Skip to main content

SiO2-Based Conductive-Bridging Random Access Memory

  • Chapter
  • First Online:
Resistive Switching: Oxide Materials, Mechanisms, Devices and Operations

Part of the book series: Electronic Materials: Science & Technology ((EMST))

  • 1142 Accesses

Abstract

We present a review on the subject of conductive-bridging random access memory (CBRAM) based on copper- or silver-doped silicon dioxide. CBRAM is a promising type of resistive nonvolatile memory which relies on metal ion transport and redox reactions to form a persistent conducting filament in a high-resistance film. This effect may be reversed to return the device to a high-resistance state. Such control over resistance can be used to represent digital information (e.g., high = 0, low = 1) or produce multiple discrete or even continuous analog values as required by advanced storage and computing concepts. Many materials have been used in CBRAM devices, but we concentrate in this chapter on silicon dioxide as the ion-conducting layer. The primary benefits of this approach lie with the complementary metal–oxide–semiconductor process compatibility and the ubiquity of this material in integrated circuits, which greatly lower the barrier for widespread usage and permit integration of memory with silicon-based devices. Our discussion covers materials and electrochemical theory, including the role of counter charge in these devices, as well as the current understanding of the nature of the filament growth. Theory of operation is supported by descriptions of physical and electrical analyses of devices, including in situ microscopy and impedance spectroscopy. We also provide insight into memory arrays and other advanced applications, particularly in neuromorphic computing. The radiation tolerance of these devices is also described.

This chapter was originally published as a paper in the Journal of Electroceramics: Wenhao Chen, Stefan Tappertzhofen, Hugh J. Barnaby, “SiO2 based conductive bridging random access memory,” J Electroceramics, Vol. 39, nos 1–4 (2017), Pages 109–131. DOI: http://dx.doi.org/10.1007/s10832-017-0070-5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Grochowski, R.D. Halem, Technological impact of magnetic hard disk drives on storage systems. IBM Syst. J. 42, 338–346 (2003)

    Article  Google Scholar 

  2. P. Desnoyers, Empirical evaluation of NAND flash memory performance. ACM SIGOPS Operating Syst. Rev. 44, 50–54 (2010)

    Article  Google Scholar 

  3. L. Crippa, R. Micheloni, 3D charge trap NAND flash memories, in 3D Flash Memories, (Springer, New York, 2016), pp. 85–127

    Google Scholar 

  4. Y. Gonzalez-Velo, H.J. Barnaby, M.N. Kozicki, C. Gopalan, K. Holbert, Total ionizing dose retention capability of conductive bridging random access memory. IEEE Electron Device Lett. 35, 205–207 (2014)

    Article  CAS  Google Scholar 

  5. J. Simmons, R. Verderber, New thin-film resistive memory. Radio Electron. Eng. 34, 81–89 (1967)

    Article  Google Scholar 

  6. G. Dearnaley, A. Stoneham, D. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970)

    Article  Google Scholar 

  7. D. Oxley, Electroforming, switching and memory effects in oxide thin films. Act. Passive Electron. Compon. 3, 217–224 (1977)

    CAS  Google Scholar 

  8. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  CAS  Google Scholar 

  9. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—Fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011)

    Article  CAS  Google Scholar 

  10. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  CAS  Google Scholar 

  11. H. Pagnia, N. Sotnik, Bistable switching in electroformed metal–insulator–metal devices. Phys. Status Solidi A 108, 11–65 (1988)

    Article  Google Scholar 

  12. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  CAS  Google Scholar 

  13. A. Beck, J. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000)

    Article  CAS  Google Scholar 

  14. D. Ielmini, C. Cagli, F. Nardi, Resistance transition in metal oxides induced by electronic threshold switching. Appl. Phys. Lett. 94, 063511 (2009)

    Article  CAS  Google Scholar 

  15. S. Yu, X. Guan, H.-S.P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model. Appl. Phys. Lett. 99, 063507 (2011)

    Article  CAS  Google Scholar 

  16. R. Fang, W. Chen, L. Gao, W. Yu, S. Yu, Low-temperature characteristics of HfOx-based resistive random access memory. IEEE Electron Device Lett. 36, 567–569 (2015)

    Article  CAS  Google Scholar 

  17. L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X. Wang, R. Degraeve, et al., Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells. Appl. Phys. Lett. 97, 243509 (2010)

    Article  CAS  Google Scholar 

  18. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011)

    Article  CAS  Google Scholar 

  19. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, et al., Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism, in 2008 IEEE International Electron Devices Meeting (2008), pp. 1–4

    Google Scholar 

  20. R.J. Kamaladasa, A.A. Sharma, Y.-T. Lai, W. Chen, P.A. Salvador, J.A. Bain, et al., In situ TEM imaging of defect dynamics under electrical bias in resistive switching rutile-TiO2. Microsc. Microanal. 21, 140–153 (2015)

    Article  CAS  Google Scholar 

  21. J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Article  CAS  Google Scholar 

  22. M. Kubicek, R. Schmitt, F. Messerschmitt, J.L. Rupp, Uncovering two competing switching mechanisms for epitaxial and ultrathin strontium titanate-based resistive switching bits. ACS Nano 9, 10737–10748 (2015)

    Article  CAS  Google Scholar 

  23. F. Messerschmitt, M. Kubicek, S. Schweiger, J.L. Rupp, Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3‐δ bits: The memristor-based cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7448–7460 (2014)

    Article  CAS  Google Scholar 

  24. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  CAS  Google Scholar 

  25. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  CAS  Google Scholar 

  26. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, et al., Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012)

