Skip to main content
Log in

Membrane potentials and intracellular Cl activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl conductance

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The potential dependence of unidirectional36Cl fluxes through toad skin revealed activation of a conductive pathway in the physiological region of transepithelial potentials. Activation of the conductance was dependent on the presence of Cl or Br in the external bathing solution, but was independent of whether the external bath was NaCl-Ringer's, NaCl-Ringer's with amiloride, KCl-Ringer's or choline Cl-Ringer's To partition the routes of the conductive Cl ion flow, we measured in the isolated epithelium with double-barrelled microelectrodes apical membrane potentialV a , and intracellular Cl activity,a cCl , of the principal cells indentified by differential interference contrast microscopy. Under short-circuit conditionsI sc=27.0±2.0 μA/cm2, with NaCl-Ringer's bathing both surfaces,V a was −67.9±3.8mV (mean ±se,n=24, six preparations) anda cCl was 18.0±0.9mM in skins from animals adapted to distilled water. BothV a anda aCl were found to be positively correlated withI sc (r=0.66 andr=0.70, respectively). In eight epithelia from animals adapted to dry milieu/tap waterV a anda cCl were measured with KCl Ringer's on the outside during activation and deactivation of the transepithelial Cl conductance (G Cl) by voltage clamping the transepithelial potential (V) at 40 mV (mucosa positive) and −100 mV. AtV=40 mV; i.e. whenG Cl was deactivated,V a was −70.1±5.0 mV (n=15, eight preparations) anda cCl was 40.0±3.8mm. The fractional apical membrane resistance (fR a) was 0.69±0.03. Clamping toV=−100 mV led to an instantaneous change ofV a to 31.3±5.6 mV (cell interior positive with respect to the mucosal bath), whereas neithera cCl norfR a changed significantly within a 2 to 5-min period during whichG Cl increased by 1.19±0.10 mS/cm2. WhenV was stepped back to 40 mV,V a instantaneously shifted to −67.8±3.9 mV whilea cCl andfR a remained constant during deactivation ofG Cl. Similar results were obtained in epithelia impaled from the serosal side. In 12 skins from animals adapted to either tap water or distilled water the density of mitochondria-rich (D MRC) cells was estimated and correlated with the Cl current (I Cl though the fully activated (V=−100mV) Cl conductance). A highly significant correlation was revealed (r=−0.96) with a slope of −2.6 nA/m.r. (mitochondria-rich cell and an I-axis intercept not significantly different from zero. In summary, the voltage-dependent Cl currents were not reflected infR a anda aCl of the principal cells but showed a correlation with the m.r. cell density. We conclude that the pricipal cells do not contribute significantly to the voltage-dependent Cl conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, W. McD., Garcia-Diaz, J.F. 1981. Criteria for the use of microelectrodes to measure membrane potentials in epithelial cells.In: Epithelial Ion and Water Transport. A.D.C. Macknight and L.P. Leader, editors. pp. 43–53 Raven, New York

    Google Scholar 

  • Biber, T.U.L., Drewnowska, K., Baumgarten, C.M., Fisher, R.S. 1985. Intracellular Cl activity changes of frog skin.Am. J. Physiol. 249:F432-F438

    PubMed  Google Scholar 

  • Brown, D., Grosso, A., De Sousa, R.C. 1981. The amphibian epidermis: Distribution of mitochondria-rich cells and the effect of oxytocin.J. Cell. Sci. 52:197–213

    PubMed  Google Scholar 

  • Bruus, K., Kristensen, P., Larsen, E.H. 1976. Pathways for chloride and sodium transport across toad skin.Acta Physiol. Scand. 97:31–47

    Google Scholar 

  • Candia, O.A. 1978. Reduction of chloride fluxes by amiloride across the short-circuited frog skin.Am. J. Physiol. 234:F437-F445

    Google Scholar 

  • Carasso, N., Favard, P., Jard, S., Rajerison, R.M. 1971. The isolated frog skin epithelium. I. Preparation and general structure in different physiological states.J. Microscopie 10:315–330

    Google Scholar 

  • Curran, P.F. 1972. Effect of silver ion on permeability of frog skin.Biochim. Biophys. Acta 288:90–97

    PubMed  Google Scholar 

  • Davis, C.W., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527

    PubMed  Google Scholar 

  • Dörge, A., Rick, R., Beck, F., Thurau, K. 1985. Cl transport across the basolateral membrane in frog skin epithelium.Pfluegers Arch. 405:S8-S11

    Google Scholar 

  • Drewnowska, K., Biber, T.U.L. 1985. Active transport and exchange diffusion of Cl across the isolated skin ofRana pipiens.Am. J. Physiol. 249:F424–431

    PubMed  Google Scholar 

  • Dürr, J.E., Larsen, E.H. 1986. Indacrinone (MK-196)—A specific inhibitor of the voltage dependent Cl permeability in toad skin.Acta Physiol. Scand. 127:145–153

    PubMed  Google Scholar 

  • Ehrenfeld, J., Masoni, A., Garcia-Romeu F. 1976. Mitochondria-rich cells of frog skin in transport mechanisms: Morphological and kinetic studies on transepithelial excretion of methylene blue.Am. J. Physiol. 231:120–126

