Skip to main content

High-Altitude Pulmonary Edema: From Exaggerated Pulmonary Hypertension to a Defect in Transepithelial Sodium Transport

  • Chapter
Hypoxia

Abstract

High-altitude pulmonary edema (HAPE) is a form of lung edema which occurs in otherwise healthy subjects, thereby allowing the study of underlying mechanisms of pulmonary edema in the absence of confounding factors. Exaggerated pulmonary hypertension is a hallmark of HAPE and is thought to play an important part in its pathogenesis. Pulmonary vascular endothelial dysfunction and augmented hypoxia-induced sympathetic activation may be underlying mechanisms contributing to exaggerated pulmonary vasoconstriction in HAPE. Recent observations by our group suggest, however, that pulmonary hypertension itself may not be sufficient to trigger HAPE. Based on studies in rats, indicating that perinatal exposure to hypoxia predisposes to exaggerated hypoxic pulmonary vasoconstriction in adulthood, we examined effects of high-altitude exposure on pulmonary-artery pressure in a group of young adults who had suffered from transient perinatal pulmonary hypertension. We found that these young adults had exaggerated pulmonary vasoconstriction of similar magnitude to that observed in RAPE-susceptible subjects. Surprisingly, however, none of the subjects developed lung edema. These findings strongly suggest that additional mechanisms are needed to trigger pulmonary edema at high-altitude. Observations in vitro, and in vivo suggest that a defect of the alveolar transepithelial sodium transport could act as a sensitizer to pulmonary edema. The aim of this article is to review very recent experimental evidence consistent with this concept. We will discuss data gathered in mice with targeted disruption of the gene of the α subunit of the amiloride-sensitive epithelial sodium channel (αENaC), and present preliminary data on measurements of transepithelial sodium transport in vivo in HAPE-susceptible and HAPE-resistant mountaineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, D. J. P. Mothers, babies, and disease in later life. London: BMJ Books, 1994.

    Google Scholar 

  2. Blitzer, M. L., E. Loh, M. A. Roddy, J. S. Stamler, and M. A. Creager. Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J Am Coll Cardiol 28: 591–6, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Canessa, C. M., J. D. Horisberger, and B. C. Rossier. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467–70, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Canessa, C. M., L. Schild, G. Buell, B. Thorens, I. Gautschi, J. D. Horisberger, and B. C. Rossier. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463–7, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Caslin, A., D. Heath, and P. Smith. Influence of hypobaric hypoxia in infancy on the subsequent development of vasoconstrictive pulmonary vascular disease in the Wistar albino rat. J Pathol 163: 133–111, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, S.-J., Y.-F. Chen, Q. C. Meng, and S. Oparil. The endothelin receptor antagonist Bosentan prevents short term hypoxia induced pulmonary hypertension in the rats (Abstract). Circulation 90: I-151, 1994.

    Google Scholar 

  7. Dauber, I. M., and J. V. Weil. Lung injury edema in dogs. Influence of sympathetic ablation. J Clin Invest 72: 1977–86, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. DiCarlo, V. S., S. J. Chen, Q. C. Meng, J. Durand, M. Yano, Y. F. Chen, and S. Oparil. ETA-receptor antagonist prevents and reverses chronic hypoxia-induced pulmonary hypertension in rat. Am J Physio 1269: L690–7, 1995.

    Google Scholar 

  9. Dinh-Xuan, A. T., T. W. Higenbottam, C. A. Clelland, J. Pepke-Zaba, G. Cremona, A. Y. Butt, S. R. Large, F. C. Wells, and J. Wallwork. Impairment of endothelium-dependent pulmonaryartery relaxation in chronic obstructive lung disease. N Engl J Med 324: 1539–47, 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Duplain, H., K. L. Peterson, M. Lepori, C. Sartori, E. Hummler, P. Nicod, and U. Scherrer. Augmented hypoxic pulmonary vasoconstriction and increased susceptibility to lung edema in heterozygous endothelial nitric oxide synthase (eNOS) deficient mice (Abstract). Am J Respir Crit Care Med 159: A355, 1999.

    Google Scholar 

  11. Duplain, H., L. Vollenweider, A. Delabays, P. Nicod, P. Bartsch, and U. Scherrer. Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation 99: 1713–8, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Fagan, K. A., B. W. Fouty, R. C. Tyler, K. G. Morris, Jr., L. K. Hepler, K. Sato, T. D. LeCras, S. H. Abman, H. D. Weinberger, P. L. Huang, I. F. McMurtry, and D. M. Rodman. The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J Clin Invest 103: 291–9, 1999.