    Article  CAS  Google Scholar 

  27. M.N. Kozicki, M. Mitkova, I. Valov, Electrochemical metallization memories, Resistive switching: from fundamentals of nanoionic redox processes to memristive device applications (2016), pp. 483–514

    Google Scholar 

  28. M. Mitkova, M. Kozicki, Silver incorporation in Ge–Se glasses used in programmable metallization cell devices. J. Non-Cryst. Solids 299, 1023–1027 (2002)

    Article  Google Scholar 

  29. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, M. Mitkova, Nonvolatile memory based on solid electrolytes, in Non-Volatile Memory Technology Symposium, 2004 (2004), pp. 10–17

    Google Scholar 

  30. C. Schindler, M. Meier, R. Waser, M. Kozicki, Resistive switching in Ag-Ge-Se with extremely low write currents, in Non-Volatile Memory Technology Symposium, 2007. NVMTS’07 (2007), pp. 82–85

    Google Scholar 

  31. M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, et al., Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm, in IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest (2005)

    Google Scholar 

  32. M.N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331–338 (2005)

    Article  Google Scholar 

  33. N.E. Gilbert, M.N. Kozicki, An embeddable multilevel-cell solid electrolyte memory array. IEEE J. Solid State Circuits 42, 1383–1391 (2007)

    Article  Google Scholar 

  34. R. Symanczyk, M. Balakrishnan, C. Gopalan, T. Happ, M. Kozicki, M. Kund, et al., Electrical characterization of solid state ionic memory elements (2003)

    Google Scholar 

  35. M.N. Kozicki, M. Mitkova, Mass transport in chalcogenide electrolyte films–materials and applications. J. Non-Cryst. Solids 352, 567–577 (2006)

    Article  CAS  Google Scholar 

  36. M. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Information storage using nanoscale electrodeposition of metal in solid electrolytes. Superlattice. Microst. 34, 459–465 (2003)

    Article  CAS  Google Scholar 

  37. S.P. Thermadam, S. Bhagat, T. Alford, Y. Sakaguchi, M. Kozicki, M. Mitkova, Influence of Cu diffusion conditions on the switching of Cu–SiO2-based resistive memory devices. Thin Solid Films 518, 3293–3298 (2010)

    Article  CAS  Google Scholar 

  38. S. Tappertzhofen, H. Mündelein, I. Valov, R. Waser, Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale 4, 3040–3043 (2012)

    Article  CAS  Google Scholar 

  39. C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)

    Article  CAS  Google Scholar 

  40. W. Chen, R. Fang, M.B. Balaban, W. Yu, Y. Gonzalez-Velo, H.J. Barnaby, et al., A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells. Nanotechnology 27, 255202 (2016)

    Article  CAS  Google Scholar 

  41. M. Balakrishnan, S.C.P. Thermadam, M. Mitkova, M.N. Kozicki, A low power non-volatile memory element based on copper in deposited silicon oxide, in 2006 7th Annual Non-Volatile Memory Technology Symposium (2006), pp. 104–110

    Google Scholar 

  42. W. Chen, H. Barnaby, M. Kozicki, Impedance spectroscopy of programmable metallization cells with a thin SiO2 switching layer. IEEE Electron Device Lett. 37, 576–579 (2016)

    Article  CAS  Google Scholar 

  43. S. Tappertzhofen, S. Menzel, I. Valov, R. Waser, Redox processes in silicon dioxide thin films using copper microelectrodes. Appl. Phys. Lett. 99, 203103 (2011)

    Article  CAS  Google Scholar 

  44. S. Manhart, Memory switching in SiO films with Ag and Co electrodes. J. Phys. D. Appl. Phys. 6, 82 (1973)

    Article  CAS  Google Scholar 

  45. K. Abe, M.P. Tendulkar, J.R. Jameson, P.B. Griffin, K. Nomura, S. Fujita, et al., Ultra-high bandwidth memory with 3D-stacked emerging memory cells, in 2008 IEEE International Conference on Integrated Circuit Design and Technology and Tutorial (2008), pp. 203–206

    Google Scholar 

  46. C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, et al., Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process. Solid State Electron. 58, 54–61 (2011)

    Article  CAS  Google Scholar 

  47. M.N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, M. Mitkova, Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes, in Symposium Non-Volatile Memory Technology 2005 (2005), p. 7 p. 89

    Google Scholar 

  48. R. Symanczyk, R. Bruchhaus, M. Kund, Investigation of the reliability behavior of conductive-bridging memory cells. IEEE Electron Device Lett. 30, 876–878 (2009)

    Article  CAS  Google Scholar 

  49. D. Kamalanathan, U. Russo, D. Ielmini, M.N. Kozicki, Voltage-driven on–off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron Device Lett. 30, 553–555 (2009)

    Article  CAS  Google Scholar 

  50. R. Bruchhaus, M. Honal, R. Symanczyk, M. Kund, Selection of optimized materials for CBRAM based on HT-XRD and electrical test results. J. Electrochem. Soc. 156, H729–H733 (2009)

    Article  CAS  Google Scholar 

  51. U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron Devices 56, 1040–1047 (2009)

    Article  CAS  Google Scholar 

  52. M. Balakrishnan, M. Kozicki, C. Gopalan, M. Mitkova, Germanium sulfide-based solid electrolytes for non-volatile memory, in 63rd Device Research Conference, DRC’05 (2005)

    Google Scholar 

  53. D. Kamalanathan, S. Baliga, S.C.P. Thermadam, M. Kozicki, ON state stability of programmable metalization cell (PMC) memory, in Non-Volatile Memory Technology Symposium, 2007. NVMTS’07 (2007), pp. 91–96

