Skip to main content

Advertisement

Log in

Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction

  • Review Article
  • The 36th IUPS Satellite Symposium: The Kidney and Hypertension
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

The renal outer medullary potassium channel (ROMK) is an adenosine triphosphate-sensitive inward-rectifier potassium channel (Kir1.1 or KCNJ1) highly expressed in the cortical and medullary thick ascending limbs (TAL), connecting segment (CNT) and cortical collecting duct (CCD) in the mammalian kidney, where it serves to recycle potassium (K+) across the apical membrane in TAL and to secrete K+ in the CNT and CCD. ROMK channel mutations cause type II Bartter’s syndrome with salt wasting and dehydration, and ROMK knockout mice display a similar phenotype of Bartter’s syndrome in humans. Studies from ROMK null mice indicate that ROMK is required to form both the small-conductance (30pS, SK) K channels and the 70pS (IK) K channels in the TAL. The availability of ROMK−/− mice has made it possible to study electrolyte transport along the nephron in order to understand the TAL function under physiological conditions and the compensatory mechanisms of salt and water transport under the conditions of TAL dysfunction. This review summarizes previous progress in the study of K+ channel activity in the TAL and CCD, ion transporter expression and activities along the nephron, and renal functions under physiological and pathophysiological conditions using ROMK−/− mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee WS, Hebert SC. ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments. Am J Physiol. 1995;268(6 Pt 2):F1124–31.

    PubMed  CAS  Google Scholar 

  2. Ashcroft SJH, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2:197–214.

    Article  PubMed  CAS  Google Scholar 

  3. Ashcroft SJ, Ashcroft FM. The sulfonylurea receptor. Biochim Biophys Acta. 1992;1175(1):45–59.

    Article  PubMed  CAS  Google Scholar 

  4. Misler S, Giebisch G. ATP-sensitive potassium channels in physiology, pathophysiology, and pharmacology. Curr Opin Nephrol Hypertens. 1992;1(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  5. Wang T, Wang WH, Klein-Robbenhaar G, Giebisch G. Effects of glyburide on renal tubule transport and potassium-channel activity. Ren Physiol Biochem. 1995;18(4):169–82.

    PubMed  CAS  Google Scholar 

  6. Wang T, Wang WH, Klein-Robbenhaar G, Giebisch G. Effects of a novel KATP channel blocker on renal tubule function and K channel activity. J Pharmacol Exp Ther. 1995;273(3):1382–9.

    PubMed  CAS  Google Scholar 

  7. Wang T. The effects of potassium channel opener minoxidil on renal electrolytes transport in the loop of Henle. J Pharmacol Exp Ther. 2003;304(2):833–40.

    Article  PubMed  CAS  Google Scholar 

  8. Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev. 2005;85(1):319–71.

    Article  PubMed  CAS  Google Scholar 

  9. Lu M, Wang W. Two types of K+ channels are present in the apical membrane of the thick ascending limb of the mouse kidney. Kidney Blood Press Res. 2000;23:75–82.

    Article  PubMed  CAS  Google Scholar 

  10. Lu M, Wang T, Yan Q, et al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem. 2002;277(40):37881–7.

    Article  PubMed  CAS  Google Scholar 

  11. Lu M, Wang T, Yan Q, Wang W, Giebisch G, Hebert SC. ROMK is required for expression of the 70-pS K channel in the thick ascending limb. Am J Physiol Renal Physiol. 2004;286(3):F490–5.

    Article  PubMed  CAS  Google Scholar 

  12. Lorenz JN, Baird NR, Judd LM, et al. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem. 2002;277(40):37871–80.

    Article  PubMed  CAS  Google Scholar 

  13. Yan Q, Yang X, Cantone A, Giebisch G, Hebert S, Wang T. Female ROMK null mice manifest more severe Bartter II phenotype on renal function and higher PGE2 production. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R997–1004.

    Article  PubMed  CAS  Google Scholar 

  14. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.

    Article  PubMed  CAS  Google Scholar 

  15. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens. 2003;12(5):527–32.

    Article  PubMed  Google Scholar 

  16. Gu R, Wei Y, Jiang H, Balazy M, Wang W. Role of 20-HETE in mediating the effect of dietary K intake on the apical K channels in the mTAL. Am J Physiol Renal Physiol. 2001;280(2):F223–30.