    Article  PubMed  CAS  Google Scholar 

  13. Frostell, C., M.-D. Fratacci, J. C. Wain, R. Jones, and W. M. Zapol. Inhaled nitric oxide. A selected pulmonary vasodilatator reversing hypoxie pulmonary vasoconstriction. Circulation 83: 2038–2047, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Frostell, C. G., H. Blomqvist, G. Hedenstierna, J. Lundberg, and W. M. Zapol. Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilation. Anesthesiology 78: 427–35, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Goerre, S., M. Wenk, P. Bärtsch, T. F. Luescher, F. Niroomand, E. Hohenhaus, O. Oelz, and W. H. Reinhart. Endothelin-1 in pulmonary hypertension associated with high-altitude exposure. Circulation 90: 359–364, 1995.

    Article  Google Scholar 

  16. Hackett, P. H., and R. C. Roach. High altitude pulmonary edema. J Wilderness Med 1:3–26, 1990.

    Article  Google Scholar 

  17. Hackett, P. H., R. C. Roach, G. S. Hartig, E. R. Greene, and B. D. Levine. The effect of vasodilators on pulmonary hemodynamics in high altitude pulmonary edema: a comparison. Int J Sports Med 13: 568–71, 1992.

    Article  Google Scholar 

  18. Hampl, V., and J. Herget. Perinatal hypoxia increases hypoxie pulmonary vasoconstriction in adult rats recovering from chronic exposure to hypoxia. Am Rev Respir Dis 142: 619–24, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Haworth, S. G. Pulmonary vascular remodeling in neonatal pulmonary hypertension. State of the art. Chest 93: 1335–1385, 1988.

    Google Scholar 

  20. Hultgren, H. N. High altitude pulmonary edema. In: Lung Water and Solute Exchange, edited by N. C. Staub. New York, NY: Dekker, 1978, p. 437–469.

    Google Scholar 

  21. Hultgren, H. N. High-altitude pulmonary edema: current concepts. Annu Rev Med 47: 267–84, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Hummler, E., P. Barker, J. Gatzy, F. Beermann, C. Verdumo, A. Schmidt, R. Boucher, and B. C. Rossier. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 12: 325–8, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Hummler, E., P. Barker, C. Talbot, Q. Wang, C. Verdumo, B. Grubb, J. Gatzy, M. Burnier, J. D. Horisberger, F. Beermann, R. Boucher, and B. C. Rossier. A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A 94: 11710–5, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Knowles, M. R., W. H. Buntin, P. A. Bromberg, J. T. Gatzy, and R. C. Boucher. Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am Rev Respir Dis 126: 108–12, 1982.

    PubMed  CAS  Google Scholar 

  25. Knowles, M. R., J. L. Carson, A. M. Collier, J. T. Gatzy, and R. C. Boucher. Measurements of nasal transepithelial electric potential differences in normal human subjects in vivo. Am Rev Respir Dis 124: 484–90, 1981.

    PubMed  CAS  Google Scholar 

  26. Kourembanas, S., L. P. McQuillan, G. K. Leung, and D. V. Faller. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 92: 99–104, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Krasney, J. A. A neurogenic basis for acute altitude illness. Med Sci Sports Exerc 26: 195–208, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Lepori, M., E. Hummler, F. Feihl, C. Sartori, P. Nicod, B. Rossier, and U. Scherrer. Amiloride sensitive sodium transport dysfunction augments susceptibility to hypoxia-induced lung edema (Abstract). FASEB J 12: A328, 1998.

    Google Scholar 

  29. Matthay, M. A., H. G. Folkesson, and A. S. Verkman. Salt and water transport across alveolar and distal airway epithelia in the adult lung. Am J Physio 1270: L487–503, 1996.

    Google Scholar 

  30. Morin, F. C., 3rd, and K. R. Stenmark. Persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 151: 2010–32, 1995.

    PubMed  Google Scholar 

  31. Planes, C., B. Escoubet, M. Blot-Chabaud, G. Friedlander, N. Farman, and C. Clerici. Hypoxia downregulates expression and activity of epithelial sodium channels in rat alveolar epithelial cells. Am J Respir Cell Mol Biol 17: 508–18, 1997.