    Google Scholar 

  54. T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Temperature effects on the switching kinetics of a Cu–Ta2O5-based atomic switch. Nanotechnology 22, 254013 (2011)

    Article  CAS  Google Scholar 

  55. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007)

    Article  CAS  Google Scholar 

  56. Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, M. Aono, Off-state and turn-on characteristics of solid electrolyte switch. Appl. Phys. Lett. 96, 023504 (2010)

    Article  CAS  Google Scholar 

  57. T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, et al., A Ta2O5 solid-electrolyte switch with improved reliability, in 2007 IEEE Symposium on VLSI Technology (2007), pp. 38–39

    Google Scholar 

  58. N. Banno, T. Sakamoto, S. Fujieda, M. Aono, On-state reliability of solid-electrolyte switch, in 2008 IEEE International Reliability Physics Symposium (2008), pp. 707–708

    Google Scholar 

  59. S. Rahaman, S. Maikap, Improved resistive switching memory characteristics using novel bi-layered Ge0.2Se0.8/Ta2O5 solid-electrolytes, in 2010 IEEE International Memory Workshop (2010), pp. 1–4

    Google Scholar 

  60. C.-J. Kim, S.-G. Yoon, K.-J. Choi, S.-O. Ryu, S.-M. Yoon, N.-Y. Lee, et al., Characterization of silver-saturated Ge-Te chalcogenide thin films for nonvolatile random access memory. J. Vac. Sci. Technol. B 24, 721–724 (2006)

    Article  CAS  Google Scholar 

  61. C. Gopalan, M. Kozicki, S. Bhagat, S.P. Thermadam, T. Alford, M. Mitkova, Structure of copper-doped tungsten oxide films for solid-state memory. J. Non-Cryst. Solids 353, 1844–1848 (2007)

    Article  CAS  Google Scholar 

  62. Y. Li, S. Long, Q. Liu, Q. Wang, M. Zhang, H. Lv, et al., Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures. Phys. Status Solidi RRL 4, 124–126 (2010)

    Article  CAS  Google Scholar 

  63. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Mitkova, A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans. Nanotechnol. 5, 535–544 (2006)

    Article  Google Scholar 

  64. J. Yi, S.-W. Kim, Y. Nishi, Y.-T. Hwang, S.-W. Chung, S.-J. Hong, et al., Research on switching property of an oxide/copper sulfide hybrid memory, in Non-Volatile Memory Technology Symposium, 2008. NVMTS 2008. 9th Annual (2008), pp. 1–4

    Google Scholar 

  65. R. Pandian, B.J. Kooi, G. Palasantzas, J.T. De Hosson, A. Pauza, Polarity-dependent reversible resistance switching in Ge–Sb–Te phase-change thin films. Appl. Phys. Lett. 91, 152103 (2007)

    Article  CAS  Google Scholar 

  66. L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, et al., Field-driven ultrafast sub-ns programming in WAl2O3 TiCuTe-based 1T1R CBRAM system, in VLSI Technology (VLSIT), 2012 Symposium on (2012), pp. 69–70

    Google Scholar 

  67. A. Belmonte, W. Kim, B. Chan, N. Heylen, A. Fantini, M. Houssa, et al., 90 nm WAl2O3 TiWCu 1T-1R CBRAM cell showing low-power, fast and disturb-free operation, in 2013 5th IEEE International Memory Workshop (2013), pp. 26–29

    Google Scholar 

  68. A. Belmonte, W. Kim, B.T. Chan, N. Heylen, A. Fantini, M. Houssa, et al., A thermally stable and high-performance 90-nm-based 1T1R CBRAM cell. IEEE Trans. Electron Devices 60, 3690–3695 (2013)

    Article  CAS  Google Scholar 

  69. L. Goux, K. Opsomer, R. Degraeve, R. Müller, C. Detavernier, D. Wouters, et al., Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells. Appl. Phys. Lett. 99, 053502 (2011)

    Article  CAS  Google Scholar 

  70. J. Guy, G. Molas, E. Vianello, F. Longnos, S. Blanc, C. Carabasse, et al., Investigation of the physical mechanisms governing data-retention in down to 10 nm nano-trench Al2O3/CuTeGe conductive bridge RAM (CBRAM), in 2013 IEEE International Electron Devices Meeting (2013), pp. 30.2. 1–30.2. 4

    Google Scholar 

  71. R. Soni, M. Meier, A. Rüdiger, B. Holländer, C. Kügeler, R. Waser, Integration of “GexSe1−x” in crossbar arrays for non-volatile memory applications. Microelectron. Eng. 86, 1054–1056 (2009)

    Article  CAS  Google Scholar 

  72. I. Stratan, D. Tsiulyanu, I. Eisele, A programmable metallization cell based on Ag-As2S3. J. Optoelectron. Adv. Mater. 8, 2117–2119 (2006)

    CAS  Google Scholar 

  73. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, et al., A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2011)

    Article  CAS  Google Scholar 

  74. H.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, et al., Phase change memory. Proc. IEEE 98, 2201–2227 (2010)

    Article  Google Scholar 

  75. P. Van Der Sluis, Non-volatile memory cells based on ZnxCd1-xS ferroelectric Schottky diodes. Appl. Phys. Lett. 82, 4089–4091 (2003)

    Article  CAS  Google Scholar 

  76. K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, et al., A novel resistance memory with high scalability and nanosecond switching, in 2007 IEEE International Electron Devices Meeting (2007), pp. 783–786

    Google Scholar 

  77. I. Valov, W.D. Lu, Nanoscale electrochemistry using dielectric thin films as solid electrolytes. Nanoscale 8(29), 13828–13837 (2016)

    Article  CAS  Google Scholar 

  78. J. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan, et al., Conductive-bridge memory (CBRAM) with excellent high-temperature retention, in 2013 IEEE International Electron Devices Meeting, IEDM 2013 (2013)

    Google Scholar 

  79. G. Raghavan, C. Chiang, P.B. Anders, S.-M. Tzeng, R. Villasol, G. Bai, et al., Diffusion of copper through dielectric films under bias temperature stress. Thin Solid Films 262, 168–176 (1995)

    Article  CAS  Google Scholar 

  80. M.N. Kozicki, H.J. Barnaby, Conductive bridging random access memory—Materials, devices and applications. Semicond. Sci. Technol. 31, 113001 (2016)

    Article  CAS  Google Scholar 

  81. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, et al., Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401–2406 (2014)

    Article  CAS  Google Scholar 

  82. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  CAS  Google Scholar 

  83. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, et al., Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012)

    Article  CAS  Google Scholar 

  84. W. Chen, H.J. Barnaby, M.N. Kozicki, A. Edwards, Y. Gonzalez-Velo, R. Fang, et al., A study of gamma-ray exposure of Cu–SiO programmable metallization cells. IEEE Trans. Nucl. Sci. 62(6), 2404–2411 (2015)

    Article  CAS  Google Scholar 

  85. M. Kudo, M. Arita, Y. Ohno, Y. Takahashi, Filament formation and erasure in molybdenum oxide during resistive switching cycles. Appl. Phys. Lett. 105, 173504 (2014)

    Article  CAS  Google Scholar 

  86. W.A. Hubbard, A. Kerelsky, G. Jasmin, E. White, J. Lodico, M. Mecklenburg, et al., Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15, 3983–3987 (2015)

    Article  CAS  Google Scholar 

  87. S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, M. Aono, Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7, 6396–6402 (2013)

    Article  CAS  Google Scholar 

  88. J. van den Hurk, A.-C. Dippel, D.-Y. Cho, J. Straquadine, U. Breuer, P. Walter, et al., Physical origins and suppression of Ag dissolution in GeSx-based ECM cells. Phys. Chem. Chem. Phys. 16, 18217–18225 (2014)

    Article  CAS  Google Scholar 

  89. C. Schindler, I. Valov, R. Waser, Faradaic currents during electroforming of resistively switching Ag–Ge–Se type electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 11, 5974–5979 (2009)

    Article  CAS  Google Scholar 

  90. J.D. McBrayer, R. Swanson, T. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133, 1242–1246 (1986)

    Article  CAS  Google Scholar 

  91. D.B. Strukov, R.S. Williams, Exponential ionic drift: Fast switching and low volatility ofáthin-film memristors. Appl. Phys. A 94, 515–519 (2009)

    Article  CAS  Google Scholar 

  92. S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25, 6306–6325 (2015)

    Article  CAS  Google Scholar 

  93. C. Schindler, M. Weides, M. Kozicki, R. Waser, Low current resistive switching in Cu-SiO2 cells. Appl. Phys. Lett. 92, 122910 (2008)

    Article  CAS  Google Scholar 

  94. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, vol 6 (CRC press, New York, 1985). https://doi.org/10.1201/9780203738764

  95. D.-Y. Cho, S. Tappertzhofen, R. Waser, I. Valov, Bond nature of active metal ions in SiO2-based electrochemical metallization memory cells. Nanoscale 5, 1781–1784 (2013)

    Article  CAS  Google Scholar 

  96. A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, vol 2 (Wiley, New York, 1980)

    Google Scholar 

  97. S. Tappertzhofen, R. Waser, I. Valov, New insights into redox based resistive switches, in Non-Volatile Memory Technology Symposium (NVMTS), 2013 13th (2013), pp. 1–5

    Google Scholar 

  98. T. Tsuruoka, I. Valov, S. Tappertzhofen, J. Van Den Hurk, T. Hasegawa, R. Waser, et al., Redox reactions at Cu, Ag/Ta2O5 interfaces and the effects of Ta2O5 film density on the forming process in atomic switch structures. Adv. Funct. Mater. 25, 6374–6381 (2015)

    Article  CAS  Google Scholar 

  99. C. Schindler, G. Staikov, R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 2109 (2009)

    Article  CAS  Google Scholar 

  100. T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, M. Aono, Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70–77 (2012)

    Article  CAS  Google Scholar 

  101. N. Knorr, R. Wirtz, S. Rosselli, G. Nelles, Field-absorbed water induced electrochemical processes in organic thin film junctions. J. Phys. Chem. C 114, 15791–15796 (2010)

    Article  CAS  Google Scholar 

  102. S. Tappertzhofen, M. Hempel, I. Valov, R. Waser, Proton mobility in SiO2 thin films and impact of hydrogen and humidity on the resistive switching effect, in MRS Proceedings (2011), p. mrss11-1330-j01-02-k03-02

    Google Scholar 

  103. T. Tsuruoka, I. Valov, C. Mannequin, T. Hasegawa, R. Waser, M. Aono, Humidity effects on the redox reactions and ionic transport in a Cu/Ta2O5/Pt atomic switch structure. Jpn. J. Appl. Phys. 55, 06GJ09 (2016)

    Article  CAS  Google Scholar 

  104. S. Tappertzhofen, R. Waser, I. Valov, Impact of the counter-electrode material on redox processes in resistive switching memories. ChemElectroChem 1, 1287–1292 (2014)

    Article  CAS  Google Scholar 

  105. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. Van den Hurk, F. Lentz, et al., Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  CAS  Google Scholar 

  106. X. Guo, C. Schindler, S. Menzel, R. Waser, Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007)

    Article  CAS  Google Scholar 

  107. H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, et al., Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Funct. Mater. 24, 5679–5686 (2014)

    Article  CAS  Google Scholar 

  108. W. Yu, Fractal Properties and Applications of Dendritic Filaments in Programmable Metallization Cells (Arizona State University, Tempe, 2015)

    Google Scholar 

  109. Z. Xu, Y. Bando, W. Wang, X. Bai, D. Golberg, Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010)

    Article  CAS  Google Scholar 

  110. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, et al., Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 1–9 (2014)

    Google Scholar 

  111. J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, TEM sample preparation and FIB-induced damage. MRS Bull. 32, 400–407 (2007)

    Article  CAS  Google Scholar 

  112. C.-S. Yang, D.-S. Shang, Y.-S. Chai, L.-Q. Yan, B.-G. Shen, Y. Sun, Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Phys. Chem. Chem. Phys. 18, 12466–12475 (2016)

    Article  CAS  Google Scholar 

  113. F. Messerschmitt, M. Kubicek, J.L. Rupp, How does moisture affect the physical property of Memristance for anionic–electronic resistive switching memories? Adv. Funct. Mater. 25, 5117–5125 (2015)

    Article  CAS  Google Scholar 

  114. G. Di Martino, S. Tappertzhofen, S. Hofmann, J. Baumberg, Nanoscale plasmon-enhanced spectroscopy in memristive switches. Small 12(10), 1334–1341 (2016)

    Article  CAS  Google Scholar 

  115. J.R. Macdonald, E. Barsoukov, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, New York, 2005), pp. 1–26

    Book  Google Scholar 

  116. J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (2005), pp. 1–26

    Google Scholar 

  117. Y. Liu, P. Gao, X. Jiang, K. Bi, H. Xu, W. Peng, Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon. Appl. Phys. Lett. 104, 043502 (2014)

    Article  CAS  Google Scholar 

  118. D. Mahalanabis, Y. Gonzalez-Velo, H.J. Barnaby, M.N. Kozicki, P. Dandamudi, S. Vrudhula, Impedance measurement and characterization of Ag-Ge30Se70-based programmable metallization cells. IEEE Trans. Electron Devices 61, 3723–3730 (2014)

    Article  CAS  Google Scholar 

  119. D.S. Jeong, H. Schroeder, R. Waser, Impedance spectroscopy of TiO2 thin films showing resistive switching. Appl. Phys. Lett. 89, 82909–83100 (2006)

    Article  CAS  Google Scholar 

  120. W.M. Merrill, R.E. Diaz, M.M. LoRe, M.C. Squires, N.G. Alexopoulos, Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum. IEEE Trans. Antennas Propag. 47, 142–148 (1999)

    Article  Google Scholar 

  121. A. Chung, J. Deen, J.-S. Lee, M. Meyyappan, Nanoscale memory devices. Nanotechnology 21, 412001 (2010)

    Article  CAS  Google Scholar 

  122. D.J. Wouters, R. Waser, M. Wuttig, Phase-change and redox-based resistive switching memories. Proc. IEEE 103, 1274 (2015)

    Article  CAS  Google Scholar 

  123. E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010)

    Article  CAS  Google Scholar 

  124. S. Menzel, S. Tappertzhofen, R. Waser, I. Valov, Switching kinetics of electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 15, 6945–6952 (2013)

    Article  CAS  Google Scholar 

  125. M.D. Pickett, R.S. Williams, Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012)

    Article  CAS  Google Scholar 

  126. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Introduction to flash memory. Proc. IEEE 91, 489–502 (2003)

    Article  Google Scholar 

  127. Y. Fujisaki, Current status of nonvolatile semiconductor memory technology. Jpn. J. Appl. Phys. 49, 100001 (2010)

    Article  CAS  Google Scholar 

  128. E. Linn, R. Rosezin, S. Tappertzhofen, R. Waser, Beyond von Neumann? Logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23, 305205 (2012)

    Article  CAS  Google Scholar 

  129. I. Valov, G. Staikov, Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories. J. Solid State Electrochem. 17, 365–371 (2013)

    Article  CAS  Google Scholar 

  130. M. Morales-Masis, S. Van Der Molen, T. Hasegawa, J. Van Ruitenbeek, Bulk and surface nucleation processes in Ag2S conductance switches. Phys. Rev. B 84, 115310 (2011)

    Article  CAS  Google Scholar 

  131. Y. Bernard, P. Gonon, V. Jousseaume, Resistance switching of Cu/SiO2 memory cells studied under voltage and current-driven modes. Appl. Phys. Lett. 96, 3502 (2010)

    Article  CAS  Google Scholar 

  132. A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Switching kinetics of a Cu2S-based gap-type atomic switch. Nanotechnology 22, 235201 (2011)

    Article  CAS  Google Scholar 

  133. A. Nayak, T. Tamura, T. Tsuruoka, K. Terabe, S. Hosaka, T. Hasegawa, et al., Rate-limiting processes determining the switching time in a Ag2S atomic switch. J. Phys. Chem. Lett. 1, 604–608 (2010)

    Article  CAS  Google Scholar 

  134. I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, et al., Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11, 530–535 (2012)

    Article  CAS  Google Scholar 

  135. S. Tappertzhofen, I. Valov, R. Waser, Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology 23, 145703 (2012)

    Article  CAS  Google Scholar 

  136. J. van den Hurk, V. Havel, E. Linn, R. Waser, I. Valov, Ag/GeSx/Pt-based complementary resistive switches for hybrid CMOS/Nanoelectronic logic and memory architectures. Sci. Rep. 3, 2856 (2013)

    Article  Google Scholar 

  137. T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, M. Aono, Rate-limiting processes in the fast SET operation of a gapless-type Cu-Ta2O5 atomic switch. AIP Adv. 3, 032114 (2013)

    Article  Google Scholar 

  138. M. Meier, C. Schindler, S. Gilles, R. Rosezin, A. Rudiger, C. Kugeler, et al., A nonvolatile memory with resistively switching methyl-silsesquioxane. IEEE Electron Device Lett. 30, 8–10 (2009)

    Article  CAS  Google Scholar 

  139. S. Menzel, U. Böttger, R. Waser, Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 111, 014501 (2012)

    Article  CAS  Google Scholar 

  140. S. Tappertzhofen, E. Linn, S. Menzel, A.J. Kenyon, R. Waser, I. Valov, Modeling of quantized conductance effects in electrochemical metallization cells. IEEE Trans. Nanotechnol. 14, 505–512 (2015)

    Article  CAS  Google Scholar 

  141. D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013)

    Article  CAS  Google Scholar 

  142. J. Åkerman, Toward a universal memory. Science 308, 508–510 (2005)

    Article  CAS  Google Scholar 

  143. T. Vogelsang, Understanding the energy consumption of dynamic random access memories, in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (2010), pp. 363–374

    Google Scholar 

  144. ITRS. Edition 2013 (2013)

    Google Scholar 

  145. K. Wang, J. Alzate, P.K. Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D. Appl. Phys. 46, 074003 (2013)

    Article  CAS  Google Scholar 

  146. B. Rooseleer, W. Dehaene, A 40 nm, 454MHz 114 fJ/bit area-efficient SRAM memory with integrated charge pump, in ESSCIRC (ESSCIRC), 2013 Proceedings of the (2013), pp. 201–204

    Google Scholar 

  147. D. Ielmini, Filamentary-switching model in RRAM for time, energy and scaling projections, in Electron Devices Meeting (IEDM), 2011 IEEE International (2011), pp. 17.2. 1–17.2. 4

    Google Scholar 

  148. A. Belmonte, U. Celano, R. Degraeve, A. Fantini, A. Redolfi, W. Vandervorst, et al., Operating-current dependence of the Cu-mobility requirements in oxide-based conductive-bridge RAM. IEEE Electron Device Letters 36, 775–777 (2015)

    Article  CAS  Google Scholar 

  149. S. Nandakumar, M. Minvielle, S. Nagar, C. Dubourdieu, B. Rajendran, A 250 mV Cu/SiO2/W memristor with half-integer quantum conductance states. Nano Lett. 16, 1602–1608 (2016)

    Article  CAS  Google Scholar 

  150. A. Calderoni, S. Sills, C. Cardon, E. Faraoni, N. Ramaswamy, Engineering ReRAM for high-density applications. Microelectron. Eng. 147, 145–150 (2015)

    Article  CAS  Google Scholar 

  151. J. Krans, C. Muller, I. Yanson, T.C. Govaert, R. Hesper, J. Van Ruitenbeek, One-atom point contacts. Phys. Rev. B 48, 14721 (1993)

    Article  CAS  Google Scholar 

  152. S.J. Choi, G.S. Park, K.H. Kim, S. Cho, W.Y. Yang, X.S. Li, et al., In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272–3277 (2011)

    Article  CAS  Google Scholar 

  153. A. Belmonte, U. Celano, A. Redolfi, A. Fantini, R. Muller, W. Vandervorst, et al., Analysis of the excellent memory disturb characteristics of a hourglass-shaped filament in Al2O3/Cu-based CBRAM devices. IEEE Trans Electron Devices 62, 2007–2013 (2015)

    Article  CAS  Google Scholar 

  154. S. Gao, C. Chen, Z. Zhai, H. Liu, Y. Lin, S. Li, et al., Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories. Appl. Phys. Lett. 105, 063504 (2014)

    Article  CAS  Google Scholar 

  155. P. Cappelletti, A. Modelli, Flash memory reliability, in Flash Memories, (Springer, New York, 1999), pp. 399–441

    Chapter  Google Scholar 

  156. J. Woo, A. Belmonte, A. Redolfi, H. Hwang, M. Jurczak, L. Goux, Role of local chemical potential of Cu on data retention properties of Cu-based conductive-bridge RAM. IEEE Electron Device Lett. 37, 173–175 (2016)

    Article  CAS  Google Scholar 

  157. K. Sankaran, L. Goux, S. Clima, M. Mees, J.A. Kittl, M. Jurczak, et al., Modeling of copper diffusion in amorphous aluminum oxide in CBRAM memory stack. ECS Trans. 45, 317–330 (2012)

    Article  CAS  Google Scholar 

  158. S. Tappertzhofen, E. Linn, U. Böttger, R. Waser, I. Valov, Nanobattery effect in RRAMs—Implications on device stability and endurance. IEEE Electron Device Lett. 35, 208–210 (2014)

    Article  CAS  Google Scholar 

  159. G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, et al., Controlling oxygen vacancies in doped oxide based CBRAM for improved memory performances, in 2014 IEEE International Electron Devices Meeting (2014), pp. 6.1. 1–6.1. 4

    Google Scholar 

  160. M. Barci, J. Guy, G. Molas, E. Vianello, A. Toffoli, J. Cluzel, et al., Impact of SET and RESET conditions on CBRAM high temperature data retention, in 2014 IEEE International Reliability Physics Symposium (2014), pp. 5E. 3.1–5E. 3.4

    Google Scholar 

  161. S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, et al., A copper ReRAM cell for storage class memory applications, in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on (2014), pp. 1–2

    Google Scholar 

  162. Y. Li, P. Yuan, L. Fu, R. Li, X. Gao, C. Tao, Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure. Nanotechnology 26, 391001 (2015)

    Article  CAS  Google Scholar 

  163. T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, K. Terabe, T. Ogawa, et al., Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch. Nanotechnology 24, 384006 (2013)

    Article  CAS  Google Scholar 

  164. T. Liu, M. Verma, Y. Kang, M. Orlowski, Volatile resistive switching in Cu/TaOx/δ-Cu/Pt devices. Appl. Phys. Lett. 101, 073510 (2012)

    Article  CAS  Google Scholar 

  165. J. Song, J. Woo, A. Prakash, D. Lee, H. Hwang, Threshold selector with high selectivity and steep slope for cross-point memory array. IEEE Electron Device Lett. 36(7), 681–683 (2015)

    Article  CAS  Google Scholar 

  166. J. Van den Hurk, E. Linn, H. Zhang, R. Waser, I. Valov, Volatile resistance states in electrochemical metallization cells enabling non-destructive readout of complementary resistive switches. Nanotechnology 25, 425202 (2014)

    Article  CAS  Google Scholar 

  167. R. Yang, K. Terabe, Y. Yao, T. Tsuruoka, T. Hasegawa, J.K. Gimzewski, et al., Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation. Nanotechnology 24, 384003 (2013)

    Article  CAS  Google Scholar 

  168. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017)

    Article  CAS  Google Scholar 

  169. W. Chen, H. Barnaby, M. Kozicki, Volatile and non-volatile switching in Cu-SiO2 programmable metallization cells. IEEE Electron Device Lett. 37, 580–583 (2016)

    Article  CAS  Google Scholar 

  170. Y.M. Lu, M. Noman, W. Chen, P.A. Salvador, J.A. Bain, M. Skowronski, Elimination of high transient currents and electrode damage during electroformation of TiO2-based resistive switching devices. J. Phys. D. Appl. Phys. 45, 395101 (2012)

    Article  CAS  Google Scholar 

  171. D. Gilmer, G. Bersuker, H.-Y. Park, C. Park, B. Butcher, W. Wang, et al., Effects of RRAM stack configuration on forming voltage and current overshoot, in 2011 3rd IEEE International Memory Workshop (IMW) (2011), pp. 1–4

    Google Scholar 

  172. H. Wan, P. Zhou, L. Ye, Y. Lin, T. Tang, H. Wu, et al., In situ observation of compliance-current overshoot and its effect on resistive switching. IEEE Electron Device Lett. 31, 246–248 (2010)

    Article  CAS  Google Scholar 

  173. K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, et al., Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 3506 (2008)

    Article  CAS  Google Scholar 

  174. Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki, Y. Sugiyama, Sub-reset current of nickel oxide resistive memory through control of filamentary conductance by current limit of MOSFET. IEEE Trans. Electron Devices 55, 1185–1191 (2008)

    Article  CAS  Google Scholar 

  175. D. Kamalanathan, A. Akhavan, M. Kozicki, Low voltage cycling of programmable metallization cell memory devices. Nanotechnology 22, 254017 (2011)

    Article  CAS  Google Scholar 

  176. S. Dietrich, M. Angerbauer, M. Ivanov, D. GOG, H. Hoenigschmid, M. Kund, et al., A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J. Solid State Circuits 42, 839–845 (2007)

    Article  Google Scholar 

  177. S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, et al., A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid State Circuits 40, 168–176 (2005)

    Article  Google Scholar 

  178. L. Goux, K. Opsomer, A. Franquet, G. Kar, N. Jossart, O. Richard, et al., Thermal-stability optimization of Al2O3/Cu–Te based conductive-bridging random access memory systems. Thin Solid Films 533, 29–33 (2013)

    Article  CAS  Google Scholar 

  179. P. Schrögmeier, M. Angerbauer, S. Dietrich, M. Ivanov, H. Honigschmid, C.-M. Liaw, et al., Time discrete voltage sensing and iterative programming control for a 4F 2 multilevel CBRAM, in VLSI Circuits, 2007 IEEE Symposium on (2007), pp. 186–187

    Google Scholar 

  180. R. Symanczyk, R. Dittrich, J. Keller, M. Kund, G. Müller, B. Ruf, et al., Conductive bridging memory development from single cells to 2Mbit memory arrays, in Non-Volatile Memory Technology Symposium, 2007. NVMTS’07 (2007), pp. 71–75

    Google Scholar 

  181. N. Gilbert, Y. Zhang, J. Dinh, B. Calhoun, S. Hollmer, A 0.6 V 8 pJ/write non-volatile CBRAM macro embedded in a body sensor node for ultra low energy applications, in VLSI Circuits (VLSIC), 2013 Symposium on. IEEE (2013)

    Google Scholar 

  182. R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, et al., 19.7 A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technology, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International (2014), pp. 338–339

    Google Scholar 

  183. M.-J. Lee, D. Lee, H. Kim, H.-S. Choi, J.-B. Park, H. G. Kim, et al., Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays, in Electron Devices Meeting (IEDM), 2012 IEEE International (2012), pp. 2.6. 1–2.6. 3

    Google Scholar 

  184. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, et al., Excellent selector characteristics of nanoscale for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 32, 1579–1581 (2011)

    Article  CAS  Google Scholar 

  185. S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, et al., Ultrathin (<10 nm) Nb2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications, in VLSI Technology (VLSIT), 2012 Symposium on (2012), pp. 155–156

    Google Scholar 

  186. K. Gopalakrishnan, R. Shenoy, C. Rettner, K. Virwani, D. Bethune, R. Shelby, et al., Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays, in 2010 Symposium on VLSI Technology (2010), pp. 205–206

