Skip to main content

Recent Advances in Aluminum Phytotoxicity

  • Chapter
  • First Online:
Cellular and Molecular Phytotoxicity of Heavy Metals

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Aluminum (Al) is the third most abundant metal in the earth’s crust after oxygen and silicone. Geologically Al has existed as a complex compound with oxygen and carbon. In addition to natural Al in the soil, in the last century Al is used in various types of industrial products giving rise to excessive accumulation in the soil. When soil pH decreases under 5, complex Al dissolves into phytotoxic forms. Al3+, which is the most phytotoxic form, is absorbed by plant roots and has adverse effects on plant growth and development. Al toxicity is an important agricultural problem causing dramatic yield decrease and has been substantially investigated in plant systems. The mechanisms of Al toxicity and tolerance in plants have been described as morphological, physiological, and molecular perspectives; however, it has not yet been fully elucidated because of its complex chemistry.

It has been considered that metal toxicity has been controlled genetically. To study the molecular genetics of Al toxicity and tolerance are important issues in the field of plant growth and development. The development and application of Al-tolerant cultivars in fields is a better environmental solution to permit agricultural production in regions with acidic soils. Thus to clarify the signaling pathways and molecular markers for the fast and accurate diagnosis of Al toxicity symptoms may help to create strategies for strengthening Al tolerance in plants. This review summarizes the responses to Al and proposed molecular mechanisms of Al toxicity and tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate E, Hussien S, Laing M et al (2013) Aluminum toxicity tolerance in cereals: Mechanisms, genetic control and breeding methods. Afr J Agric Res 8:711–722

    Google Scholar 

  • Achary VMM, Panda BB (2009) Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 25:201–209

    Article  CAS  Google Scholar 

  • Achary VMM, Jena S, Panda KK et al (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  CAS  PubMed  Google Scholar 

  • Achary VMM, Patnaik AR, Panda BB (2012) Oxidative biomarkers in leaf tissue of barley seedlings in response to aluminium stress. Ecotoxicol Environ Saf 75:16–26

    Article  CAS  Google Scholar 

  • Ahn SJ, Matsumoto H (2006) The role of the plasma membrane in the response of plant roots to aluminum toxicity. Plant Signal Behav 1:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Aniol A (1990) Genetics of tolerance to aluminium in wheat (Triticum aestivum L. Thell). Plant Soil 123:223–227

    Article  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705

    Article  Google Scholar 

  • AytĂ¼rk Ă–, Vardar F (2015) Aluminum induced caspase-like activities in some Gramineae species. Adv Food Sci 37:71–75

    Google Scholar 

  • BarcelĂ³ J, Poschenrieder C (2002) Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Bhalerao SA, Prabhu DV (2013) Aluminium toxicity in plants—a review. J Appl Chem 2:447–474

    CAS  Google Scholar 

  • Boff T, Espindula LF, BĂ¼cker-Neto L et al (2019) Inheritance of aluminum tolerance in the wheat cultivar Toropi and new findings about the introduction of this trait into the Brazilian wheat germplasm. Environ Exp Bot 157:91–99

    Article  CAS  Google Scholar 

  • Campbell LG, Lafever HN (1981) Heritability of aluminum tolerance in wheat. Cereal Res Commun 9:281–287

    CAS  Google Scholar 

  • Castilhos G, Farias JG, Schneider AB et al (2011) Aluminum-stress response in oat genotypes with monogenic tolerance. Environ Exp Bot 74:114–121

    Article  CAS  Google Scholar 

  • Chang YC, Yamamoto Y, Matsumoto H (1999) Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ 22:1009–1017

    Article  CAS  Google Scholar 

  • CiamporovĂ¡ M (2002) Morphological and structural responses of plant roots to aluminum at organ, tissue and cellular levels. Biol Plant 45(2):161–171

    Article  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM et al (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A 101:15249–15254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17(6):341–348

    Article  CAS  PubMed  Google Scholar 

  • Exley C (2009) Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends Biochem Sci 34:589–589

    Article  CAS  PubMed  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2000) Aluminum effects on microtubule organization in dividing root tip cells of Triticum turgidum. I. Mitotic cells. New Phytol 145:211–224

    Article  CAS  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2001) Aluminum effects on microtubule organization in dividing root tip cells of Triticum turgidum. II Cytokinetic cells. J Plant Res 114:157–170

    Article  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:081–1091

    Article  CAS  Google Scholar 

  • Garcia-Oliveira AL, Martins-Lopes P, TolrĂ¡ R et al (2014) Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum). Physiol Plant 152:441–452

    Article  CAS  PubMed  Google Scholar 

  • Godbold DL, Jentschke G (1998) Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiol Plant 102:553–560