    PubMed  CAS  Google Scholar 

  32. Rabinovitch, M., W. J. Gamble, O. S. Miettenen, and L. Reid. Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol 240: H62–H72, 1981.

    PubMed  CAS  Google Scholar 

  33. Sakuma, T., G. Okaniwa, T. Nakada, T. Nishimura, S. Fujimura, and M. A. Matthay. Alveolar fluid clearance in the resected human lung. Am J Respir Crit Care Med 150: 305–10, 1994.

    PubMed  CAS  Google Scholar 

  34. Sartori, C., Y. Allemann, L. Trueb, A. Delabays, P. Nicod, and U. Scherrer. A perinatal vascular insult predisposes to augmented vasoreactivity in adult life (In Press). Lancet, 1999.

    Google Scholar 

  35. Sartori, C., M. Lepori, M. Maggiorini, Y. Allemann, P. Nicod, and U. Scherrer. Impairment of amiloride-sensitive sodium transport in individuals susceptible to high altitude pulmonary edema (Abstract). FASEB J 12: A231, 1998.

    Google Scholar 

  36. Sartori, C., L. Trueb, and U. Scherrer. High-altitude pulmonary edema. Mechanisms and management. Cardiologia 42: 559–67, 1997.

    PubMed  CAS  Google Scholar 

  37. Sartori, C., L. Vollenweider, B. M. Loftier, A. Delabays, P. Nicod, P. Bartsch, and U. Scherrer. Exaggerated endothelin release in high-altitude pulmonary edema. Circulation 99: 2665–8, 1999.

    Article  PubMed  CAS  Google Scholar 

  38. Saumon, G., and G. Basset. Electrolyte and fluid transport across the mature alveolar epithelium. J Appl Physiol 74: 1–15, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Scherrer, U., L. Vollenweider, A. Delabays, M. Savcic, U. Eichenberger, G. R. Kleger, A. Fikrle, P. E. Ballmer, P. Nicod, and P. Bartsch. Inhaled nitric oxide for high-altitude pulmonary edema. N Engl J Med 334: 624–629, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Schoene, R. B. Pulmonary edema at high altitude: Review, pathophysiology and update. Clin Chest Med 6: 491–507, 1985.

    PubMed  CAS  Google Scholar 

  41. Smith, A. P. L., C. J. Emery, and T. W. Higenbottam. Perinatal chronic hypoxia decreases endothelial nitric oxide synthase (NOS III) and increases preproendothelin-1 (ppET-1) mRNA levels in rat (Abstract). Eur Respir J 10: 433s, 1997.

    Google Scholar 

  42. Staub, N. C. Pulmonary edema. Physiol Rev 54: 678–811, 1974.

    Article  PubMed  CAS  Google Scholar 

  43. Staub, N. C. Pulmonary edema--hypoxia and overperfusion (Editorial). N.Engl.J.Med. 302: 1085–1086, 1980.

    Article  PubMed  CAS  Google Scholar 

  44. Stenmark, K. R., E. C. Orton, J. T. Reeves, N. F. Voelkel, E. C. Crouch, W. C. Parks, and R. P. Mecham. Vascular remodeling in neonatal pulmonary hypertension. Role of the smooth muscle cell. Chest 93: 127S–133S, 1988.

    PubMed  CAS  Google Scholar 

  45. Steudel, W., M. Scherrer-Crosbie, K. D. Bloch, J. Weimann, P. L. Huang, R. C. Jones, M. H. Picard, and W. M. Zapol. Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J Clin Invest 101: 2468–77, 1998.

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki, S., Y. Hoshikawa, S. Ono, T. Sakuma, K. Koike, T. Tanita, and S. Fujimura. [Effects of subacute hypoxia on alveolar epithelial ion transport in rats]. Nihon Kyobu Shikkan Gakkai Zasshi 34: 52–6, 1996.

    PubMed  CAS  Google Scholar 

  47. West, J. B., and O. Mathieu Costello. High altitude pulmonary edema is caused by stress failure of pulmonary capillaries. Int JSports Med 13: S54–8, 1992.

    Article  Google Scholar 

  48. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–5, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scherrer, U. et al. (1999). High-Altitude Pulmonary Edema: From Exaggerated Pulmonary Hypertension to a Defect in Transepithelial Sodium Transport. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 474. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4711-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4711-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7134-2

  • Online ISBN: 978-1-4615-4711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics