996a) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13:183–188

    Article  CAS  PubMed  Google Scholar 

  • Simon DB et al (1996b) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14:152–156

    Article  CAS  PubMed  Google Scholar 

  • Simon DB et al (1996c) Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12:24–30

    Article  CAS  PubMed  Google Scholar 

  • Skelton LA, Boron WF, Zhou Y (2010) Acid-base transport by the renal proximal tubule. J Nephrol 23(Suppl 16):S4–S18

    PubMed  PubMed Central  Google Scholar 

  • Soleimani M (2013) SLC26 Cl-/HCO3- exchangers in the kidney: roles in health and disease. Kidney Int 84:657–666

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Namkung W, Nielson DW, Lee JW, Finkbeiner WE, Verkman AS (2009) Airway surface liquid depth measured in ex vivo fragments of pig and human trachea: dependence on Na+ and Cl- channel function. Am J Physiol Lung Cell Mol Physiol 297:L1131–L1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotak M, Marks J, Unwin RJ (2017) Putative tissue location and function of the SLC5 family member SGLT3. Exp Physiol 102:5–13

    Article  CAS  PubMed  Google Scholar 

  • Soundararajan R, Pearce D, Hughey RP, Kleyman TR (2010) Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem 285:30363–30369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staruschenko A (2012) Regulation of transport in the connecting tubule and cortical collecting duct. Compr Physiol 2:1541–1584

    PubMed  PubMed Central  Google Scholar 

  • Staruschenko A (2018) Beneficial effects of high potassium: contribution of renal basolateral K+ channels. Hypertension 71:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Staruschenko A, Adams E, Booth RE, Stockand JD (2005) Epithelial Na+ channel subunit stoichiometry. Biophys J 88:3966–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staruschenko A, Booth RE, Pochynyuk O, Stockand JD, Tong Q (2006) Functional reconstitution of the human epithelial Na+ channel in a mammalian expression system. Methods Mol Biol 337:3–13

    CAS  PubMed  Google Scholar 

  • Stockand JD, Vallon V, Ortiz P (2012) In vivo and ex vivo analysis of tubule function. Compr Physiol 2:2495–2525

    PubMed  Google Scholar 

  • Stokes JB (1984) Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest 74:7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studer RA, Person E, Robinson-Rechavi M, Rossier BC (2011) Evolution of the epithelial sodium channel and the sodium pump as limiting factors of aldosterone action on sodium transport. Physiol Genomics 43:844–854

    Article  CAS  PubMed  Google Scholar 

  • Su X-T, Ellison DH, Wang W-H (2019) Kir4.1/5.1 in the DCT plays a role in the regulation of renal K+ excretion. Am J Physiol Renal Physiol 316(3):F582–F586. https://doi.org/10.1152/ajprenal.00412.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanya AR, Reeves WB, Hallows KR (2012) Tubular sodium transport. In: Falk RJ, Schrier RW, Coffman TM, Molitoris BA (eds) Schrier’s diseases of the kidney. Wolters Kluwer, Philadelphia, pp 159–193

    Google Scholar 

  • Sugano K et al (2010) Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9:597–614

    Article  CAS  PubMed  Google Scholar 

  • Sweiry JH, Binder HJ (1989) Characterization of aldosterone-induced potassium secretion in rat distal colon. J Clin Invest 83:844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci U S A 97:5434–5439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamargo J, Solini A, Ruilope LM (2014) Comparison of agents that affect aldosterone action. Semin Nephrol 34:285–306

    Article  CAS  PubMed  Google Scholar 

  • Teiwes J, Toto RD (2007) Epithelial sodium channel inhibition in cardiovascular disease. A potential role for amiloride. Am J Hypertens 20:109–117

    Article  CAS  PubMed  Google Scholar 

  • Terker AS et al (2014) Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension. Hypertension 64:178–184

    Article  CAS  PubMed  Google Scholar 

  • Terker AS et al (2015) Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas MC, Cherney DZI (2018) The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61:2098–2107

    Article  CAS  PubMed  Google Scholar 

  • Turk E, Kerner CJ, Lostao MP, Wright EM (1996) Membrane topology of the human Na+/glucose cotransporter SGLT1. J Biol Chem 271:1925–1934

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F (1993) Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem 268:3821–3824

    CAS  PubMed  Google Scholar 

  • Ullrich KJ, Schmidt-Nielson B, O’Dell R, Pehling G, Gottschalk CW, Lassiter WE, Mylle M (1963) Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am J Phys 204:527–531

    Article  CAS  Google Scholar 

  • Umbach JA, Coady MJ, Wright EM (1990) Intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic. Biophys J 57:1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallon V, Schroth J, Lang F, Kuhl D, Uchida S (2009) Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 297:F704–F712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallon V et al (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22:104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallon V et al (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 306:F194–F204

    Article  CAS  PubMed  Google Scholar 

  • Velazquez H, Good DW, Wright FS (1984) Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Phys 247:F904–F911

    CAS  Google Scholar 

  • Velazquez H, Ellison DH, Wright FS (1987) Chloride-dependent potassium secretion in early and late renal distal tubules. Am J Phys 253:F555–F562

    Article  CAS  Google Scholar 

  • Velazquez H, Silva T, Andujar E, Desir GV, Ellison DH, Greger R (2001) The distal convoluted tubule of rabbit kidney does not express a functional sodium channel. Am J Physiol Renal Physiol 280:F530–F539

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS (2006) Roles of aquaporins in kidney revealed by transgenic mice. Semin Nephrol 26:200–208

    Article  CAS  PubMed  Google Scholar 

  • Wang WH (1994) Two types of K+ channel in thick ascending limb of rat kidney. Am J Phys 267:F599–F605

    CAS  Google Scholar 

  • Wang T (2012) Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction. Clin Exp Nephrol 16:49–54

    Article  PubMed  CAS  Google Scholar 

  • Wang WH, Giebisch G (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458:157–168

    Article  CAS  PubMed  Google Scholar 

  • Wang WH, White S, Geibel J, Giebisch G (1990) A potassium channel in the apical membrane of rabbit thick ascending limb of Henle’s loop. Am J Phys 258:F244–F253

    CAS  Google Scholar 

  • Wang WH, Yue P, Sun P, Lin DH (2010) Regulation and function of potassium channels in aldosterone-sensitive distal nephron. Curr Opin Nephrol Hypertens 19:463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, D’Ambrosio MA, Garvin JL, Ren Y, Carretero OA (2013) Connecting tubule glomerular feedback in hypertension. Hypertension 62:738–745

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-B et al (2014) Sodium transport is modulated by p38 kinase–dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells. J Am Soc Nephrol 25:250–259

    Article  CAS  PubMed  Google Scholar 

  • Wang MX et al (2018) Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int 93:893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wargo KA, Banta WM (2009) A comprehensive review of the loop diuretics: should furosemide be first line? Ann Pharmacother 43:1836–1847

    Article  CAS  PubMed  Google Scholar 

  • Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F (2014) Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 10:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen D, Cornelius RJ, Sansom SC (2014) Interacting influence of diuretics and diet on BK channel-regulated K homeostasis. Curr Opin Pharmacol 15:28–32

    Article  CAS  PubMed  Google Scholar 

  • Wright FS (1971) Increasing magnitude of electrical potential along the renal distal tubule. Am J Phys 220:624–638

    Article  CAS  Google Scholar 

  • Wright FS, Schnermann J (1974) Interference with feedback control of glomerular filtration rate by furosemide, triflocin, and cyanide. J Clin Invest 53:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright EM, Loo DDF, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794

    Article  CAS  PubMed  Google Scholar 

  • Wynne BM, Mistry AC, Al-Khalili O, Mallick R, Theilig F, Eaton DC, Hoover RS (2017) Aldosterone Modulates the Association between NCC and ENaC. Sci Rep 7:4149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu JZ, Hall AE, Peterson LN, Bienkowski MJ, Eessalu TE, Hebert SC (1997) Localization of the ROMK protein on apical membranes of rat kidney nephron segments. Am J Phys 273:F739–F748

    CAS  Google Scholar 

  • Yang T, Huang YG, Singh I, Schnermann J, Briggs JP (1996) Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Am J Phys 271:F931–F939

    CAS  Google Scholar 

  • Yu AS (2014) Claudins and the kidney. J Am Soc Nephrol 26(1):11–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu ASL (2017) Paracellular transport and energy utilization in the renal tubule. Curr Opin Nephrol Hypertens 26:398–404

    Article  CAS  PubMed  Google Scholar 

  • Zaika OL, Mamenko M, Palygin O, Boukelmoune N, Staruschenko A, Pochynyuk O (2013) Direct inhibition of basolateral Kir4.1/5.1 and Kir4.1 channels in the cortical collecting duct by dopamine. Am J Physiol Renal Physiol 305:F1277–F1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaika O, Tomilin V, Mamenko M, Bhalla V, Pochynyuk O (2016) New perspective of ClC-Kb/2 Cl- channel physiology in the distal renal tubule. Am J Physiol Renal Physiol 310:F923–F930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang L, Thomas S, Wang K, Lin DH, Rinehart J, Wang WH (2013) Src family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10 protein. J Biol Chem 288:26135–26146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Tomkovicz VR, Butler PL, Ochoa LA, Peterson ZJ, Snyder PM (2013) Ubiquitin-specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel. J Biol Chem 288:5389–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research from the authors’ laboratories is supported by NIH grants R35 HL135749, P01 HL116264 (to A.S.), and R00 DK105160, PKD Foundation Research grant 221G18a (to D.V.I.), and U.S. Dept. of Defense grants W81XWH-15-1-0420 and W81XWH-15-1-0663 (to K.R.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Staruschenko or Kenneth R. Hallows .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Staruschenko, A., Ilatovskaya, D.V., Hallows, K.R. (2020). Fundamentals of Epithelial Na+ Absorption. In: Hamilton, K.L., Devor, D.C. (eds) Basic Epithelial Ion Transport Principles and Function. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-52780-8_9

Download citation

Publish with us

Policies and ethics