    Google Scholar 

  187. A. Padilla, G. Burr, R. Shenoy, K. Raman, D. Bethune, R. Shelby, et al., The origin of massive nonlinearity in Mixed-Ionic-Electronic-Conduction (MIEC)-based Access Devices, as revealed by numerical device simulation, in 72nd Device Research Conference (2014), pp. 163–164

    Google Scholar 

  188. S.C. Puthentheradam, D.K. Schroder, M.N. Kozicki, Inherent diode isolation in programmable metallization cell resistive memory elements. Appl. Phys. A 102, 817–826 (2011)

    Article  CAS  Google Scholar 

  189. D.A. Drachman, Do we have brain to spare? Neurology 64, 2004–2005 (2005)

    Article  Google Scholar 

  190. D. Johnston, S.M.-S. Wu, R. Gray, Foundations of Cellular Neurophysiology (MIT press, Cambridge, 1995)

    Google Scholar 

  191. G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006)

    Article  Google Scholar 

  192. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.-S.P. Wong, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011)

    Article  CAS  Google Scholar 

  193. M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)

    Article  CAS  Google Scholar 

  194. Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, et al., Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3, 1619 (2013)

    Article  CAS  Google Scholar 

  195. J.R. Schwank, Basic Mechanisms of Radiation Effects in the Natural Space Radiation Environment (Sandia National Labs, Albuquerque, 1994)

    Google Scholar 

  196. D. Nguyen, S. Guertin, G. Swift, A. Johnston, Radiation effects on advanced flash memories. IEEE Trans. Nucl. Sci. 46, 1744–1750 (1999)

    Article  Google Scholar 

  197. Y. Gonzalez-Velo, H. Barnaby, M. Kozicki, P. Dandamudi, A. Chandran, K. Holbert, et al., Total-ionizing-dose effects on the resistance switching characteristics of chalcogenide programmable metallization cells. IEEE Trans. Nucl. Sci. 60, 4563–4569 (2013)

    Article  CAS  Google Scholar 

  198. J. Taggart, Y. Gonzalez-Velo, D. Mahalanabis, A. Mahmud, H.J. Barnaby, M.N. Kozicki, et al., Ionizing radiation effects on nonvolatile memory properties of programmable metallization cells. IEEE Trans. Nucl. Sci. 61, 2985–2990 (2014)

    Article  CAS  Google Scholar 

  199. Y. Gonzalez-Velo, A. Mahmud, W. Chen, J. Taggart, H. Barnaby, M. Kozicki, et al., TID impact on process modified CBRAM cells, in Radiation and Its Effects on Components and Systems (RADECS), 2015 15th European Conference on (2015), pp. 1–4

    Google Scholar 

  200. P. Dandamudi, M.N. Kozicki, H.J. Barnaby, Y. Gonzalez-Velo, K.E. Holbert, Total ionizing dose tolerance of based programmable metallization cells. IEEE Trans. Nucl. Sci. 61, 1726–1731 (2014)

    Article  CAS  Google Scholar 

  201. R. Fang, Y.G. Velo, W. Chen, K.E. Holbert, M.N. Kozicki, H. Barnaby, et al., Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory. Appl. Phys. Lett. 104, 183507 (2014)

    Article  CAS  Google Scholar 

  202. M.J. Marinella, S.M. Dalton, P.R. Mickel, P.E.D. Dodd, M.R. Shaneyfelt, E. Bielejec, et al., Initial assessment of the effects of radiation on the electrical characteristics of memristive memories. IEEE Trans. Nucl. Sci. 59, 2987–2994 (2012)

    Article  CAS  Google Scholar 

  203. Y. Wang, H. Lv, W. Wang, Q. Liu, S. Long, Q. Wang, et al., Highly stable radiation-hardened resistive-switching memory. IEEE Electron Device Lett. 31, 1470–1472 (2010)

    Article  CAS  Google Scholar 

  204. L. Zhang, R. Huang, D. Gao, P. Yue, P. Tang, F. Tan, et al., Total ionizing dose (TID) effects on-based resistance change memory. IEEE Trans. Electron Devices 58, 2800–2804 (2011)

    Article  CAS  Google Scholar 

  205. A.H. Edwards, K.A. Campbell, Density functional study of Ag in Ge2 Se3, in Non-Volatile Memory Technology Symposium (NVMTS), 2009 10th Annual (2009), pp. 1–7

    Google Scholar 

  206. S. Ferch, E. Linn, R. Waser, S. Menzel, Simulation and comparison of two sequential logic-in-memory approaches using a dynamic electrochemical metallization cell model. Microelectron. J. 45, 1416–1428 (2014)

    Article  CAS  Google Scholar 

  207. A. Siemon, S. Menzel, R. Waser, E. Linn, A complementary resistive switch-based crossbar array adder. IEEE J. Emerging Sel. Top. Circuits Syst. 5, 64–74 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded, in part, by the Air Force Research Laboratory under grant no. FA9453-13-1-0288 (H.J.B.) and by the Defense Threat Reduction Agency under grant no. HDTRA1-11-1-005 (H.J.B. and M.N.K.). S.T. acknowledges funding by a DFG research fellowship under grant TA 1122/1-1. M.N.K. also acknowledges the support of Axon Technologies Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W., Tappertzhofen, S., Barnaby, H.J., Kozicki, M.N. (2022). SiO2-Based Conductive-Bridging Random Access Memory. In: Rupp, J., Ielmini, D., Valov, I. (eds) Resistive Switching: Oxide Materials, Mechanisms, Devices and Operations. Electronic Materials: Science & Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-42424-4_7

Download citation

Publish with us

Policies and ethics