Skip to main content
Log in

Intracellular electrolyte concentrations in the frog skin epithelium: Effect of vasopressin and dependence on the Na concentration in the bathing media

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The intracellular electrolyte concentrations of the frog skin epithelium have been determined in thin freeze-dried cryosections using the technique of electron microprobe analysis. Stimulation of the transepithelial Na transport by arginine vasopressin (AVP) resulted in a marked increase in the Na concentration and a reciprocal drop in the K concentration in all epithelial cell layers. The effects of AVP were cancelled by addition of amiloride. It is concluded from these results that the primary mechanism by which AVP stimulates transepithelial Na transport is an increase in the Na permeability of the apical membrane. However, also some evidence has been obtained for an additional stimulatory effect of AVP on the Na pump. In mitochondria-rich cells and in gland cells no significant concentration changes were detected, supporting the view that these cells do not share in transepithelial Na transport. Furthermore, the dependence of the intracellular electrolyte concentrations upon the Na concentration in the outer and inner bathing solution was evaluated. Both in control and AVP-stimulated skins the intracellular Na concentration showed saturation already at low external Na concentrations, indicating that the self-inhibition of transepithelial Na transport is due to a reduction of the permeability of the apical membrane. After lowering the Na concentration in the internal bath frequently a Na increase in the outermost and a drop in the deeper epithelial layers was observed. It is concluded that partial uncoupling of the transport syncytium occurs, which may explain the inhibition of the transepithelial Na transport and blunting of the AVP response under this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, J. 1977. Sodium pump stimulation by oxytocin and cyclic AMP in the isolated epithelium of the frog skin.Pfluegers Arch. 371:211–216

    Google Scholar 

  • Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of the frog skin.J. Physiol. (London) 212:195–210

    Google Scholar 

  • Arruda, J.A.L., Sabatini, S., Westenfelder, C. 1982. Serosal Na/Ca exchange and H+ and Na+ transport by the turtle and toad bladders.J. Membrane Biol. 70:135–146

    Google Scholar 

  • Bauer, R., Rick, R. 1978.Computer analysis of X-ray spectra (EDS) from thin biological specimens.X-Ray Spectrom. 7:63–69

    Google Scholar 

  • Bevevino, L.H., Lacaz-Vieira, F. 1982. Control of sodium permeability of the outer barrier in toad skin.J. Membrane Biol. 66:97–107

    Google Scholar 

  • Cereijido, M., Herrera, F.C., Flanigan, W.J., Curran, P.F. 1964. The influence of Na concentration on Na transport across frog skin.J. Gen. Physiol. 47:879–893

    Google Scholar 

  • Chase, H.S., Al-Awqati, Q. 1981. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium.J. Gen. Physiol. 77:693–712

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1974. Binding of amiloride to sodium channels in frog skin.Mol. Pharmacol. 10:880–891

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1975. Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells.Proc. R. Soc. London B. 189:543–575

    Google Scholar 

  • Dörge, A., Rick, R., Gehring, K., Thurau, K. 1978. Preparation of freeze-dried cryosections for quantitative X-ray micro-analysis of electrolytes in biological soft tissues.Pfluegers Arch. 373:85–97

    Google Scholar 

  • Els, W.J., Helman, S.I. 1981. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: Studies with microelectrodes.Am. J. Physiol. 241:F279-F288

    Google Scholar 

  • Erlij, D., Smith, M.W. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.J. Physiol. (London) 228:221–239

    Google Scholar 

  • Frazier, H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529–543

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Currentvoltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular calcium and the regulation of sodium transport in the frog skin.Proc. R. Soc. London B. 202:353–360

    Google Scholar 

  • Handler, J.S., Butcher, R.W., Sutherland, E.W., Orloff, J. 1965. The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in the urinary bladder of the toad.J. Biol. Chem. 240:4524–4526

    Google Scholar 

  • Handler, J.S., Preston, A.S., Orloff, J.1972. Effect of ADH, aldosterone, ouabain, and amiloride on toad bladder epithelial cells.Am. J. Physiol. 222:1071–1074

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    Google Scholar 

  • Hong, S.K., Park, C.S., Park, Y.S., Kim, J.K. 1968. Seasonal changes of antidiuretic hormone action on sodium transport across frog skin.Am. J. Physiol. 215:439–443

    Google Scholar 

  • Janáĉek, K., Rybova, R. 1967. Stimulation of the sodium pump in frog bladder by oxytocin.Nature (London) 215:992–993

    Google Scholar 

  • Janáĉek, K., Rybova, R. 1970. Nonpolarized frog bladder preparation. The effects of oxytocin.Pfluegers Arch. 318:294–304

    Google Scholar 

  • Jehl, B., Bauer, R., Dörge, A., Rick, R. 1981. The use of propane/isopentane mixtures for rapid freezing of biological specimens.J. Microsc. (Oxford) 123:307–309

    Google Scholar 

  • Johnsen, A.H., Nielsen, R. 1978. Effects of the antidiuretic hormone, arginine vasotocin, theophylline, filipin and A23187 on cyclic AMP in isolated frog skin epithelium (Rana temporaria).Acta Physiol. Scand. 102:281–289

    Google Scholar 

  • Kirschner, L.B. 1955. On the mechanism of active sodium transport across the frog skin.J. Cell. Comp. Physiol. 45:61–87

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    Google Scholar 

  • Lau, Y.-T., Lang, M.A., Essig, A. 1981. Effects of antidiuretic hormone on kinetic and energetic determinants of active sodium transport in frog skin.Biochim. Biophys. Acta 647:177–187

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M.1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lipton, P., Edelman, I.S. 1971. Effects of aldosterone and vasopressin on electrolytes of toad bladder epithelial cells.Am. J. Physiol. 221:733–741

    Google Scholar 

  • Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    Google Scholar 

  • Macknight, A.D.C., Leaf, A. 1978. The sodium transport pool.Am. J. Physiol. 234:F1-F9

    Google Scholar 

  • Macknight, A.D.C., Leaf, A., Civan, M.M. 1971. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127–137

    Google Scholar 

  • Macknight, A.D.C., McLaughlin, C.W. 1977. Transepithelial sodium transport and carbon dioxide production by the toad urinary bladder in the absence of serosal sodium.J. Physiol. (London) 269:767–775

    Google Scholar 

  • Mandel, L.J. 1978. Effects of pH, Ca, ADH, and theophylline on kinetics of Na entry in frog skin.Am. J. Physiol. 235:C35-C48

    Google Scholar 

  • Mandel, L.J., Curran, P.F. 1973. Response of the frog skin to steady-state voltage clamping. II. The active pathway.J. Gen. Physiol. 62:1–24

    Google Scholar 

  • Mills, J.W., Ernst, S.A., DiBona, D.R. 1977. Localization of Na+-pump sites in frog skin.J.Cell Biol. 73: 88–110

    Google Scholar 

  • Morel, F., Bastide, F. 1965. Action de l'ocytocine sur la composante active du transport de sodium par la peau de grenouille.Biochim. Biophys. Acta 94:609–611

    Google Scholar 

  • Nagel, W. 1976. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135–143

    Google Scholar 

  • Nagel, W. 1977. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution.J. Physiol. (London) 269:777–796

    Google Scholar 

  • Nagel, W. 1978. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin.J. Membrane Biol. 42:99–122

    Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Armstrong, W.McD. 1981. Intracellular ionic activities in frog skin.J. Membrane Biol. 61:127–134

    Google Scholar 

  • Nielsen, R. 1982. Effect of ouabain, amiloride, and antidiuretic hormone on the sodium-transport pool in isolated epithelial from frog skin (Rana temporaria).J. Membrane Biol. 65:221–226

    Google Scholar 

  • Orloff, J., Handler, J.S., Preston, A.S. 1962. The similarity of effects of vasopressin, adenosine-3′,5′-phosphate (cyclic AMP) and theophylline on the toad bladder.J. Clin. Invest. 41:702–709

    Google Scholar 

  • Rabito, C.A. Rodriguez Boulan, E., Cereijido, M. 1973. Effect of the composition of the inner bathing solution on transport properties of the frog skin.Biochim. Biophys. Acta 311:630–639

    Google Scholar 

  • Renkin, E.M. 1961. Permeability of frog skeletal muscle cells to choline.J. Gen. Physiol. 44:1159–1164

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von 1978a. X-ray microanalysis of frog skin epithelium: Evidence for a syncytial Na transport compartment.Microsc. Acta Suppl. 2:156–165

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978b. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Rick, R., Dörge, A., Thurau, K. 1982. Quantitative analysis of electrolytes in frozen dried sections.J. Microsc. (Oxford) 125:239–247

    Google Scholar 

  • Roloff, C., Dörge, A., Rick, R., Thurau, K. 1978. Effect of vasopressin on intracellular electrolyte composition of the frog skin.Pfluegers Arch. Suppl. 377:R40

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:F579-F590

    Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505-F512

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon.J. Membrane Biol. 39:233–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rick, R., Roloff, C., Dörge, A. et al. Intracellular electrolyte concentrations in the frog skin epithelium: Effect of vasopressin and dependence on the Na concentration in the bathing media. J. Membrain Biol. 78, 129–145 (1984). https://doi.org/10.1007/BF01869200

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869200

Key Words

Navigation