    Google Scholar 

  • Ferreira, K.T.G., Ferreira, H.G. 1981. The regulation of volume and ion composition in frog skin.Biochim. Biophys. Acta 646:193–202

    PubMed  Google Scholar 

  • Forkett, K.J., Bern, H.A., Machen, T.E., Conner, M. 1983. Chloride cells and the hormonal control of teleost fish osmoregulation.J. Exp. Biol. 106:255–281

    PubMed  Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentrations dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Garcia-Diaz, J.F., Baxendale, L.M., Klemperer, G., Essig, A. 1985. Cell K activitt in frog skin in the prsence and absence of cell current.J. Membrane Biol. 85:143–158

    Google Scholar 

  • Geck, P., Pietrzyk, C., Burckhardt, B.C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na+, K+, Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–447

    PubMed  Google Scholar 

  • Giraldez, F., Ferreira, K.T.G. 1984. Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria).Biochim. Biophys. Acta 769:625–628

    Google Scholar 

  • Harck, A., Larsen, E.H. 1986. Concentration dependence of halide fluxes and selectivity of the anion pathway in toad skin.Acta Physiol. Scand. 128:289–304

    PubMed  Google Scholar 

  • Harvey, B.J., Kernan, R.P. 1984. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain.J. Physiol. (London) 349:501–517

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    PubMed  Google Scholar 

  • Hille, B. 1984. Ionic channels of excitable membranes. pp. 1–426 Simauer Associates. Sunderland, Massachusetts

    Google Scholar 

  • Hoffman, E.K., Sjøholm, C., Simonsen, L.O. 1983. Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).J. Membran Biol. 76:269–280

    Google Scholar 

  • Katz, U., Larsen, E.H. 1984. Chloride transport in toad skin (Bufo viridis). The effect of salt adaptation.J. Exp. Biol. 109:353–372

    PubMed  Google Scholar 

  • Klyce, S.D., Marshall, W.S. 1982. Effects of Ag+ on ion transport by the corneal epithelium of the rabbit.J. Membrane Biol. 66:133–144

    Google Scholar 

  • Koefoed-Johnsen, V., Levi, H., Ussing, H.H. 1952a. The mode of passage of chloride ions through the isolated frog skin.Acta Physiol. Scand. 25:150–163

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H., Zerahn, K. 1952b. The origin of the short-circuit current in the adrenaline stimulated frog skin.Acta Physiol. Scand. 27:38–48

    PubMed  Google Scholar 

  • Kristensen, P. 1978. Effect of amiloride on chloride tranport across amphibian epithelia.J. Membrane Biol. Special Issue:167–185

    Google Scholar 

  • Kristensen, P. 1981. Is chloride transfer in frog skin localized to a special cell type.Acta Physiol. Scand. 113:123–124

    PubMed  Google Scholar 

  • Kristensen, P. 1982. Chloride transport in frog skin.In: Chloride Transport in Biological Membranes. J.A. Zadunaisky, editor. pp. 319–332 Academic, New York

    Google Scholar 

  • Kristensen, P. 1983. Exchange diffusion, electrodiffusion, and rectification in the chloride transport pathway of frog skin.J. Membrane Biol. 72:141–151

    Google Scholar 

  • Larsen, E.H., Kristensen, P. 1978. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo).Acta Physiol. Scand. 102:1–21

    Google Scholar 

  • Larsen, E.H., Rasmussen, B.E. 1982. Chloride channels in toad skin.Philos. Trans. R. Soc. London B 299:413–434

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Macey, R.I., Meyers, S. 1963. Dependence of chloride permeability on sodium in the isolated frog skin.Am. J. Physiol. 204:1095–1099

    Google Scholar 

  • MacRobbie, E.A.C., Ussing, H.H. 1961. Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand. 53:348–365

    PubMed  Google Scholar 

  • McCaig, D., Leader, J.P. 1984. Intracellular chloride activity in Extensor Digitorum Longus (EDL) muscle of the rat.J. Membrane Biol. 81:9–17

    Google Scholar 

  • Nagel, W. 1975. Intracellular PD of frog skin epithelium.Pfluegers Arch. 355:R70

    Google Scholar 

  • Nagel, W. 1976. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135–143

    Article  Google Scholar 

  • Nagel, W. 1977. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal medium.J. Physiol. (London) 269:777–796

    Google Scholar 

  • Nagel, W. 1978. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin.J. Membrane Biol. 42:99–122

    Google Scholar 

  • Nagel, W. 1979. Microelectrode artifacts and frog skin potentials. (Letters to the editor).J. Membrane Biol. 51:97–100

    Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Armstrong, W.McD. 1981. Intracellular ionic activities in frog skin.J. Membrane Biol.61:127–134

    Google Scholar 

  • Nagel, W., Hirschmann, W. 1980. K+-permeability of the outer border of the frog skin (R. temporaria).J. Membrane Biol. 52:107–113

    Google Scholar 

  • Nelson, D.J., Ehrenfeld, J., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl.J. Membrane Biol. Special Issue:91–99