    Article  CAS  Google Scholar 

  • Goodwin SB, Sutter TR (2009) Microarray analysis of Arabidopsis genome response to aluminum stress. Biol Plant 53:85–99

    Article  CAS  Google Scholar 

  • Grabski S, Schindler M (1995) Aluminum induces rigor within the actin network of soybean cells. Plant Physiol 108(3):897–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo P, Bai G, Carver B et al (2007) Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Gen Genomics 277:1–12

    Article  CAS  Google Scholar 

  • Guo P, Qi YP, Cai YT et al (2018) Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Physiol 00:1–18

    Google Scholar 

  • Gupta N, Gaurav SS, Kumar A (2013) Molecular basis of aluminium toxicity in plants: a review. Am J Plant Sci 4:21–37

    Article  Google Scholar 

  • He H, He L, Gu M (2015) Signal transduction during aluminum-induced secretion of organic acids in plants. Biol Plant 59:601–608

    Article  CAS  Google Scholar 

  • Hiradate S, Ma JF, Matsumoto H (2007) Strategies of plants to adapt to mineral stresses in problem soils. Adv Agron 96:65–132

    Article  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci U S A 103(25):9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houde M, Oury DAO (2008) Identification of genes and pathways associated with aluminium stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9:400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang WJ, Oo TL, He HY et al (2014) Aluminum induced rapidly mitochondria dependent programmed cell death in Al sensitive peanut root tips. Bot Stud 55:67–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaskowiak J, Tkaczyk O, Slota M et al (2018) Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle. PLoS One 13:e0193156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones DL, Kochian LV (1997) Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett 400:51–57

    Article  CAS  PubMed  Google Scholar 

  • Kariya K, Demiral T, Sasaki T et al (2013) A novel mechanism of aluminium-induced cell death involving vacuolar processing enzyme and vacuolar collapse in tobacco cell line BY-2. J Inorg Biochem 128:196–201

    Article  CAS  PubMed  Google Scholar 

  • Kariya K, Tsuchiya Y, Sasaki T et al (2018) Aluminium induced cell death requires upregulation of NtVPE1 gene coding vacuolar processing enzyme in tobacco (Nicotiana tabacum L.). J Inorg Biochem 181:152–161

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB, Parker DR (1987) Cation amelioration of aluminum toxicity in wheat. Plant Physiol 83:546–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinraide TB, Yermiyahu U, Rytwo G (1998) Computation of surface electrical potentials of plant cell membranes. Correspondence to published zeta potentials from diverse plant sources. Plant Physiol 118:505–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminium resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yang LT, Qi YP et al (2016) Aluminum toxicity-induced alterations of leaf proteome in two Citrus species differing in aluminum tolerance. Int J Mol Sci 17:1180

    Article  PubMed Central  CAS  Google Scholar 

  • Ligaba A, Katsuhara M, Ryan PR et al (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminium resistance of plant cells. Plant Physiol 142:1294–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MC, DvoÅ™Ă¡k J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Ma QF, Rengel Z, Kuo J (2002) Aluminium toxicity in rye (Secale cereale): Root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Ann Bot 89:241–244

    Article  CAS  PubMed Central  Google Scholar 

  • Ma JF, Chen ZC, Shen RF (2014) Molecular mechanism of Al tolerance in Gramineous plants. Plant Soil 381(1–2):1–12

    Article  CAS  Google Scholar 

  • MagalhĂ£es JV, Liu J, GuimarĂ£es CT et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200(4):1–46

    CAS  PubMed  Google Scholar 

  • Miyasaka SC, Hawes C (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pangenomes. Curr Opin Plant Biol 10:149–155

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NT, Nakabayashi K, Thompson J et al (2003) Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species. Tree Physiol 23:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Nichol B, Oliveria LA, Glass ADM et al (1993) The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol 101:1263–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak J, Friend AL (2005) Aluminum fractions in root tips of slash pine and loblolly pine families differing in Al resistance. Tree Physiol 25:245–250

    Article  CAS  PubMed  Google Scholar 

  • Ofei-Manu P, Wagatsuma T, Ishikawa S et al (2001) The plasma membrane strength of the root tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Sci Plant Nutr 47:359–375

    Article  CAS  Google Scholar 

  • Osawa H, Matsumoto H (2001) Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol 126(1):411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JW, Zhu MY, Chen H (2001) Aluminum-induced cell death in root tip cells of barley. Environ Exp Bot 46:71–79

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, BaluÅ¡ka F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4:592–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE et al (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834

    Article  CAS  PubMed  Google Scholar 

  • Pineros MA, Kochian LV (2001) A patch–clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol 125:292–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman H, Zhang K, Cakir M et al (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Ryan PR, Raman R et al (2008) Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor Appl Genet 116:343–354