    PubMed  CAS  Google Scholar 

  17. Hebert SC, Gullans SR. The electroneutral sodium–(potassium)–chloride co-transporter family: a journey from fish to the renal co-transporters. Curr Opin Nephrol Hypertens. 1995;4(5):389–91.

    Article  PubMed  CAS  Google Scholar 

  18. Giebisch G, Klein-Robbenhaar G, Klein-Robbenhaar J, Ratheiser K, Unwin R. Renal and extrarenal sites of action of diuretics. Cardiovasc Drugs Ther. 1993;7(Suppl 1):11–21.

    Article  PubMed  Google Scholar 

  19. Cantone A, Yang X, Yan Q, Giebisch G, Hebert SC, Wang T. Mouse model of type II Bartter’s syndrome. I. Upregulation of thiazide-sensitive Na–Cl cotransport activity. Am J Physiol Renal Physiol. 2008;294(6):F1366–72.

    Article  PubMed  CAS  Google Scholar 

  20. Plata C, Meade P, Hall A, et al. Alternatively spliced isoform of apical Na(+)–K(+)–Cl(−) cotransporter gene encodes a furosemide-sensitive Na(+)–Cl(−) cotransporter. Am J Physiol Renal Physiol. 2001;280(4):F574–82.

    PubMed  CAS  Google Scholar 

  21. Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA. 2000;97(10):5434–9.

    Article  PubMed  CAS  Google Scholar 

  22. Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol. 2004;287(5):F1030–7.

    Article  PubMed  CAS  Google Scholar 

  23. Gray DA, Frindt G, Palmer LG. Quantification of K+ secretion through apical low-conductance K channels in the CCD. Am J Physiol Renal Physiol. 2005;289(1):F117–26.

    Article  PubMed  CAS  Google Scholar 

  24. Malnic G, Klose RM, Giebisch G. Micropuncture study of renal potassium excretion in the rat. Am J Physiol. 1964;206:674–86.

    PubMed  CAS  Google Scholar 

  25. Wang WH. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Am J Physiol Renal Physiol. 2006;290(1):F14–9.

    Article  PubMed  CAS  Google Scholar 

  26. Bailey MA, Cantone A, Yan Q, et al. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int. 2006;70(1):51–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hunter M, Lopes AG, Boulpaep EL, Giebisch GH. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci USA. 1984;81(13):4237–9.

    Article  PubMed  CAS  Google Scholar 

  28. Pacha J, Frindt G, Sackin H, Palmer LG. Apical maxi K channels in intercalated cells of CCT. Am J Physiol. 1991;261(4 Pt 2):F696–705.

    PubMed  CAS  Google Scholar 

  29. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol. 2003;285(5):F998–1012.

    PubMed  CAS  Google Scholar 

  30. Satlin LM. Developmental regulation of expression of renal potassium secretory channels. Curr Opin Nephrol Hypertens. 2004;13(4):445–50.

    Article  PubMed  CAS  Google Scholar 

  31. Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol. 2001;280(5):F786–93.

    PubMed  CAS  Google Scholar 

  32. Wagner CA, Loffing-Cueni D, Yan Q, et al. Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol. 2008;294(6):F1373–80.

    Article  PubMed  CAS  Google Scholar 

  33. Wang T, Yang CL, Abbiati T, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol. 1999;277(2 Pt 2):F298–302.

    PubMed  CAS  Google Scholar 

  34. Wang T, Yang CL, Abbiati T, Shull GE, Giebisch G, Aronson PS. Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule. Am J Physiol Renal Physiol. 2001;281(2):F288–92.

    PubMed  CAS  Google Scholar 

  35. Abdallah JG, Schrier RW, Edelstein C, Jennings SD, Wyse B, Ellison DH. Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(−)-cotransporter abundance: role of aldosterone. J Am Soc Nephrol. 2001;12(7):1335–41.

    PubMed  CAS  Google Scholar 

  36. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80(1):277–313.

    PubMed  CAS  Google Scholar 

  37. Na KY, Oh YK, Han JS, et al. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am J Physiol Renal Physiol. 2003;284(1):F133–43.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Institute of Health RO1 DK 54999 and P01 DK 17433. The review is dedicated to the memory of Dr. Steve S. Hebert for his contributions to renal physiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wang.

About this article

Cite this article

Wang, T. Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction. Clin Exp Nephrol 16, 49–54 (2012). https://doi.org/10.1007/s10157-011-0495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0495-0

Keywords

Navigation