  • Philpott, C.W. 1965. Halide localization in the teleost chloride cell and it's identification by selected area electron diffraction. Direct evidence supporting an osmoregulatory fuction for the seawater adapted chloride cel ofFundulus.Protoplasma 60:7–23

    Google Scholar 

  • Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeability in the skin ofLeptodactylus ocellatus: I. Na+ and Cl effect on passive movements of Cl.J. Membrane Biol. 42:317–330

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transoort compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Rick, R., Dörge, A., Katz, U., Bauer, R., Thurau, K. 1980. The osmotic behaviour of toad skin epithelium (Bufo viridis).Pfluegers Arch. 385:1–10

    Google Scholar 

  • Rudneff, M. 1865. Uber die epidermoidale Schicht der Froschhau.Arch. Mikrosk. Anat. 1:295–298

    Google Scholar 

  • Scheffey, C., Foskett, J.K., Machen, T.E. 1983. Localization of ionic pathways in the teleost opercular membrane by extracellular recording with a vibrating probe.J. Membrane Biol. 75:193–203

    Google Scholar 

  • Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254

    Article  Google Scholar 

  • Stoddard, J.S., Helman, S.I. 1982. Chloride efflux from isolated epithelia of frog skin.Fed. Proc. 41:1496

    Google Scholar 

  • Stoddard, J.S., Jakobsson, E., Helman, S.I. 1985. Basolateral membrane chloride transport in isolated epithelia of frog skin.Am. J. Physiol. 249:C318-C329

    PubMed  Google Scholar 

  • Thompson, I.G., Mills, J.W. 1983. Chloride transport in glands of frog skin.Am. J. Physiol. 244:C221-C226

    PubMed  Google Scholar 

  • Ussing, H.H. 1949. The distinction by means of tracers between active transport and diffusion.Acta Physiol. Scand. 19:43–56

    Google Scholar 

  • Ussing, H.H. 1982. Volume regulation of frog skin epithelium.Acta Physiol. Scand. 114:363–369

    PubMed  Google Scholar 

  • Ussing, H.H. 1985. Volume regulation and basolateral co-transport of sodium, potassium, and chloride ions in frog skin epithelium.Pfluegers Arch. 405:S2-S7

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:109–127

    Google Scholar 

  • Van Driessche, W., Zeiske, W. 1980. Ba2+-induced conductance flactuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria).J. Membrane Biol. 56:31–42

    Google Scholar 

  • Voûte, C.L., Meier, W. 1978. The mitochondira-rich cell of frog skin as hormone-sensitive „shunt path” J. Membrane Biol.Speical Issue:151–165

  • Whitear, M. 1975. Flask cells and epidermal dynamics in frog skin.J. Zool (London) 175:107–149

    Google Scholar 

  • Willumsen, N.J., Larsen, E.H. 1982. Time-and voltage-characteristics of a passive Cl pathway in the isolated skin ofBufo bufo.Acta Physiol. Scand. 114:28A

    Google Scholar 

  • Willumsen, N., Larsen, E.H. 1984. Passive chloride transport of the toad skin does not pass through granular cells.Acta Physiol. Scand. 120:46A

    Google Scholar 

  • Willumsen, N.J., Larsen, E.H. 1985a. Membrane potentials and Cl activity of the granulosum cells in toad skin in relation to activation/deactivation of the transepithelial voltage sensitive Cl conductance.Acta Physiol. Scand. 124-Suppl. 542:156

    Google Scholar 

  • Willumsen, N.J., Larsen, E.H. 1985b. Passive Cl currents in toad skin: Potential dependence and relation to mitochondria-rich cell density.In: Transport Processes, Iono- and Osmoregulation. R. Gilles and M. Gilles-Baillien, editors. pp. 20–30. Springer, Berlin-Heidelberg

    Google Scholar 

  • Zadunaisky, J.A., Candia, O.A., Chiarandini, D.J. 1963. The origin of the short-circuit current in the isolated skin of the South American frogLeptodactylus ocellatus.J. Gen. Physiol. 47:393–402

    Google Scholar 

  • Zeiske, W., Van Driessche, W. 1979. Saturable K+ pathway across the outer border of frog skin (Rana temporaria): Kinetics and inhibition by Cs+ and other cations.J. Membrane Biol. 47:77–96

    Google Scholar 

  • Zeuthen, T. 1984. The electrophysiology of ion and water transport in gallblader and other leaky epithelia. D. Sc. Thesis, University of Copenhagen

  • Zeuthen, T., Hiam, R.C., Silver, I.A. 1974. Recording of ion activities in the brain.In: Ion Selective Microelectrodes. H. Berman and N. Herbert, editors. pp. 145–156. Plenum London

    Google Scholar 

  • Zylber, E.A., Rotunno, C.A., Cereijido, M. 1973. Ion and water balance in isolated epithelial cells of the abdominal skin of the frogLeptodactylus ocellatus.J. Membrane Biol. 13:199–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willumsen, N.J., Larsen, E.H. Membrane potentials and intracellular Cl activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl conductance. J. Membrain Biol. 94, 173–190 (1986). https://doi.org/10.1007/BF01871197

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871197

Key Words

Navigation