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z, Elliott DC (1992) Aluminum inhibits net Ca2+ uptake by Amaranthus protoplasts. Biochem Physiol Pflanz 188:177–186

    Article  CAS  Google Scholar 

  • Rengel Z, Reid RJ (1997) Uptake of Al across the plasma membrane of plant cells. Plant Soil 192:31–35

    Article  CAS  Google Scholar 

  • Roesky HW, Kumar SS (2005) Chemistry of Aluminium (I). Chem Commun 32:4027–4038

    Article  CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S et al (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Raman H, Gupta S et al (2010) The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J 64:446–455

    Article  CAS  PubMed  Google Scholar 

  • Sade H, Meriga B, Surapu V et al (2016) Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals 29(2):187–210

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E et al (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    Article  CAS  PubMed  Google Scholar 

  • Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ 23:735–742

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Shaw CA, Tomljenovic L (2013) Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 56(2–3):304–316

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Choudhary AK (2010) Inheritance pattern of aluminium tolerance in pea. Plant Breed 129:688–692

    Article  CAS  Google Scholar 

  • Singh D, Raje RS (2011) Genetics of aluminium tolerance in chickpea (Cicer arietinum). Plant Breed 130:563–568

    Article  CAS  Google Scholar 

  • Singh S, Tripathi DK, Singh S et al (2017) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193

    Article  CAS  Google Scholar 

  • Sivaguru M, Baluska F, Volkmann D et al (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaguru M, Fujiwara T, Å amaj J et al (2000) Aluminum-induced 3-b-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124(3):991–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaguru M, Pike S, Gassmann W et al (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: Evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358

    Article  CAS  PubMed  Google Scholar 

  • Taspinar MS, Aydin M, Sigmaz B et al (2018) Aluminum-induced changes on DNA damage, DNA methylation and LTR retrotransposon polymorphism in maize. Arab J Sci Eng 43:123–131

    Article  CAS  Google Scholar 

  • Ăœnal M, Vardar F, AytĂ¼rk Ă– (2013) Callose in plant sexual reproduction. In: Silva-Opps M (ed) Current progress in biological research. In Tech, Croatia, pp 319–343

    Google Scholar 

  • Vardar F, Ăœnal M (2007) Aluminum toxicity and resistance in higher plants. Adv Mol Biol 1(1):1–12

    Google Scholar 

  • Vardar F, Arıcan E, GözĂ¼kırmızı N (2006) Effects of aluminum on in vitro root growth and seed germination of tobacco (Nicotiana tabacum L.). Adv Food Sci 28:85–88

    CAS  Google Scholar 

  • Vardar F, Ä°smailoÄŸlu I, Ä°nan D et al (2011) Determination of stress responses induced by aluminum in maize (Zea mays L. Karadeniz Yıldızı). Acta Biol Hung 62:156–170

    Article  CAS  PubMed  Google Scholar 

  • Vardar F, AkgĂ¼l N, AytĂ¼rk Ă– et al (2015) Assessment of aluminum induced genotoxicity with comet assay in wheat, rye and triticale roots. Fresenius Environ Bull 37:3352–3358

    Google Scholar 

  • Vardar F, Çabuk E, AytĂ¼rk Ă– et al (2016) Determination of aluminum induced programmed cell death characterized by DNA fragmentation in Gramineae species. Caryologia 69:111–115

    Article  Google Scholar 

  • Vardar F, Yanık F, ÇetinbaÅŸ-Genç A et al (2018) Aluminum-induced toxicity and programmed cell death in plants. In: YĂ¼ksel B, KaragĂ¼l MS (eds) Advances in health and natural sciences. Nova Science Publishers Inc, Hauppauge, NY, pp 155–182

    Google Scholar 

  • Vitorello VA, Capaldi FRC, Stefanuto VA (2005) Recent advances in aluminum toxicity and resistance in higher plants. Braz J Plant Physiol 17:129–143

    Article  CAS  Google Scholar 

  • Williams B, Verchot J, Dickman MB (2014) When supply does not meet demand-ER stress and plant programmed cell death. Front Plant Sci 5:211

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M, Sasaki T, Sivaguru M et al (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46:812–816

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Huang W, Pan C et al (2016) Caspase-like proteases regulate aluminum-induced programmed cell death in peanut. Plant Cell Tiss Org 127:691–703

    Article  CAS  Google Scholar 

  • Zhan J, Li W, He HY et al (2014) Mitochondrial alterations during Al-induced PCD in peanut root tips. Plant Physiol Biochem 75:105–113. http://www.chemistryexplained.com/elements/A-C/Aluminum.html. Accessed 31 July 2019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vardar, F. (2020). Recent Advances in Aluminum Phytotoxicity. In: Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A. (eds) Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45975-8_16

Download citation

Publish with us

Policies and ethics